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ABSTRACT 

Real-time strategy (RTS) is a sub-genre of strategy video games. 

RTS games are more realistic with dynamic and time-constraint 

game playing, by abandoning the turn-based rule of its ancestors. 

Playing with and against computer-controlled players is a 

pervasive phenomenon in RTS games, due to the convenience and 

the preference of groups of players. Hence, better game-playing 

agents are able to enhance game-playing experience by acting as 

smart opponents or collaborators. One-way of improving game-

playing agents’ performance, in terms of their economic-

expansion and tactical battlefield-arrangement aspects, is to 

understand the game environment. Traditional commercial RTS 

game-playing agents address this issue by directly accessing game 

maps and extracting strategic features. Since human players are 

unable to access the same information, this is a form of “cheating 

AI”, which has been known to negatively affect player 

experiences. Thus, we develop a scouting mechanism for RTS 

game-playing agents, in order to enable game units to explore 

game environments automatically in a realistic fashion. Our 

research is grounded in prior robotic exploration work by which 

we present a hierarchical multi-criterion decision-making 

(MCDM) strategy to address the incomplete information problem 

in RTS settings. 

Categories and Subject Descriptors 

I.2.1 [Applications and Expert Systems]: Games 

General Terms 

Algorithms, Experimentation and Performance 

Keywords 

Artificial Intelligence in Games, Scouting Strategy, Exploration, 

Real-Time Strategy Games. 

1. INTRODUCTION 
Real-time strategy games are strategic simulations of battle 

scenarios. Simulations in RTS environments vary in complexity, 

and can mimic the complexity of real-world scenes. Research into 

AI for RTS games are thus interesting game AI researchers, as 

developing advanced game-playing agents for enhancing playing 

experience in these environments is a hard problem requiring an 

integration of multiple disciplines. For instance, path-finding 

algorithms need to be incorporated in pre-battle scouting as well 

as in maneuvering units. Knowledge representation techniques 

might be used to model opponents’ behavior and machine 

learning techniques for predicting strategies in order to generate 

counter strategies accordingly. Planning algorithms may then be 

used to produce efficient action plans to achieve different tactical 

goals. One key challenge in RTS game research is the incomplete 

information gameplay environment, whereby a player, whether 

human-controlled or computer-controlled, has only partial access 

to games states (e.g. location and terrain information) at any point 

of time. 

Collecting and analyzing terrain information is commonly 

perceived to be a key foundation in forming RTS gameplay 

strategies, due to the vital information it contains. Terrain 

analyses have been used in strategy making for AI bots [17] (e.g. 

ambushing in narrow paths) [6] and in advanced path-finding 

algorithms (e.g. navigating units groups) [18]. Traditional terrain 

analysis research [6,16,17] commonly employ “cheating AI” by 

having full access to game map information. To our best 

knowledge, even though professional players are familiar with the 

popular maps, most novice players are unfamiliar with the game 

maps. Employment of “cheating AI” has been known to affect 

player experiences in a negative way [12]. 

We hence propose to develop an AI algorithm that obeys the same 

discovery rules as human players. This accounts for the fog-of-

war mechanic present in most RTS games, which human players 

are subject to. As the preliminary exploration of this problem, the 

focus is on scouting spatial environment, where there is no enemy. 

In this article, we present a hierarchical multi-criterion decision-

making (MCDM) scouting algorithm adapted from robotic 

exploration research [4], which is able to collect map information 

and recognize features in a plausibly fast manner by optimizing 

travel distance. In particular, the next-best-view (NBV) scouting 

strategy framework [2] is employed to structure our scouting 

algorithm. Within the framework, a hybrid map representation 

method, as well as a hierarchical candidate-position-identification 

mechanism is developed. Correspondingly, we also developed a 

multi-criterion-based candidate-view evaluation strategy. Our 

scouting algorithm contributes to creating comprehensive 

scouting agents, which are able to handle complex scouting tasks.  

