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Entanglement is sometimes regarded as the quintessential measure of the quantum nature of a system and 
its significance for the understanding of coupled electronic and vibrational motions in molecules has been 
conjectured.  Previously, we considered the entanglement developed in a spatially localized diabatic basis 
representation of the electronic states, considering design rules for qubits in a low-temperature chemical 
quantum computer.  We extend this to consider the entanglement developed during high-energy 10 

processes.   We also consider the entanglement developed using adiabatic electronic basis, providing a 
novel way for interpreting effects of the breakdown of the Born-Oppenheimer (BO) approximation.   We 
consider: (i) BO entanglement in the ground-state wavefunction relevant to equilibrium thermodynamics, 
(ii) BO entanglement associated with low-energy wavefunctions relevant to infrared and tunneling 
spectroscopies, (iii) BO entanglement in high-energy eigenfunctions relevant to chemical reaction 15 

processes, and (iv) BO entanglement developed during reactive wavepacket dynamics.  A two-state 
single-mode diabatic model descriptive of a wide range of chemical phenomena is used for this purpose.  
The entanglement developed by BO breakdown correlates simply with the diameter of the cusp 
introduced by the BO approximation, and a hierarchy appears between the various BO-breakdown 
correction terms, with the first-derivative correction being more important than the second-derivative 20 

correction which is more important than the diagonal correction.  This simplicity is in contrast to the 
complexity of BO-breakdown effects on thermodynamic, spectroscopic, and kinetic properties.  Further, 
processes poorly treated at the BO level that appear adequately treated using the Born-Huang adiabatic 
approximation are found to have properties that can only be described using a non-adiabatic description.  
For the entanglement developed between diabatic electronic states and the nuclear motion, qualitatively 25 

differently behavior is found compared to traditional properties of the density matrix and hence 
entanglement provides new information about system properties.  For chemical reactions, this type of 
entanglement simply builds up as the transition-state region is crossed.  It is robust to small changes in 
parameter values and is therefore more attractive for making quantum qubits than is the related fragile 
ground-state entanglement, provided that coherent motion at the transition state can be sustained.   30 

1. Introduction 
Entanglement has been extensively researched in recent years 

and provides an intrinsic measure of the quantum nature of multi-
particle systems.1  The entanglement between two subsystems is 
zero if their dynamics are independent of one another. The 35 

entanglement is large in states that contain non-classical 
correlations, such as those seen in experiments in which Bell’s 
inequalities are violated.  In chemical applications, entanglement 
has been studied considering e.g., electron-vibration,2-15 electron-
electron,16-29 vibration-vibration,30-41 vibration-rotation,42, 43 40 

rotation-rotation,44 and electron-spin45-49 interactions.  The 
primary motivation for this research has been the possibility of 
exploiting entanglement to fabricate a quantum information 
processing device with performance properties far in excess of 
those using classical electronics or optics.50 A second motivation 45 

is to develop new computational quantum chemistry methods for 
highly correlated systems.51  Another less explored reason for 
considering quantum entanglement within chemical systems is 
the possibility that it could provide new insight into the quantum 

world of molecular spectroscopy, thermodynamics, and kinetics, 50 

and indeed this aspect is currently receiving significant 
attention.6, 30, 31, 52-54  Previously we have investigated low-energy 
electron-vibration processes for use in quantum information 
processing,2, 3 and here we extend this work to higher-energy 
processes. However, we are also concerned with what 55 

entanglement can tell us about chemical reactions and 
spectroscopic processes, focusing not only the results that 
conceivable experiments may yield but also on the understanding 
of the breakdown of the Born-Oppenheimer (BO) and Born-
Huang (BH) adiabatic approximations.55-58 60 

The BO approximation leads to the critical concept of 
molecular potential-energy surfaces obtained considering the 
electronic motion at fixed nuclear configurations.  This approach 
therefore neglects the effects of nuclear motion on the electronic 
structure, effects that give rise to unexpected chemical reaction 65 

mechanisms and to quantitative changes in molecular vibration 
frequencies and heats of formation.55-58  While unexpected 
reaction mechanisms are of fundamental importance, our recent 
review59 indicates that modern computational methods have 



 
advanced to the stage that inclusion of this coupling is required 
also for the quantitative prediction of observed spectroscopic and 
thermodynamic properties.  Some effects of BO breakdown are 
expensive to calculate and are implemented in only a few 
computational packages, but if only pairs of states are assumed to 5 

simultaneously interact, then all required terms may be evaluated 
from results now available in many wavefunction-based and 
density-functional based packages.59-62  

  Usually the accuracy of the BO approximation is gauged by 
the magnitude of its effects on thermochemical, spectroscopic, 10 

and kinetics processes.  However, we have noted a significant 
caveat.  While it is normal to describe unanticipated reactions as 
being “nonadiabatic”, we have recently shown that BH adiabatic 
potential-energy surfaces typically describe thermally activated 
processes of this type quite well and hence these reactions should 15 

actually only be described as being “non-Born-Oppenheimer” 
ones.59  When BH surfaces become inappropriate, dynamics 
intrinsically involves more than one potential-energy surface and 
is therefore intrinsically quantum. 

A simple example that highlights all of the effects to be 20 

considered is the dissociation of the NaCl dimer in the gas 
phase.63  At its equilibrium bond length, this molecule is ionic 
Na+−Cl- but it dissociates into radicals Na• + Cl•.64  The process 
is naively thought to happen on the ground-state BO adiabatic 
surface, the bonding changing continuously from essentially ionic 25 

at short distance to purely radical at long distance.  However, an 
excited-state surface is also involved with the opposite 
ionic/radical character to the ground state, and the reaction really 
involves an avoided crossing between these two surfaces.   Hence 
the accurate treatment of the dissociation process requires 30 

inclusion of the effects of BO breakdown, mixing the two 
electronic states.  This mixing entangles the electronic-vibrational 
wavefunctions in a way that dissociation on the pure ground-state 
surface does not.  We use this entanglement as a quantitative 
measure of the effects of BO breakdown. 35 

Instead of using the BO description to understand the 
dissociation of the NaCl molecule, an alternative approach is to 
use diabatic wavefunctions, wavefunctions that are either purely 
ionic or purely radical with unchanging character as the molecule 
stretches. These diabatic wavefunctions are mixed in different 40 

proportions at each nuclear geometry to make the BO adiabatic 
wavefunctions.  A particularly relevant aspect of the diabatic 
approach is that it is possible to build spatially localized detectors 
for the charge or dipole of a molecule as it undergoes dynamics, 
and these detectors project the quantum wavefunction onto 45 

diabatic bases.  The entanglement developed in a diabatic basis 
can therefore conceivably be used in a quantum information 
processor.4-9  

Regardless of which way we chose to represent it, all chemical 
reactions generate some degree of entanglement between the 50 

nuclear and electronic motions.  What happens at high energy on 
molecular potential energy surfaces also affects low energy 
properties like the nature of the ground state and the lowest 
vibrational levels, however, as molecular properties are holistic.  
So for example the entanglement developed between electronic 55 

motion on the BO surfaces and the vibrations must become large 
during NaCl dissociation as the wavefunctions at some point 
display equal radical and ionic character, but even at the 
equilibrium geometry the wavefunction has some covalent 
character and hence a small amount of entanglement must 60 

remain.  Previously we have shown the electron-vibration 
entanglement that is developed in diabatic bases for low-energy 
states is inappropriate for use in quantum information 
processing,3 hence our interest here in higher-energy processes.  