In the rest of this paper, we investigate related work on scouting 

strategies in both RTS game research and robotic research in 

section 2. Section 3 details our map representation method and 

exploration strategy. Section 4 describes our algorithm 

implementation and the experimental process. Finally, the merits 

and limitations of our algorithm are analyzed based on the results, 

and future research directions are outlined.  

2. RELATED WORK 
Building map information incrementally by gathering spatial 

environment data is a new approach for analyzing game terrain. 
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The challenge is how to navigate scout units in a right way, in 

other words, gathering more terrain data, in a short time, and 

avoiding damage. Potential field technique [9] has been used to 

deal with fog of war in Wargus1 (a clone of WarCraft II2), to 

reveal the covered map. [15] presents a heuristic navigation tactic 

for scout units in collecting opponents’ information. They devised 

a navigation method where a scout walks around the enemy base. 

There is still no accepted algorithm to solve unknown territory 

detection problem in RTS game fields.  

The primary goal of scouting strategies is to collect the spatial 

data in a certain area. It is similar to robotic exploration of 

unknown terrain. For robotic research, the problem that 

computing an exploration path is a sub-field of the area-mapping 

problem, in which a robot equipped with a detection sensor with 

limited visible range, explores in an unknown planar environment 

to completely collect all the map information [5]. Since searching 

an optimal path for a map-coverage robot (i.e. start from an initial 

point, then completely explore the map space and go back to the 

origin point) is still a NP-problem, a number of algorithms are 

developed to approximately fulfill the task [3]. For instance, wall 

following strategies are simple ways to collect segments of the 

movement space border, which are presented in [13]. [11] 

presents a trajectory-based exploration strategy by constructing 

Voronoi diagrams. This solution relies on the pervasively 

distributed obstacles in the exploration space. Due to the 

incomplete knowledge of the space, there are many uncertainties 

in planning a path within several steps. A promising approach is 

to select the NBV in each step, where less distance is cost, while a 

big step is pushed forward to achieve the final goal (i.e. collecting 

more territory information). Normally, the NBV is chosen from 

either observable positions in current view or explored locations 

in previous steps. A coverage-map-based strategy is presented in 

[20], which formulates the map into occupied grids with a 

probability model. [2] presents the theoretical aspects of the 

criterion for determining the best observation positions, in which 

entropy theory is employed to calculate the expected information 

gathering. A MCDM strategy for choosing NBV is presented in [4] 

by using Choquet Integral [7] to combine criterion utilities. [21] 

presents a one-step-look-ahead strategy by generate a search tree 

from candidate positions during exploration. [14] formulates 

finding  exploration paths in planar grid environment as a search 

problem, in which the occupation state of global grids is testing 

when doing next step planning. As investigated, frontier-based 

map representation method is proved to be an effective way to 

filter candidate positions for evaluation [1,2,4,8,10,21]. 

Comparing to grid-based map presentation, choosing potential 

next points along frontiers intuitively provides more chances to 

gather knowledge of unknown areas. There is, however, a big 

space to improve the map representation-based candidate-

selection strategy. Due to the inherit constraints of video games, 

current exploration strategies still cannot meet requirements of 

scouting tasks for RTS games. Being forced to do scouting in the 

complex RTS game space makes it more challenging.  

3. METHOD 
We present a hierarchical MCDM-based scouting strategy for 

executing map-scouting tasks below.  The scouting agent acts as 

the decision maker and procedure information collector by 
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interacting with the simulation system. A hierarchical frontier-

based mechanism is developed before making decisions to 

improve the efficiency of the algorithm.  

3.1 Environment Representation 
The exploration strategy works on two-dimensional environments. 

In this article, we employ a multiple map-representation 

methodology (i.e. the combination of Grid-based, segment-based 

and feature-based) to re-organize map-information for exploration 

agents to understand the environment, as well as provide search 

clues. 

3.1.1 Grid-based Representation 
The scouting unit is set as a ground unit in our simulation system. 

The assumption of it inherits from the main stream of commercial 

RTS games, i.e. it is unable to ignore obstacles when moving. A 

cone-shaped spatial patch surrounding the unit is revealed when it 

moves into an unknown area. The localization and map detection 

are concurrently conducted. Each detection activity in an 

unexplored region generates a map patch. It is, then, merged into 

a global map for incrementally build a complete representation of 

the environment.  

In order to accurately note the unknown areas and the explored 

part, the grid-based map representation methodology is chosen. 

An A* algorithm is used for navigation, when the destination is 

decided in each step. The grid-based method divides game maps 

into square tiles using high-resolution grids. Each cell is marked 

as: unknown, free-movement or occupied. Unknown tiles refer to 

the cells that have not been explored. Players do not know 

whether they are walk-able or occupied by solid obstacles or other 

game units. Free-movement means that cells are able to be walked 

through. Otherwise, if a tile is flagged occupied, the tile is un-

walk-able. The recon unit only walks through walk-able grids. An 

unknown cell is changed into walk-able or un-walk-able cell, 

when it is observed by a scout, i.e. it spatially falls into the unit’s 

visible range. Game areas are distinguished and thereby are noted 

for both scouting and path-finding purposes. 

3.1.2 Segment-based Representation 
The frontier-based scouting algorithm relies on recognition of the 

areas’ boundary. They are free-movement areas, unknown areas 

and occupied areas. Segment-based representation, then, acts as 

the boundary identifier. Areas are presented by boundary 

polygons composed of line segments. Globally, the frontiers, 

which separate unknown areas and unexplored areas, are 

identified by an algorithm that recognizes polygons from the 

border of detected regions [16]. The algorithm converts the two-

dimensional exploration array into a geometric polygon-boundary 

representation. This process is also called vectorization. In each 

scouting step, the vectorization process is conducted when the 

scouting units arrive at the previous NBV. Hence, the new frontier 

vertex set is updated before evaluate the next NBV. Normally, 

some frontier segments are overlap with obstacle segments. As a 

requirement of candidate evaluation, the overlap parts need to be 

identified. In other words, frontier segments, which are on the 

boarder of obstacles, are recognized before evaluation. An 

analysis approach on its 8-trajectory cells is, thus used, to deduce 

whether a frontier vortex is on obstacles or on unknown parts.  



3.1.3 Feature-based Representation  
Compared to the general real or virtual-life scenarios, most RTS 

game maps normally have special elements. These elements play 

important roles in game playing. The development of game 

situation, basically, depends on the reconnaissance of these 

featured elements. For instance, gases and minerals provide 

economical support to StarCraft game-play. Given that, all the 

bases are built in mineral areas in StarCraft. Similarly, neutral 

campsites, stores and taverns, in WarCraft III, affect game-play by 

recruiting neutral heroes or offering special properties. Thus, it is 

necessary to gather information of these elements when 

conducting exploration tasks. We define these elements as special 

objects, which are featured with different geometric and 

functional properties. We assume that an object is completely 

detected when over 90% of its area is explored. Then, all of its 

property data is delivered to the scouting agent.  The case follows 

the most situations that human players act in, who have the basic 

domain knowledge of the RTS game. When most parts of a 

special object are revealed to a human player, he is able to 

reasonably predict what the object is and what properties it has. 

These objects are presented as circular slices. The explored 

patches of special objects are maintained by the scouting agent 

during scouting.  

3.2 Algorithm Framework 
The general process is different from traditional path-planning 

algorithm. The scouting algorithm is not aiming to tackle the issue 

that finding a path from the initial location to the goal, but to 

manage the overall reconnaissance task.  

Our algorithm follows the framework described below [2]: 

a) A scouting unit perceives the surrounding environment.  

b) The map patches perceived are integrated into the map 

representing systems. 

c) Potential next positions are identified from map representation 

systems, according to a specific identification strategy.  

d) The potential positions are evaluated with multi-criterions.  

e) An optimal position is chosen as the goal of next movement 

after the evaluation. 

f) The unit goes there and starts from a). 

The hierarchical frontier-based potential position identification 

strategy is to address the issue in step c), while the MCDM-based 

evaluation approach is used to handle step d).  