As the BO approximation is a mathematical construct, it is 65 

difficult to envisage an experiment that could perform the related 
measurements.  However, owing to the fundamental importance 
of the BO approximation to the conceptual framework of 
chemistry, understanding this entanglement could yield 
conceptual advances.  Indeed, this possibility is of considerable 70 

current interest,6, 30, 31, 52, 53 as is the possibility of examining 
vibration-vibration entanglement resulting from BO 
breakdown.30, 31  As classical molecular dynamics simulations 
based on the BO approximation do not allow for entanglement, 
the measures we provide may lead to a robust method for 75 

accessing the suitability of molecular dynamics applications to 
chemical kinetics and spectroscopy. 
 The simplest appropriate model system is the two-state one-
mode vibronic coupling model (sometimes known as the two-site 
Holstein model65) in which two diabatic states (representing 80 

reactants and products) are coupled through a single harmonic-
oscillator vibration.  This is the approach we take.  
 A very wide range of chemical processes can be described 
using this model, and we consider in detail ten model chemical 
systems 0 – 9 and nine iconic parameter sets A – I as described in 85 

Fig. 1 and Table 1.  These model systems include the origin of 
aromaticity in benzene,66 symmetry breaking to produce sp3 
hybridization in ammonia,66, 67 loss of aromaticity in the lowest 
triplet excited state of pyridine (3PYR),68 symmetry breaking in 
BNB, 69 intervalence charge transfer in the Creutz-Taube ion 90 

(CT)70, its orthomethoxy substituted variant CT-OMe71 and 
extended bipyridyl form DPP,72, 73 the photosynthetic 
bacteriochlorophyll special-pair radical cation from Rhodobacter 
sphaeroides,74, 75 charge recombination in a ferrocene-porphyrin-
fullerene triad photosynthetic model compound (FcPC60),76, 77 and 95 

hole transport through the molecular conductor Alq3.78 79   
A limitation is that this model includes only a single nuclear 

coordinate and hence cannot describe Jahn-Teller interactions at 
conical intersections that are important for in particular 
photochemistry.  Under such circumstances, the vibronic 100 

coupling strength becomes strongly dependent on a second 
nuclear coordinate and the Berry Phase becomes an important 
property.   Entanglement in these systems is also of current 
interest, however.2, 10, 11 

2. Methods 105 

All mathematical symbols used are compared and contrasted in 
the Appendix. 

a.  The two-state one-mode model Hamiltonian 

 The model Hamiltonian H is written in terms of spatially 

localized crude-adiabatic (CA) diabatic states 0( , )CA
L r Qφ  and 110 

0( , )CA
R r Qφ  as 
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and J is the electronic coupling between the diabatic states, r 
represents the electronic coordinate, Q represents the chosen 
(antisymmetric) dimensionless nuclear coordinate, Qm is a 
displacement in this coordinate that locates the two harmonic 5 

potentials at different nuclear geometries, ω is the vibration 
frequency of the harmonic diabatic oscillators in the absence of 
coupling, and E0 is an energy asymmetry that represents the 

energy (sometimes taken as a free-energy) change in a chemical 
reaction.  Dimensionless nuclear coordinates are obtained by 10 

scaling say normal-mode coordinates by their zero-point 
displacement length80 /ω .  The diabatic wavefunctions have 
the same character at all values of the nuclear coordinate Q, and 
to emphasize Eqn. 1 specifies their evaluation at some specific 
coordinate Q0.  In Fig. 2, the main elements of the model are 15 

sketched. 
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Fig. 1   Some sample molecular systems (see text) with electronic states that can be described using two coupled diabatic potential-energy surfaces. 
OMe is methoxy, PHY is phytyl; tBu is tertiary butyl; A is ammonia; FcPC60 is Zinc, [[5,10,16,21-tetrakis[3,5-bis(1,1-dimethylethyl)phenyl]-13-[4-

(1',5'-dihydro-1'-methyl-2'H-[5,6]fullereno-C60-Ih-[1,9-c]pyrrol-2'-yl)phenyl]-1,12-dihydro-23H,25H-diimidazo[4,5-b:4',5'-l]porphin-2-yl-
κN23,κN24,κN25,κN26]ferrocenato(2-)]-, (SP-4-1); Alq3 is mer-tris(8-hydroxyquinolinato)aluminum(III); DPP is Ruthenium(5+), decaammine[μ-[4,4'-

[(1E,3E)-1,3-butadiene-1,4-diyl]bis[pyridine-κN]]]di- (9CI). 

Table 1  Estimates (see text) of parameters values for the coupled harmonic potential-energy surfaces for molecular systems 0 − 9 (see Fig. 1) and 
characteristic points A − I, along with the evaluated properties at N=1024: cQ - the cusp diameter (Eqn. (19)), †E∆∆  is the DC to the activation energy 
(Eqn. (20)); for eigenstates ρ  are density-matrix elements (Eqn. (12)) while S is the entanglement (Eqn. (14) for the lowest vibronic level (0), first-
excited level (1), and level at the transition state (T); for wavepackets Sπ  is the entanglement at /t π ω=  whilst LRκ  gives the probability of reaction 
between the diabatic states per period of motion evaluated using the full Hamiltonian (FC) and its BO or BH approximations.  All entanglements are in 
the BO basis and hence reflect the accuracy of the BO approximation rather than the usefulness of the molecules in a quantum information processor. 
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Sπ  FC

LRκ  BO
LRκ  BH

LRκ  

0 FcPC60 0.029 0.15 -13 0.05 44 0.000 0.000 0.000 0.000 0.000 0.000     0.02b 0 0 
1 DPP 0.043 0.08 0 0.11 11 0.000 0.000 0.001 0.000 0.000 0.005 0.000 0.037 0.227 0.98 0.08 0.64 0.22 
2 Alq3 0.08 0.16 0 0.14 6.3 0.000 0.002 0.020 0.000 0.009 0.076 0.000 0.064 0.344 0.62 0.11 0.68 0.27 
3 3PYR 0.3 0.095 1.3a 0.67 0.28 0.013 0.000 0.000 0.013 0.001 0.008 0.007 0.003 0.033 0.19 0.55 0.62 0.56 
4 BNB 0.74 0.18 0 1.11 0.10 0.000 0.001 0.010 0.000 0.005 0.041 0.000 0.001 0.010 0.04 0.86 0.92 0.88 
5 CT 0.80 0.089 0 1.68 0.04 0.000 0.000 0.002 0.000 0.001 0.006 0.000 0.000 0.002 0.01 0.80 0.83 0.81 

6 CT-OMe 0.80 0.089 1.5a 1.68 0.04 0.010 0.000 0.000 0.019 0.000 0.001        
7 NH3 0.80 0.006 0 6.45 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.50 0.50 0.50 
8 PRC 1.8 0.41 0.6 1.39 0.07 0.020 0.003 0.023 0.040 0.016 0.108        

9 Benzene 3.3 0.010 0 12.6 0.001 0.000 0.000 0.000 0.000 0.000 0.000        
A 0.1 1 0 0.07 25 0.000 0.101 0.471 0.000 0.212 0.746 0.000 0.212 0.746 0.31 0.05 0.76 0.26 
B 1 1 0 0.59 0.35 0.000 0.024 0.161 0.000 0.242 0.799        
C 10 1 0 2.23 0.025 0.000 0.005 0.044 0.000 0.332 0.917        
D 0.01 0.1 0 0.02 250 0.000 0.000 0.003 0.000 0.000 0.005 0.000 0.017 0.122 0.81 0.02 0.67 0.02 
E 0.1 0.1 0 0.22 2.5 0.000 0.000 0.001 0.000 0.001 0.015 0.000 0.051 0.289 0.86 0.24 0.64 0.39 
F 1 0.1 0 1.88 0.035 0.000 0.000 0.002 0.000 0.001 0.007        
G 10 0.1 0 7.05 0.003 0.000 0.000 0.000 0.000 0.000 0.001        
H 0.01 0.0316 0 0.04 79 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.033 0.209 0.99 0.02 0.61 0.07 
I 0.1 0.0316 0 0.40 0.79 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.051 0.50 0.45 0.57 0.49 

a indicated in the figures at the approximate location of 0 /E ω =1.4.  b inverted region, dynamics at diabatic crossing energy; other approximations 

yield FD
LRκ  =0.48, SD

LRκ = 0.28, and FD SD
LRκ + = 0.05. 

 



 

 
Fig. 2.  The two-state diabatic model for general chemical reactions 
depicted by Eqns. (1) and (8):  red, blue- harmonic diabatic surfaces 

( )CA
LLH Q  and ( )CA

RRH Q , respectively; purple, green- ( )BOH Q−−

ground state and ( )BOH Q++ excited BO adiabatic surfaces, respectively. 5 

b) Model parameters for different chemical systems. 

In Table 1, the chemical systems and model systems examined 
are categorized in terms of the three non-trivial variables 2 /J λ  

, / Eω ∆  , and 0 /E ω  which specify the chemical scenario, 
relative vibrational to electronic energy scale, and relative 10 

asymmetry, respectively, where 
  22 mQλ ω=     (2) 

is the reorganization energy and 
    2 2 1/2( 4 )E Jλ∆ = +    (3) 
indicates the overall energy scale.  The reorganization energy is 15 

the energy difference between vertical and relaxed excitation of 
the diabatic states (see Fig. 2), whilst the adiabatic vertical 
excitation energies at the two minima of a double-welled ground 
state surface are approximately 0Eλ ±  provided that either 

2 / 1J λ   or 0 / 1E λ 0 .59  The values of the parameters used 20 

are taken from observed and calculated data,3, 66, 68-79 as described 
elsewhere.3, 59  Values for closed-shell systems are based on our 
renormalization scheme that maps these essentially multi-state 
problems onto an effective two-state model.66  As this mapping is 
property dependent, we select parameters that relate to the key 25 

applications of each particular molecule. 

c) Full-quantum solution to the model using diabatic 
electronic basis states 

 The vibronic eigenvalues jε  and eigenvectors ( , )j r Qψ  of 

H can readily be determined using standard methods59 using the 30 

diabatic basis (Eqn. (1)), representing the eigenfunctions as  
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Here, ( )i Qχ  are harmonic-oscillator vibrational basis sets80  
centred at Q = 0,  truncated at N functions per state.  All matrix 
elements are evaluated analytically.59  Calculations are mostly 35 

rapidly convergent and we use a typically grossly excessive value 
of N = 256 functions.   

d) Full and approximate quantum solutions to the model 
using BO adiabatic electronic basis states 

Alternatively, application of the BO approximation56, 81 to 40 

solve for the properties of H proceeds by diagonalizing it 
parametrically as a function of the nuclear coordinate Q to yield 
the ground-state (-) and excited-state (+) potential-energy 
surfaces 
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and associated BO electronic wavefunctions 
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However, using these BO wavefunctions as the basis describing 
the electronic motion, Eqn. (1) may be rewritten without 
approximation56, 57 as ( )BO QH  where 
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provide the diagonal correction (DC) DCHD , first-derivative 
(nuclear momentum) correction (FD) ( ) /FD FDH P Q QD = D ∂ ∂ , 
and second-derivative (nuclear kinetic energy) correction (SD) 60 

SDHD to the BO approximation, with 

  0
x m

EQ Q
λ

=    (10) 

being the nuclear coordinate at which the two CA states 
intersect.59  An example BO surface for which the BO ground-
state develops a transition state are shown in Fig. 2.   Solving 65 

Eqn. (8) retaining all three correction terms provides a 
numerically exact solution to the original model Hamiltonian 
which we label as the full calculation (FC).  The deduced 



 
vibronic eigenvalues jε  plus all properties such as dipole 
moments, transition moments, etc., should therefore be the same 
as those determined using the diabatic basis directly from Eqn. 
(1).  However, it is also possible to generate a range of 
approximate solutions depending on which of the coupling terms 5 

from Eqn. (8) are retained.  The BO approximation corresponds 
to neglecting all three corrections whilst the BH approximation 
retains only DC, ignoring the FD and SD surface hopping 
contributions.  We also consider approximations in which just FD 
or SD are included, etc.. 10 

 Numerical solution of Eqn. (8) proceeds similarly to that of 
Eqn. (1), using again a vibrational basis set of N harmonic-
oscillator vibrational basis wavefunctions ( )i Qχ  centred at Q = 

0, writing the eigenfunctions as ( , )j r Qψ  

1
( , ) ( ) ( , ) ( )

N

ij i ij i
i

C r Q Q C r Q Qφ χ φ χ− − + +
− +

=
= +∑  (11) 15 

Whilst solution to Eqn. (1) is rapid and efficient, for Eqn. (8) 
scenarios involving small cusp diameters lead to extremely large 
basis-set requirements for the evaluation of BO breakdown and 
we report results that are either converged or nearly so using at N 
= 1024  functions.59   Required matrix elements are evaluated 20 

numerically.59, 80  

e. Determining the entanglement. 