3.3 Candidate Position Identification 
From the general exploration framework described above, we can 

abstract that the essential methodology of exploration is to find an 

optimal position for next movement. The definition of next 

position is a two-layer process. The first one is recognizing 

candidate positions from the game map. The last is to select an 

optimal position from the candidate positions accordingly. This 

section supposes to handle the former issue.  

There are two reasons motivating us to pursuit the direction of 

optimizing the candidate position identification strategy. One 

aims to promote the computation efficiency of decision making. 

In the general NBV strategy framework, it is necessary to have a 

step-look-ahead for evaluating the information expected to gain in 

the possible next position. Computational resources (e.g. time and 

CPU) need to be assigned to the evaluation activities, whichever 

specific algorithm is used. Obviously, for utility-based evaluation 

approaches, the cost of computational resources increases, when 

the number of utilities goes up. The circumstance becomes severe, 

if candidate positions are massive in large-scale game maps. 

Another reason is to decrease the travel distance, moving from 

current scout’s location to the NBV. It is not avoidable to travel a 

long distance for scouting an unknown region, even if areas 

around the scout unit have not been completely explored, when all 

of the global frontier vertices are taken into NBV evaluation in 

each step. This leads to the result that areas, which were 

temporarily given up to be detected, should be revisited in the 

later scouting process with travelling more distance. Even though, 

some NBV strategy [2,14,20] consider the travel cost during 

evaluation, a candidate position with rich expected information in 

a relative long distance away is commonly chosen. Alternatively, 

if the impact factor of distance cost is increased manually, the 

possibility of unreasonable prediction for the information gained 

in next potential positions goes up.  

After considering the above, a hierarchical candidate position 

identification strategy is proposed. Motivated by the idea of level 

of detail (LOD), the scouting space is divided into several levels 

from the area closely surrounding the scouting unit, which is 

defined as level one, to the entire map.  

In this article, we define four levels, namely, three local levels and 

a global level (see figure 1). Area levels are used to filter vertices 

on frontiers. For the filtering process, all the frontier vertices are 

traversed in the first step. Then, they are categorized into two 

different vertex sets. Vertices with an odd index number are 

pushed into an odd vertex set. Similarly, vertices with even index 

number are put into an even vertex set. Then, elements in the odd 

vertex set are processed. To be specific, points, which are located 

in the range of level three, are added into level-3 point set. 

Following the same rule, vertices are pushed into level-1 point set 

and level-2 point set separately.  

 

 

 

 

 

 

 

 

 

After arranging frontier vertices into different level sets, candidate 

positions are selected accordingly. Each selection begins from the 

level-1 point set. In each step, the NBV is expected to be 

generated from the first level. If there are no points in level-1 set, 

the level-2 point set is processed for calculation. The rest can be 

done in the same manner.  

The hierarchical model contributes to improve scouting 

performance as well as computational efficiency. Since local 

candidate viewpoints have higher evaluation priority, they are 

more likely to be completely explored. It is effectively avoiding 

Figure 1. Hierarchical Filtering Levels. 
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the phenomenon of blindly travelling among unknown regions. 

Furthermore, the pre-processing of frontier vertices leaves less, 

but of higher quality (i.e. less travelling cost and more 

information gained) positions in each evaluation computation.  

3.4 Candidate Position Evaluation 
When considering the computation of potential-position 

evaluation, we borrow ideas from heuristic search algorithms. To 

gather more information costing less time or resources (travelling 

distance), the algorithm needs to balance between these two 

aspects. Hence, two components are developed, which are 

heuristic component and utility component separately.  

3.4.1 Heuristic Component 
A distance-based heuristic function is chosen. A Euclidian 

distance-based computational approach is employed. This real-

distance-estimation method utilizes the same approach as we used 

in the A* path-finding algorithm for decreasing the computational 

complexity of candidate position evaluation. In order to weight 

the heuristic and utility components, the following equation is 

developed: 

[ ( , ) ] ( , )( ) d c p r r d c ph p e e                (1) 

where d(c, p) represents the estimating distance from current 

position c to the candidate position p. r denotes the radius of the 

scouting unit. This equation constraints the heuristic value to be 

between 0 and 1, and also guarantees that nearer candidate points 

acquire higher heuristic value, because the variation of the 

distance and the exponential function value follows an inverse 

proportion trend. The equation (7), discussed in next section, 

introduces α and β, which are used as weights for heuristic 

component and utility component respectively.  