The primary observable consequences of entanglement in 
quantum systems stem from the results of making measurements 
for one of the observable properties of the system.1  If 25 

entanglement is present then such measurements also reveal 
unexpected information concerning other aspects of the system.  
Therefore the nature of the measurement must always be 
specified when considering entanglement.  Measurement projects 
a quantum wavefunction onto some basis, and calculations of this 30 

entanglement must mimic this.  This computational aspect is 
unusual as most observable properties arise independent of the 
basis in which the calculations are performed.  While unitary 
transformations of basis sets do not modify entanglement,1 Eqn. 
(7) is non-unitary owing to its parametric dependence on the 35 

nuclear coordinate.  Hence the entanglement measured in the 
diabatic basis CA will be different to that measured in the BO 
basis using FC, whereas other properties such as energies and 
dipole moments are independent of the choice of the electronic 
basis. 40 

For not just eigenstates but for any general time-dependent 
wavefunction expressed in one of these forms, the entanglement 
is calculated by first determining the appropriate reduced 
electronic density for wavefunction j1, 3 
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where either , { , }a b∈ + −  or , {L,R}a b∈ . In terms the von 
Neumann entropy, the entanglement is then given by1 

2 2Tr( log ) or Tr( log )CA CA CA
j j j j j jS S= − = −ρ ρ ρ ρ . (14) 50 

Note that it is also possible to obtain this entanglement 
equivalently by an analogous procedure utilizing instead the 
reduced vibrational density.3  The von Neumann entropy is 
widely accepted as the best measure of quantum entanglement for 

pure quantum states defined on bipartite systems, such as that 55 

considered here. This is because it satisfies many desired criteria 
including: vanishing for separable states, monotonicity (it does 
not increase under local operations or classical communication 
between the subsystems), additivity, convexity, and continuity.82  

The entanglement developed as a function of time during the 60 

motion of wavepackets is obtained by expressing the initial 
wavepacket as a Gaussian distribution of nuclear position 
probability on a BO surface as say 
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where IQ  is the initial location of the centre of the wavepacket. 65 

This is then projected onto the 2N vibronic eigenstates of the BO 
electronic Hamiltonian (Eqn. (8)) as 
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It’s quantum dynamics is evaluated analytically using 

  ( )( ) (0)exp /j j jd t d i te= −  .   (17)  70 

The wavefunction is then rewritten into the form of Eqn. (11) (or 
Eqn. (10)) and the entanglement determined. 

  3. Results 
  a. Entanglement in the ground-vibronic state, first-excited 
vibronic state, and transition-state adiabatic wavefunctions 75 

The energy of the ground-vibronic wavefunction is important 
in determining e.g. heats of reaction, while this and the energy of 
the next-lowest vibronic level determine the lowest spectroscopic 
transition energy; other properties of these wavefunctions 
determine transition moments, Stark susceptibilities, etc..  Here 80 

we use entanglement to quantify how quantum in nature these 
eigenfunctions appear within the BO approximation, a result that 
pertains to the suitability of using just a single adiabatic 
electronic state to describe system properties. 
  Alternative commonly used measures for intrinsic quantum 85 

nature include the values of the excited-state density ρ++  and the 

off-diagonal density-matrix element ρ−+  themselves, and we 
compare these measures with the associated entanglement in Fig. 
3 and Table 1 for three eigenfunctions of the two-state one-mode 
model.  These eigenfunctions are: the lowest vibronic energy 90 

level (0), the first vibronic excited-state (1), and the eigenstate 
closest in energy to that of the transition state, when one exists.  
The ground-state BO surface has no transition state whenever59  
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These regions are indicated by dark-grey shading in the figure. 95 

 If classical molecular dynamics on the ground-state adiabatic 
surface is to be reliable, then all three measures of the 
wavefunction ρ++ , ρ−+ , and S need to be very small whereas 
all three measures approach unity in the worst-possible cases.  
Fig. 3 shows that the individual density components ρ++  and 100 

ρ−+ sometimes have similar qualitative dependencies on the 
model parameters 2 /J λ  , / Eω ∆  , and 0 /E ω  whereas 
sometimes they behave quite differently.  The entanglement, 



 

which from Eqn. (14) is sensitive to both density components, 
indicates that classical mechanics would be unsuitable whether or 
not this feature can be attributed to ρ++  and/or ρ−+ .  It 
therefore provides a general way for the interpretation of complex 
data, the entanglement being only a single number independent of 5 

the level of complexity in the density matrix. 
 Fig. 3 shows that the entanglement in the ground-state 

vibronic eigenfunction is small for all of the sample molecules 0 
– 9.  This is expected as molecules like ammonia, benzene, etc. 
are known to be accurately described using the BO 10 

approximation.  However, it is conceivable that even small levels 
of entanglement could be significant, suggesting that deviations 
from BO results could be detectable  In particular, for the iconic 
molecule 4 (BNB), S=0.01, while for the technologically relevant 

 
Fig. 3 Measures of BO wavefunction mixing for the lowest (0) , first-excited (1), and near transition-state  (T) vibronic eigenfunctions of the two-state 

one-mode model: ρ−+ - electronic off-diagonal density, ρ++ - electronic excited-state density, S - entanglement.  Model compounds 1-9 and points A-I 
are indicated; regions with poor numerical convergence are shown in light grey whilst those without a transition state are in dark grey. The dashed line 

is for Qc=81/2, indicating where †E ω∆∆ =  .  



 
systems 2 (Alq3) S=0.02 and for 8 (PRC) S=0.02.  Significant 
entanglement is predicted only for systems with / Eω ∆  > 0.5.  
In this region Jahn-Teller effect must be included before 
conclusions can be drawn, however.     

BO entanglement within the first excited vibronic level is 5 

generally larger than that in the ground vibronic level as greater 
mixing occurs at higher energies.  From Table 1, the largest 
entanglement calculated for any of the model compounds is 0.11 
for 8 (PRC), with entanglement also becoming noticeable also for 
1 (DPP), 3 (3PYR), and 5 CT.  The entanglements within 10 

wavefunctions at energies corresponding to the transition state 
become quite large for the weakly coupled electron-transfer 
molecules 1 (DPP) and 2 (Alq3), reaching 0.23 and 0.34, 
respectively.  As the electronic coupling becomes weaker, the 
entanglement increases indicating enhanced failure of the BO 15 

approximation.  This is no surprise as non-adiabatic 
computational methods are almost always used to study such 
processes; rather it is surprising just how little entanglement is 
actually developed for quite small values of  2 /J λ  of order 
0.04 – 0.08, and that entanglement decreases significantly as the 20 

vibration frequency falls.  Reduced vibration frequencies would 
occur e.g. if an electron transfer process was most strongly 
coupled to low-frequency solvent modes rather than to 
intramolecular vibrations.  

The three BO correction terms in Eqn. (9) can all be expressed 25 

simply59 in terms of the cusp diameter 
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The smaller the value of this diameter, the more profound the 
effects of BO breakdown are.  For example, the DC term takes on 
a maximum value at Q=Qm of 30 
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and can be thought of as providing a sharp spike in the potential 
close to the transition state of width Qc.  When cQ = 8-1/2 ~ 0.35, 

†E ω∆∆ =   and so processes at the transition state must be 
affected. The locus of this line is shown on Fig. 3 and roughly 35 

correlates with the onset of entanglement in the wavefunctions at 
the transition state.  At lower energies than the transition state of 
non-Jahn-Teller systems, the effect of the spike is rapidly 
diminished and so the entanglement falls off. 

In summary, to have significantly entangled adiabatic 40 

wavefunctions at the transition state, i.e., significant failure of the 
Born-Oppenheimer approximation, the energy gap there needs to 
be small compared to that at the relaxed geometry ( 2 /J λ  
small, deep cuspy double well) and the vibration frequency has to 
be significant compared to the electronic energies ( / Eω ∆  not 45 

small).  This is in accordance with traditional qualitative 
understandings of BO breakdown but here is presented quantified 
using a simple model chemical system that shows how ground-
vibronic-level properties relate.   

  b. Entanglement in the ground-state and transition-state 50 

diabatic wavefunctions: implications for quantum qubits 

As conceived experiments could make measurements in a 
spatially localized basis that closely resembles the diabatic states 
L and R, entanglement in this basis is of fundamental interest for 
quantum information applications.  Previously3 we have mapped 55 

out this entanglement for the ground-state vibronic wavefunction 
and shown that it correlates poorly with the diabatic-state 

densities but is closely related to whether or not the vibrational 
density profile of the ground vibronic level is bimodal (i.e., has 
two local maxima at different geometries and an intermediary 60 

local minimum).  In Fig. 4 some of these critical results are 
reproduced where they are compared to the off-diagonal density 
profile 0

LRρ   and extended to describe the vibronic wavefunction 
closest in energy to the transition state. 

Concerning the ground-state wavefunction, the new results 65 

indicate that while the entanglement appears to correlate with the 
off-diagonal density for symmetric systems with 0E  = 0, no 
general correlation is found.  Hence, the entanglement provides a 
different perspective on the system properties than is obtained 
using conventional representations of the density. The bimodality 70 

of the density may be assessed as done previously3 using the 
exact wavefunction but in addition it is possible to use the BO 
approximation to calculate it, with the two approaches compared 
in Fig. 3.  Good agreement is generally obtained, indicating that 
BO calculations can provide significant physical insight into this 75 

measureable entanglement property; they overestimate 
bimodality for small values of 2 /J λ . However, as in this 
region the local minimum in the BO density profile is very 
shallow and is removed by the addition of a small amount of 
excited-state character into the wavefunction.  Bimodality of the 80 

density is a property of general interest, related to technologically 
relevant quantum phase transitions.83 

The results shown in Fig. 4 for the density and entanglement of 
the vibronic level closest in energy to the BO transition state has 
a striated nature owing to the changing nature of this level with 85 

the system parameters.  However, it is clear that the entanglement 
near the transition state is in general much larger than that found 
for the lowest vibronic level, as one would expect.  Also, the 
entanglement in the lowest vibronic level is large only for 0E  = 0 
and is very fragile,3 often decreasing dramatically for very small 90 

asymmetries 0 /E ω ~ 0.01, whereas the entanglement at the 
transition state is robust, decreasing slowly with increasing 
asymmetry.  Interestingly, this entanglement seems to be 
maximal near the line cQ = 8-1/2 ~ 0.35 shown on Fig. 4 for which 

†E ω∆∆ =  . While we have argued that the fragility of the 95 

ground-level entanglement would effectively prevent the 
construction of robust chemical qubits,3 qubit operation based on 
much higher energy levels would in principle be possible. 

Ammonia 7 is of particular note as methods have been 
conceived that utilized it as a qubit in a chemical quantum 100 

information device.4  It does have a bimodal density profile with 
well characterized vibrational energy levels in each well and with 
an observed tunneling process which, as Fig. 3 shows, develops 
large entanglement 0

CAS ~1. This entanglement disappears at 

0 /E ω = 0.01, however, indicating that it is very fragile and 105 

extremely sensitive to environment.  While methods have been 
conceived for minimizing environmental interactions in chemical 
qubits,4-9 the extreme sensitivity of the lowest-energy level to 
environment does not indicate a promising scenario.  However, 
with only a few additional quanta of torsional vibration, ammonia 110 

can be excited to energy levels spanning the transition state for 
which the entanglement is insensitive to environment.  
Maintaining coherence at such higher energies is of course 
intrinsically more difficult, but the changing nature of the 
wavefunctions with energy may reduce coherence demands to 115 

facilitate a practical device.  Of all the molecular systems 
considered, those with the most robust entanglement suitable for 
use in qubits are 1 DPP and 2 Alq3.      



 

c.  Entanglement between vibrations and adiabatic states 
developed during chemical reactions 

In Figs. 3 and 4, the properties of the closest eigenstate to the 
transition state were considered.  However, few experiments 
proceed utilizing such eigenstates as chemical dynamics usually 5 

involves a non-stationary initial state that converts into a product 
state when it decoheres.  A useful model for general processes of 
this type is the dynamics of an initial coherent-state wavepacket.  
Such wavepackets move coherently (i.e., their centres evolve 
according to classical mechanics and they do not change shape) 10 

in the absence of coupling, J=0.  When coupling is included, the 
wavepacket will fracture into different components on 
encountering the transition state (or diabatic surface intersection 
point for non-classical reactions for which Eqn. (18) indicates no 
transition state).  One component will pass the transition state on 15 

the ground-state surface, either because it has enough energy or 

else because it tunnels through.  Another component will be 
bounced directly back, mostly because its energy does not exceed 
the barrier of the BH potential (the BO transition-state energy + 

†E∆∆ ).  The third component gets transferred to the excited state 20 

surface.  By selecting an ensemble of wavepackets that mimics 
the state of (thermally or photochemically) prepared initial 
reactants, rates of chemical reactions can be determined.  Fig. 5 
shows how each single wavepacket is scattered using calculations 
based on the BO approximation, monitoring the entanglement 25 

that develops between the vibrational motion and BO electronic 
states when the cusp region near the transition state is 
encountered. 

Ten sample trajectories are considered, examining the 4 
parameter values D, E, H, and I as well as molecule 0 (FcPC60) 30 

and 5 (CT).  These trajectories are run at either the energy of the 
transition state (top frames of Fig. 5), pertinent to thermal 
reactions over a transition-state barrier, or at four times this 

 
Fig. 4 Measures of diabatic (CA) wavefunction mixing for the lowest (0)  and near transition-state  (T) vibronic eigenfunctions of the two-state one-

mode model:  LRρ - electronic off-diagonal density, LLρ - diabatic state density, S - entanglement.  Model compounds 1-9 and points A-I are 
indicated, see Table 1; regions without a transition state are shown in dark grey.  The dashed lines indicate where 1/28cQ −= , making the diagonal 

correction to the transition-state energy equal to the vibrational spacing. 



 

energy for D, E, and I or at the value of the reorganization energy 
for 5 (bottom frames), pertinent to high-energy photochemical 
processes.  While the low-energy trajectories should provide 
good qualitative descriptions of the properties of all model 
chemical systems considered, the high-energy trajectories depict 5 

only part of the story as these reactions could actually proceed 
over conical intersections and hence require at least two nuclear 
coordinates to properly describe. 

All trajectories start on one of the BO adiabatic potential-
energy surfaces.  It is perhaps simpler and more intuitive to depict 10 

the initial conditions in terms of diabatic surfaces instead, but for 
all cases considered the starting points are in a region in which 
one diabatic surfaces does indeed dominate the adiabatic one. Our 
approach is chosen here so as to focus on the effects of the BO 
approximation.  The dynamics is followed for one period of the 15 

coherent motion that would be produced if J=0.  After this time, a 
fraction LRκ  of the wavepacket gets transferred to the other 
diabatic state.  We assume that the decoherence processes that 
would trap the products act infinitely quickly and hence ignore 
any subsequent dynamics, dynamics that would in reality be 20 

controlled by interference effects and be very sensitive to the 
number of vibrational modes considered in the analysis.  
However, this is a useful approximation that is central to the 
Landau-Zener84, 85 and other models of chemical reaction 
kinetics.62  Table 1 shows this fraction for all of the sample 25 

molecules and data points that support transition states, evaluated 
using the BO approximation, the BH approximation, and the full 
calculation (FC) embodying all three BO-breakdown corrections.  
In the region of the parameter space for which the BO 
approximation works well (e.g., for 7 NH3), all three methods 30 

predict similar reaction yields, but otherwise large differences 
appear, especially for 1 DPP and 2 Alq3.  