3.4.2 Utility Component 
Effective data in RTS game circumstances can be categorized into 

three types. They are walkability of map tiles, outline of obstacles 

and special game elements. Technically, the knowledge of 

walkability of map tiles helps the game system render path-finding 

computation unlimited. It includes not only the troop 

maneuvering in later, combat scenarios, but also further scouting. 

The outline of obstacles plays a pivotal role when helping game-

playing bots to functionally divide game maps into different 

regions. To our best knowledge, the up-to-date methodologies 

normally separate map space into free-movement regions 

(allowing large groups of troops move through side-by-side, or 

building extension locations on), narrow corridors (where 

ambushing always happens), and corridors. These region divisions 

are foundations for making strategies as well as predicting 

opponents’ possible strategies by just considering spatial factors. 

Special game elements vary in different RTS games. As discussed 

above, they allow players developing special tricks, which in turn 

influence situations. 

Then, the evaluation of information gained for these three types of 

data is introduced. To unify the value of each utility, the 

circumstance of each criterion is presented by percentage.  iGrid(p) 

presents the possible un-walk-able cells gathered in the candidate 

position p. As shown is figure 2 (a), point p is the candidate 

position, while circle c illustrates the edge of scout’s visible range 

if it is located on p. Cells in the shadow area are expected to be 

gained. The equation to calculate u(iGrid) is: 

( )
u( )

( )

areaof shadow
iGird

areaof c


                           (2) 

In the second estimate, the amount of potential edge line that is 

visible in position p, is computed by iSeg(p). We assume that the 

frontier line segments, which are falling in the visible range of 

scout units, are obstacle segments. Figure 2 (b) illustrates that AB 

is a frontier line segment, and BC is a line segment of obstacles. 

The computation equation is: 

( )
u( )

( ) ( )

lengthof AB
iSeg

lengthof AB lengthof BC




           (3) 

For the third elements, the expectation of obtainable game 

features in position p is predicted based on area of gathered 

features, which fall within the visible range of p. It is illustrated 

by iFea (see Figure 2 (c)). The computing follows the equation: 

( ) ( )
u( )

( ) ( ) ( )

areaof k areaof i
iFea

areaof j areaof i areaof j
 



      (4) 

where area j includes area k, and k is the patch of explored 

features in the current view point, while j is the explored area. i is 

the area, which is expected to be revealed in position p. A weight-

based utility combination approach is used, which is demonstrated 

by: 

 
u(p) =

i=1

n

åui (p)*A
i
(p)

                                  (5) 

where ui(p) means the utility value of candidate position p with 

criterion i, Ai(p) is the weight of each utility. It satisfies the 

formula below: 

  
1

1
n

i

i

A p


                                              (6) 

3.4.3 Combination of Components 
A linear model is developed to combine the two components. It is 

illustrated by: 

      * *f p h p u p                              (7) 

The parameters (α and β) mean the weights that the two 

components have separately in the summary evaluation value. 

Their values satisfy the equation: 

 + = 1                                            (8) 

 

Figure 2. Information gain estimates with different 

criterions. 
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Figure 3. Game maps used in experiments (numbers represent starting locations). 
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4. Experiment 
To test our scouting strategy, we developed a simulator in C++ 

using openframeworks3. We collected 45 game maps from three 

commercial RTS games (StarCraft Broodwar, StarCraft II and 

WarCraft III), analyzed them, and extracted five common patterns: 

base-location pattern, base-location and the first extension pattern, 

turtle-shape, corridor and extensions. 