 Fig. 5 shows the time evolution of the wavepacket’s 
vibrational density, projected onto either the BO ground state (in 
green) or excited state (in purple).  In addition, the BH adiabatic 35 

potential-energy surfaces are also shown.  These surfaces differ 
from the more usual BO ones ( )Qε±  in that the correction term 

( )DCH QD  is also added.  This correction adds a sharp spike of 

diameter cQ  and height † 2/ 8 cE Qω∆∆ =   (Eqn. (20)) near the 

 
Fig. 5 Quantum dynamics of a Gaussian wavepacket starting at either the energy of the transition state (upper frames, pertinent to thermal reactions) 
or four-times the energy of the diabatic crossover (lower frames,  pertinent to photochemical processes) for characteristic points A, E, H, and I (see 

Table 1) as well as for molecules 0 (FcPC60) at 5 (CT).  The left frames show the BH adiabatic potential-energy surfaces (green- ground state, purple- 
excited state) and the wavepacket’s vibrational density resolved onto these states, while the right frames show the development of the entanglement in 

the BO basis using: black- exact dynamics FC, red- DS-only approximation, blue- FD-only approximation, and cyan- FD+SD approximation. 

 



 

transition state,59 see Table 1. 
Fig. 5 also shows the entanglement between the BO electronic 

states and the vibrations that develops during the trajectories.  
Not only is the actual entanglement shown stemming from the 
full calculation FC utilizing all 3 BO-breakdown corrections but 5 

also the entanglement stemming from three approximate 
calculations: inclusion of only the FD correction, as is commonly 
applied in most calculations of BO breakdown, inclusion of only 
the SD correction, and inclusion of FD+SD only.  The BO and 
BH approximations themselves are adiabatic and hence generate 10 

no entanglement; the entanglements from the full calculations at 
the critical time of /t π ω=  are shown in Table 1. 

 Table 2 presents a qualitative summary of the effects seen in 
Fig. 5, indicating the minimum number of BO correction terms 
that must be included in order to obtain reasonable predictions of 15 

entanglement for the depicted chemical scenarios. These results 
are combined with those for the entanglement of the low-energy 
eigenfunctions discussed earlier.  They are also compared to 
previously obtained59 qualitative conclusions concerning the 
importance of the three BO breakdown corrections deduced by 20 

examining calculated spectroscopic properties and reaction rates.  
In this table, properties of ground-vibronic-level wavefunctions 
are labelled low-energy ones, thermal reaction rates over a 
transition state are labelled medium-energy properties, whilst 
rates for photochemical processes with significant excess energy 25 

are labelled high-energy properties.   
Run at the transition-state energy (medium energy), the 

trajectory for sample point D ( 2 /J λ  = 0.01, / Eω ∆ =0.1, 0E = 
0) shown in Fig. 5 depicts a classic weakly coupled symmetric 
electron-transfer reaction in the “non-adiabatic” regime.  The 30 

initial wavepacket moves coherently until it strikes the transition-
state region at which it is mostly reflected by the large BH 
transition-state energy spike of height †E∆∆  = 250 ω  (Table 1), 
but a small component does undergo surface hopping to the BO 
excited state induced by the FD and SD terms.  The fraction that 35 

surface hops quickly hops back, however, and becomes reunited 
with the directly reflected wavepacket.  Using just N=1024 basis 
functions per state is slightly inadequate for this trajectory, 
however, as by 2 /t π ω=  a near complete reformation of the 

original wavepacket is actually expected (see the converged 40 

propagation in the CA basis shown later in Fig. 6) whereas the 
displayed function is slightly distorted. Table 1 shows that the 
BH approximation correctly predict that just 2% of the 
wavepacket reacts during this process and hence the reaction 
perhaps should not be described as “non-adiabatic”, instead it 45 

appears to be just “non-Born-Oppenheimer”.  Indeed, in Table 2 
this reaction is depicted as being well described using the BH 
(i.e., BO+DC) approximation.  However, Fig. 5 shows that the 
entanglement becomes very large amidst the encounter with the 
transition state, reaching S = 0.81 at /t π ω= .  The BH adiabatic 50 

approximation completely misses this entanglement and so whilst 
some properties of the system may be well described using an 
adiabatic method, this is not a general result.  Table 2 indicates 
that all BO breakdown corrections (DC+FD+SD) must be 
included in order to adequately calculate the entanglement for 55 

this system as all approximate methods that include surface 
hopping in some form but neglect the DC correction lead to 
relatively poor descriptions of the entanglement.   

 Trajectory E is a variant of this trajectory for which the 
coupling is increased an order of magnitude to 2 /J λ = 0.1.  60 

Now †E∆∆  is just 2.5 ω  and so the DC correction no longer acts 
to reflect the incoming wavepacket.  The product yield increases 
to 24% but now all correction terms must be used for the 
calculation of both the yield and the entanglement (Table 2).  
Interestingly, the entanglement profiles are somewhat insensitive 65 

to the change in the coupling.  Trajectory H also involves a much 
reduced BH barrier correction of †E∆∆  = 79 ω  so that direct 
reflection is also reduced, arising here through reduction of the 
vibration frequency to / Eω ∆ =0.0316.  While the reaction 
yield remains at just 2% owing to the increased effects of surface 70 

hopping, the entanglement profiles look qualitatively similar.  To 
complete this series, trajectory I evokes both changes 
simultaneously to make the BH barrier insignificant and also 
induce a band gap between the BO (and BH) surfaces).  Now the 
BO approximation provides a useful description of the dynamics 75 

but the DC correction should still be included.  The manifested 
entanglement is reduced by nearly half and is adequately modeled 
using only the surface-hopping FD+SD.  In addition we also 
show dynamics for 5 (CT), a strongly coupled system showing a 
very shallow double well that the bimodality plot in Fig. 4 reveals 80 

does not support zero-point vibration.  The BO approximation 
works well for this molecule, with any deviations, including the 
buildup of a small amount of entanglement that can be adequately 
described using the FD correction alone.  

Also shown in Fig. 5 is the dynamics of a wavepacket 85 

mimicking photochemical charge recombination in 0 (FcPC60), a 
medium-energy reaction that occurs in the Marcus inverted 
region where there is no transition state.  While the three BO-
breakdown corrections act in qualitatively different manners in 
the normal and inverted regions,59, 86 the effect of the BH 90 

correction is still to block reaction while the entanglement 
profiles look qualitatively similar.  The major qualitative 
difference between reactions in the inverted region and those in 
the normal region is that entanglement is essential only for 
reactions in the inverted region, but this feature is not reflected in 95 

the entanglement profiles themselves. 
Finally, Fig. 5 shows trajectories for scenarios D, E, and I run 

at high energy as would be appropriate for many photochemical 
reactions.  The BH barrier still reflects the incoming wavepacket 
when it is high enough, but the effect is much less than that for 100 

thermal trajectories owing to the presence of the excess 
wavepacket energy.  Even for scenario D for which †E∆∆  = 250 

Table 2.  Summary of the BO correction terms that must be included 
in the Hamiltonian in order to model realistically reaction rates, 
energetics, spectroscopy, or the entanglement in the BO basis. 