Base-location pattern is fundamental to RTS games. This pattern 

represents the starting area, where the player’s base is located. To 

make it easier to be defended, it is often surrounded by obstacles 

or un-walkable terrain elements, such as seas and cliffs. A 

passageway, often referred to as a choke area, connects this region 

to the rest of the map. The first extension pattern is a resource-rich 

area that is connected with the base-location through a short 

corridor. It is often explored in the first several minutes of 

gameplay. The turtle-shape pattern defines terrain where there is a 

large free-movement space in the centre of the region and small 

regions containing resources connected to the main region 
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through narrow corridors. A corridor pattern is a corridor-shaped 

common area, where narrow passageways are twisted. The 

extensions pattern is used to summarize a specific type of terrain 

frequently observed in WarCraft III. A group of semi-open 

extensions (i.e. regions rich in resources close to the base-location) 

are connected by an open space. This inner-connected large area 

is normally reachable from other regions through one or two 

narrow passageways. We have created abstract maps (see figure 3) 

based on these patterns. In these abstract maps, black areas 

represent walls and obstacles, while white areas represent free-

movement spaces. Resources are represented by blue polygons. 

The purpose of the experiment is to test the ability of our strategy 

in scouting spatial environment. Hence, no enemy is settled in 

these maps. 

For all experiments we chose the sight range of scouting units as 

40 pixels, which forces recon units to make a significant number 

of steps to complete the exploration. Scouting simulation is 

terminated when the map is 99.5% explored or when the allocated 

time (800s) for exploration runs out. This percentage is enough to 

reflect the completeness of space information gathering. 

 



 

 

 

 

 

 

 

 

 

It is meaningless to compare the remaining 0.5% exploration in 

evaluating scouting algorithms. We describe the four strategies 

used in our experiments below. 

A. Random Strategy 

The candidate positions are randomly selected from explored 

areas, and the next movement position is randomly selected 

from the candidate positions i.e. the evaluation function is 

not used. This strategy represents an uninformed agent 

intended as a worst-case strategy for exploration. 

B. Visual Strategy 

The visual strategy is in the family of NBV strategies. 

Candidate positions are chosen from current scout’s visible 

range, and often along the edge of visual range to maximise 

new area. Candidate positions are evaluated using the same 

MCDM strategy as the Hierarchical-Frontier Strategy 

described below. Integrating this strategy gives us a chance 

to compare the performance of scouting algorithms between 

frontier-based and non-frontier-based.  

C. Frontier Strategy 

This strategy is a modified version of the Gonzáles-Baños 

and Latombe’s exploration strategy (GB-L strategy) [8] and 

used to determine the performance contribution that can be 

attributed to the hierarchical position filtering mechanism. 

As part of MDCM, candidate positions from frontier vertices 

are identified and evaluated by the following formula: 

f (p) = A(p)*exp(-l *L(p))    

        where A(p) is an estimate of the unexplored area visible from 

p, L(p) represents the real distance from the current location 

of scouting unit to the candidate position p. λ denotes the 

weighting between exploring large areas and travelling less 

distances. The value of λ is set to 1/300, meanwhile the value 

of A(p) is constrained to [0~1], and the value of L(p) is in 

[0~1000]. That helps to balance A(p) and L(p) in a same 

magnitude as well as to keep their contribution for the total 

evaluation value in a proportion of 2/3. The value of λ is 

empirically chosen and varying this value is part of our 

future research. In terms of unexplored area estimation, two 

criterions are taken into account. They are unknown map-

grid gathering and obstacle-segment collecting. This strategy 

Figure 4. Performance of strategies in different criterions. 
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is a representative example of the state-of-art in NBV-based 

strategies in solving robotic exploration problems.  

D. Hierarchical-Frontier Strategy 

This strategy represents our novel contribution. It employs 

Hierarchical-Frontier (H-Frontier) candidate identification 

strategy to filter potential positions before evaluation. In 

terms of the weights of position evaluation, we emphasis 

more on grid gathering and segment gathering, since these 

two kinds of information are used to re-construct the outline 

of the map territory. Then, the parameters of utility 

component (Equation (5)) are set as: 0.4, 0.4 and 0.2 for 

A(iGrid), A(iSeg) and A(iFea) respectively. Compared to 

distance travelling, we give priority to information gathering 

in the next view. In equation (7), the weights we have chosen 

give priority to information gathering over travelling less 

distances with  set at 0.4 and  set at 0.6. 