Systems Energya 
cQ   Reaction rate 

described by 
Entanglement 
described by 

A low 0.07 [needs N > 1024 basis functions] 
1,2,B,D,E,H low <0.6 c BO+DC+FD+SD 

3,4,5,8,I low 0.6-1.7 c BO+FD+SD 
6,7,9,C,F,G low >1.6 c BO+FD 

D med. 0.02 BO+DC BO+DC+FD+SD 
E med. 0.22 BO+DC+FD+SD  BO+DC+FD+SD 
H med. 0.04 BO+DC+FD+SD  BO+DC+FD+SD 
I med. 0.40 BO+DC BO+FD+SD 
5 med. 1.68 BO BO+FD 
0 med.b 0.06 BO+DC+FD+SD  BO+DC+FD+SD 
D high 0.02 BO+DC+FD+SD  BO+DC+FD+SD 
E high 0.22 BO+FD+SD  BO+FD+SD 
I high 0.40 BO+FD  BO+FD+SD 
5 high 1.68 BO+FD BO+FD 

a low- the lowest-energy spectroscopic transition, med.- thermal 
reactions at the transition-state energy, high- photochemical reactions 
with significant excess energy.  b inverted region.  c lowest-level 
energies and spectroscopy require: BO only for 3,7,9,G,H,I with 

/ Eω ∆ < 0.1, BO+DC for 0,1,2,4,5,6,D,E,F with 0.08 < / Eω ∆ < 
0.18, and BO+DC+FD+SD for 8,B,Cwith / Eω ∆ > 0.6. 



 
ω  and the excess energy above the BO transition state is only  

7.3 ω , the amount of reflection remains modest.  This indicates 
that surface hopping before the barrier is accessed and/or 
tunnelling through the barrier remains significant throughout a 
large region of the parameter space when the reactant velocity is 5 

high.  Like reactions in the inverted region, these photochemical 
reactions only occur via surface hopping and so only occur when 
there is entanglement and so from a kinetics perspective they 
behave fundamentally differently59, 86 to medium-energy thermal 
reactions, as is clear from Table 2.  The behaviour of the 10 

entanglement is analogous to that found for thermal trajectories 
that do not critically require entanglement, however, becoming 
large only when the wavepacket encounters the transition state 
and being attenuated only by the buildup of a significant band 
gap between the adiabatic states. 15 

Table 2 indicates that the BO entanglement manifested in low-
energy eigenfunctions and in reactive trajectories follows a 
simple pattern controlled by the value of the cusp diameter.  
When cQ  > 1.6, use of only the FD correction is sufficient to 
model it whereas for cQ  < 0.2-0.6 all 3 corrections are required, 20 

with just the two surface-hopping corrections FD+SD sufficing in 
the intermediary region.  This picture conforms to basic 
expectations of the effects of BO breakdown based on the known 
relationships linking the 3 correction terms: DC is the square of 
the FD terms whilst SD is its derivative.59-62  This simplicity is 25 

lost when complex observed phenomena are considered, 
however.  Table 2 shows that the lowest spectroscopic transition 
energy scales not with the cusp diameter but rather with the 
vibrational to electronic energy ratio / Eω ∆ .  It also shows that 
chemical reaction rates scale in this expected fashion only for 30 

high-energy photochemical reactions for which the DC correction 
acts in a specific but unimportant way, whereas for medium-
energy thermal reactions, DC plays the critical role.  Indeed, for 
large cusp diameters great than 1, the BO approximation itself is 
adequate to describe kinetics, adding the DC correction is 35 

required for slightly smaller values, values of order 0.04 < cQ  < 
0.2 need the full calculation including all correction terms 
DC+FD+SD, yet even smaller values require just using DC.    

d.  Entanglement between vibrations and diabatic states 
developed during chemical reactions 40 

In Fig. 6 is shown the same dynamics as in Fig. 5 but this time 
the wavepacket is shown projected onto the diabatic electronic 
states and the entanglement is that as manifest in the CA basis.  
This dynamics comes from the direct use of Eqn. (1) rather than 
through the introduction of the BO approximation. 45 

For thermal trajectories at the transition-state energy, 
essentially coherent dynamics of the initial diabatic wavepacket is 
obtained for the weakly coupled electron-transfer-type system D, 
with diabatic surface hopping increasing (i.e., the BO 
approximation becomes more apt) as the cusp diameter increases 50 

through systems E, H, I, and 5.  The (in principle measureable) 
entanglement in the diabatic basis increases accordingly, 
becoming large for cases E, I, and 5.  Unlike entanglement in the 
BO basis, this entanglement remains after the wavepacket leaves 
the transition-state region.  Reactions in the inverted region 55 

generate little entanglement, and high-energy photochemical 
reactions have properties analogous to the associated thermal 
ones.  Note that the repetitive encounters of the wavepacket with 
the transition state followed for the low-reaction-rate high-energy 

collisions simply increase the entanglement.  In the CA basis all 60 

reactions require entanglement to proceed but these calculations 
suggest that the rate of production of this entanglement does 
correlate in some way with the rate constant for the reaction 
between the reactant and product diabatic surfaces. 

4. Conclusions 65 

Using a simple model representing many chemical kinetic and 
spectroscopic properties, we have looked at the entanglement that 
develops between adiabatic electronic states and the vibrational 
motion as well as that which develops between diabatic electronic 
states and the vibrational motion.  These are done both for the 70 

lowest energy eigenstates of the system and for eigenstates near 
the energy of the transition state, as well as for the dynamics of 
wavepackets undergoing chemical reactions at the energy of the 
transition state or well above.  Sometimes the processes 
considered behave such that they could be adequately modeled 75 

using classical adiabatic force fields and sometimes they instead 
appear to be highly quantum in nature.  As entanglement is now 
often regarded as being the quintessential descriptor of quantum 
effects1 we investigate the correlation between the two sets of 
phenomena.  This is done bearing in mind more traditional 80 

descriptors of the quantum nature of a system, the nature of the 
associated diagonal and off-diagonal elements of the density 
matrix.  Does entanglement tell us different information than 
comes from the traditional descriptors?  Does the entanglement 
tell us anything about how to calculate key experimentally 85 

measured properties such as reaction yields? 
No general answers to these basic questions emerge as  

findings are context sensitive.  For single eigenfunctions of either 
low energy or the energy of the transition state, the entanglement 
tells little new information concerning BO breakdown beyond 90 

what is apparent from consideration of more traditional density-
matrix descriptors.  For reactive trajectories performed using BO 
methods, the entanglement becomes large whenever the 
transition-state region is encountered and the BO approximation 
fails, as one would expect.  However, the amount of effort 95 

required to accurately calculate this entanglement scales in a very 
simple way with the diameter of the cusp induced by the BO 
approximation.  For small cusp diameter, only the leading term in 
the expansion of the exact Hamiltonian in terms of BO states, the 
FD term, is important.  As the diameter decreases and BO 100 

breakdown becomes more profound, first the SD term must 
additionally be included and then finally the DC term.  This 
orderly progressive failure of the BO approximation is not 
reflected in the calculation of other properties such as chemical 
reaction rates for which each individual term gains special 105 

significance depending on the nature of the specific rate process 
being considered.59  Indeed, orderly failure is in general not 
expected for mathematical systems with cusps according to 
general considerations of the Catastrophe theory.87-90  Thus 
entanglement does tell us important information concerning the 110 

structure of BO breakdown but conversely it cannot be used to 
determine how to calculate general system properties.  However, 
it provides an easy to calculate measure of the quality of a 
wavefunction that is different to the energy-based criteria often 
used to judge wavefunction convergence, a measure that may 115 

relate more to the requirements of other wavefunction properties 
such as transition and dipole moments. 