For each map, we have chosen 16-24 possible starting positions 

(shown in Figure 3), determined by the complexity of the map. 

Each game map is evaluated using the four different strategies 

with all the different origin positions. Box plots, shown in figure 4, 

aggregate the results from simulation runs with different origin 

positions. Five criterions used to evaluate the performance of the 

strategies are: time cost (seconds), travelling distance (pixels), 

percentage of free-movement grids collection, percentage of 

obstacle segments, and percentage of game features (such as 

resources) gathered during scouting. The horizontal line in the 

box plot indicates the median value, box-boundaries are the 25th 

and 75th percentiles, and whiskers are the 10th and the 90th 

percentiles. The percentage plots illustrate that the H-Frontier 

strategy is the only one that is able to statistically complete 

scouting tasks in all the game maps and for all the origin positions. 

Figure 4(c), 4(d) and 4(e) illustrate that the 10-percentile value of 

map information-gathering percentage for H-Frontier strategy is 

over 99.5% in map 1, 2, 3, and 5, and that the 25-percentile value 

is over 99.5% in map 4. While the 10-percentile value of Frontier 

strategy is just over 99.5% only in map 4. The other two strategies 

perform even worse – rarely complete scouting tasks.  In terms of 

time spending, the H-Frontier strategy performs significantly 

better than other strategies in each map. Almost all the time 

spending for H-Frontier is less than other three strategies in all the 

maps (Figure 4(a)). Furthermore, the H-Frontier also travels less 

distance in completing scouting tasks in all of the maps (Figure 

4(b)). 

For few cases in maps 1, 2, 3 and 4 the Frontier strategy travels 

less distance than the H-Frontier Strategy, but in all of these cases 

the Frontier strategy fails to complete the scouting mission. As 

demonstrated by the percentage plots, the 90-percentile value of 

distance of H-Frontier Strategy is even lower than the median 

value of Frontier Strategy in maps 1, 2 and 3. To summarize, the 

Hierarchical Frontier Based Strategy we presented performs better 

than others for scouting in RTS game environments based on the 

five different criterions we have discussed.  

5. RESULTS AND DISCUSSION  
In the experiment, we compared candidate position identification 

strategies, and demonstrated that our algorithm performs better 

overall. To be specific, frontier-based strategies achieve 

overwhelmingly better results than the other two strategies. 

Among them, due to the hierarchical position filtering mechanism, 

the H-Frontier performs better than Frontier strategy in every 

aspect, which means the former, is able to collect more spatial 

information whilst travelling less distance during less time. In 

most position evaluation processes, the H-Frontier only computes 

the utility value of local positions, while the Frontier strategy has 

to calculate it globally. This results in saving time on evaluation 

computation. Additionally, since the local candidates are given 

high priority, the phenomenon of going back-and-forth in long 

distance is eliminated. It is common that a candidate position that 

is far away from current spot with potential in gathering more 

environment data is selected as the NBV. The fact is, however, 

that the scout has to travel back again for the completeness of 

exploration. In this experiment, the scout settings (such as ,  

and the sight range for the scout) have been kept constant. We are 

currently running additional experiments varying these settings in 

order to gather statistical results and test the stability of our 

solution. Another area we are exploring is how position 

evaluation strategies can be compared when combining different 

estimate factors.  

6. CONCLUSION 
We presented a Hierarchical Frontier MCDM-based scouting 

strategy to perform scouting tasks in RTS games by sensing its 

environment as part of a terrain analysis agent. A novel 

hierarchical-position-identification strategy considering factors 

that affect RTS game playing was developed, implemented and 

tested against similar strategies. The results show that our strategy 

performs better than others in the complex RTS game 

environment. Our results should also benefit research in robotic 

exploration strategies, although we have not tested it for that 

domain. As part of our future work, we will be examining the 

effect of enemy units and exploring the terrain using multiple 

units as part of an RTS game.  
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