 

Alternatively, for entanglement perceived between diabatic 
states and the nuclear motion for both low-energy eigenfunctions 
and eigenfunctions near the transition state, the profile of the 
entanglement throughout the parameter space of the chemical 
model is distinctly different to those for the individual density-5 

matrix elements considered in traditional analyses of chemical 
properties.  Hence consideration of the entanglement reveals 

information in a unique and useable way.  This is of particular 
significance as this type of entanglement may in principle be 
utilized in some quantum information technology.  Further, the 10 

entanglement developed within reactive wavepackets for both 
thermal and photochemical reactions behaves in a simple way 
that could also possibly lead to technological exploitation. 

Appendix:  Mathematical Symbols used 
Variable Class Description Variations 

Q 

Generalized 
dimensionless 

normal coordinate 
describing the 

vibrational mode 

±Qm – equilibrium values of the geometry in the uncoupled diabatic states  

0Q   – adiabatic equilibrium value on lower Born-Oppenheimer surface ( )BO Qε−  

xQ  - coordinate at which the adiabatic states are equal mixtures of the diabatic states 

cQ  - cusp diameter 

r Coordinate of the 
coupled electron  

 15 

 
Fig. 6 Quantum dynamics of a Gaussian wavepacket starting at either the energy of the transition state (upper frames, pertinent to thermal reactions) 
or four-times the energy of the diabatic crossover (lower frames,  pertinent to photochemical processes) for characteristic points A, E, H, and I (see 
Table 1) as well as for molecules 0 (FcPC60) at 5 (CT).  The left frames show the diabatic potential-energy surfaces (red- L state, blue- R state) and 

the wavepacket’s vibrational density resolved onto these states, while the right frames show the development of entanglement in the CA basis.  



 

H   Hamiltonian matrix 
CAH - electronic only, expressed in the diabatic (or “crude adiabatic”) basis { },L R   

BOH - electronic only, expressed equivalently in adiabatic (“Born-Oppenheimer”) basis { },− +  

H∆ , P∆   

Differences between 
the exact 

Hamiltonian and the 
BO Hamiltonian 

( )DCH QD  - diagonal correction, see Eqn. 8 

( ) ( )FD FDH Q P Q
Q
∂

D = D
∂

 - first-derivative (momentum) correction, see Eqn. 8 

( )SDH QD  - second-derivative correction, see Eqn. 8 

( , )r Qφ  
Electronic 

wavefunction at 
geometry Q 

0( , )CA
L r Qφ  - electronic wavefunction of diabatic state L, coordinate independent 

0( , )CA
R r Qφ  - electronic wavefunction of diabatic state R, coordinate independent 

( , )BO r Qφ−  - electronic wavefunction of the ground adiabatic state 

( , )BO r Qφ+  - electronic wavefunction of the excited adiabatic state 

( )i Qχ  Vibrational basis 
( )L

i Qχ , ( )R
i Qχ  i-th harmonic-oscillator vibrational basis function for one of the diabatic states 

( )i Qχ±  i-th harmonic-oscillator vibrational basis function for one of the adiabatic states 

N Basis set truncation The number of harmonic-oscillator vibrational levels included per electronic state 

(r, )Qψ  Vibronic 
eigenfunction 

(r, )j Qψ  - j-th eigenfunctions of the full Hamiltonian matrix 

 (r, )j Qψ −′  - j-th eigenfunctions of the ground Born-Oppenheimer state 

(r, )j Qψ +′  - j-th eigenfunctions of the excited Born-Oppenheimer state 

( ), ( ), ( )Q a Q b Qε   Adiabatic state 
properties  

( )Qε−  - energy of the ground Born-Oppenheimer adiabatic state 

( )Qε+  - energy of the excited Born-Oppenheimer adiabatic state 

( )BH Qε−  - energy of the ground Born-Huang adiabatic state 

( )BH Qε+  - energy of the excited Born-Huang adiabatic state 
( )a Q  - contribution of the L diabatic state to the ground BO (same as BH) wavefunction 
( )b Q  - contribution of the R diabatic state to the ground BO (same as BH) wavefunction 

jε   
 Energy of the j-th 
vibronic level (0 ≡ 

lowest energy level) 

FC
jε  - full calculation, only approximation is the vibrational basis-set truncation level N 

BO
jε  - Born-Oppenheimer approximation 

BH
jε  - Hamiltonian is BO plus DC (the Born-Huang approximation) 

FD
jε  - Hamiltonian is BO plus FD 

SD
jε  - Hamiltonian is BO plus SD 

ρ  Reduced electronic 
density matrix jρ  - for vibronic eigenfunction j in either the BO or CA electronic basis sets 

C  Vibronic 
eigenvectors of H 

ijC−   coeff. of the i-th harmonic oscillator of the - state to the j-th vibronic wavefunction of H 

ijC+  coeff. of the i-th harmonic oscillator of the + state to the j-th vibronic wavefunction of H  

t time  
(r, ; )Q tΨ  Wavepacket Time dependent wavepacket, initially of Gaussian shape at t=0. 

( )id j   Wavepacket 
composition 

Specifies the time-dependent representation of a wavepacket in terms of the eigenfunctions of the approximate or 
exact Hamiltonian used 

ω   Vibration frequency ω  - vibration frequency for the vibrational mode in both reactant and product diabatic surfaces 
J  Resonance integral Electronic coupling between the two diabatic states, see Eqn. 1. 

λ  Reorganisation 
energy Difference between the vertical and relaxed excitation energies on the diabatic surfaces 

E∆  Electronic energy 
scale = ( )1/22 24Jλ +  , used to scale the total energy of the interacting system, see Eqn. 17 

0E   Energy asymmetry Energy difference (often taken as a free-energy difference) between the reactants and products 

†E∆  Activation energy 
†E∆ - evaluated using the BH adiabatic approximation including the DC correction 

†E∆∆ - the contribution to this actually coming from the DC correction 
S Entanglement Specified as the von Neumann entropy 
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NOVELTY STATEMENT Entanglement in the diabatic basis produces useful quantum information whilst that in the adiabatic basis 

tells how good is the Born-Oppenheimer approximation. 
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