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Abstract—The main contribution of this paper is an extended
Kalman filter (EKF) based framework for mobile robot localisa-
tion in occupancy grid maps (OGMs), when the initial location is
approximately known. We propose that the observation equation
be formulated using the unsigned distance transform based
Chamfer Distance (CD) that corresponds to a laser scan placed
within the OGM, as a constraint. This formulation provides
an alternative to the ray-casting model, which generally limited
localisation in OGMs to Particle Filter (PF) based frameworks
that can efficiently deal with observation models that are not
analytic. Usage of an EKF is attractive due to its computational
efficiency, especially as it can be applied to modern day field
robots with limited on-board computing power. Furthermore,
well-developed tools for dealing with potential outliers in the
observations or changes to the motion model, exists in the
EKF framework. The effectiveness of the proposed algorithm
is demonstrated using a number of simulation and real life
examples, including one in a dynamic environment populated
with people.

I. INTRODUCTION

The problem of localising a mobile robot within a given

map in an indoor environment using sensors mounted on it

has been a problem studied for over two decades. Extended

Kalman filter (EKF) based algorithms can efficiently estimate

the robot pose by fusing robot odometry information and

range-bearing sensor observations that corresponds to these

geometric primitives [1]. To date, it is only possible to use an

EKF for localisation if the map of the environment consists

of a collection of geometric primitives such as points, lines or

splines. These localisers require a sensor processing step where

lines or points are first extracted from the measurements. The

observations that do not belong to these geometric primitives

are then discarded, resulting in a significant information loss

that may be detrimental in environments sparsely populated

with features. Recently EKF based localisation algorithms

were heavily used even on small humanoid platforms where

computational power is highly limited [2], [3], [4]. EKFs

have also been successfully used to solve a large number of

problems in robot navigation including the more challenging

Simultaneous Localisation and Mapping (SLAM) problem [5].

However if the environment map is available in the form

of an occupancy grid map (OGM), particle filter (PF) based

approaches [6] have been the preferred method for robot

localisation due to their ability to exploit all the measurements

available in a range scan. Furthermore, they are relatively easy

to implement, and are capable of global localisation; ability to

deal with the situation when a suitable initial estimate for the

robot pose is unavailable. The widely used Adaptive Monte-

Carlo localisation (AMCL) [7], [8], [9], [10], [11], [12], that

is also available as a part of the popular Robot Operating

System (ROS) [13] is a PF based probabilistic approach for

localisation.

The PF based approaches use a sensor model and a set

of particles distributed around hypothesised robot locations to

estimate the true pose of the robot. A sufficiently large number

of particles, adequate to describe the probability density func-

tion describing the robot pose needs to be selected in order

to generate location estimates with acceptable accuracy. This

is the main drawback of this algorithm as the computational

efficiency of the PF is directly related to the number of

particles used for the computation. In AMCL [10], there are

many tuning parameters and strategies to dynamically manage

the number of particles at an optimum level. Within the PF

framework, it is also not straightforward to identify outliers

or dynamic objects. In addressing this problem AMCL uses a

“model” which categorises the range readings by analysing

the probable causes of such outliers and penalising these

observations during the particle update step. However, [10]

cautions that this method would only work in certain limited

situations and the categories should be analysed according to

the environment.

Therefore, while a PF is indispensable in localising a mobile

robot when its initial position is unknown (Kidnapped Robot

Problem), it could be argued that once the approximate loca-

tion is known and if the length of time over which odometry

is used to predict robot pose without external sensor data is

small (as is typically the case with modern high scan rate

laser range finders), powerful machinery embedded in the PF

for non-Gaussian estimation is not essential.

In this paper we propose, for the first time to our knowledge,

an EKF based algorithm to localise a mobile robot with a

laser range finder in a two dimensional OGM when the initial

location is approximately known. The key challenge has been

to formulate an appropriate measurement equation that can



be used to predict the expected observations from a range

finder. In the PF framework, this is done through ray-casting.

However this strategy is not suitable for an EKF as an efficient

implementation requires the Jacobians of the observation func-

tion in closed form. Therefore we propose that the observation

equation be formulated using the unsigned distance transform

based Chamfer Distance (CD) that corresponds to a laser scan

placed within the OGM as a constraint. However, such a

constraint relates the robot state and the range readings in

an implicit function and as such is not in a form suitable for a

standard implementation of the EKF. The strategy proposed by

Steffen et. al. [14] is, therefore, used to implement the EKF. In

contrast to typical particle filter implementations, the algorithm

proposed in this paper is easy to tune, as only the parameters

corresponding to the noise values for the inputs to motion and

measurement models are required. Furthermore, it is relatively

easy to deal with outliers present through a probabilistic

strategy that only accepts measurements subjected to a desired

confidence level.

This paper is structured as follows: Sect. II describes the

formulation of an EKF based localiser using unsigned distance

transform based CD to form an implicit constraint. It also

discusses a method that can be used to deal with the outliers

that are almost always present in the observations captured

in practical scenarios. Sect. III demonstrate the effectiveness

of the proposed algorithm using a number of simulation and

real life examples, including one in a dynamic environment

populated with people. A discussion of the results and a

conclusion is presented in the Sect. IV & V.

II. FORMULATION OF THE EXTENDED KALMAN FILTER

A. Distance Transform Based Observation Model

The distance transform is an implicit shape representation

popular within the computer vision community. For an en-

vironment represented using a binary occupancy grid, dis-

tance transform corresponding to each grid cell indicates the

minimum distance from that point to the closest occupied

cell. Distance transform based CD [15] is a measure of the

misalignment between two binary images, where CD is zero

when two images are perfectly aligned. This property forms

the basis of the observation model described in this section.

For a given OGM with the set of occupied pixels V , the

distance transform at the location x, can be generated using

an unsigned distance function via (1), which specifies the

Euclidean distance from that pixel to the nearest edge pixel v j

in V [16].

DT (x) = min
v j∈V

|x−v j| (1)

While the distance between any point in the environment

and the nearest object is a continuous value, the distance

transform as described above quantises these distances into cell

numbers. Furthermore, derivatives of the distance transform

are not continuous at points which belong to the map or to

the cut-locus [17]. As the purpose of the exercise is to use the

distance transform based CD as the basis for an observation

(xk|k-1, yk|k-1, k|k-1 )
T

r1
ri

i

DT(Xoi)

Fig. 1: Projection of the laser scan from the a priori robot

pose.

model within an EKF framework, a cubic spline approximation

based interpolation algorithm is used to compute the distance

transform and its derivatives at any given location in the map.

Future references to DT in this paper refer to the interpolated

version of the DT matrix. These values are precomputed and

stored so that the computational effort required during runtime

is minimised.

When the robot equipped with a range scanner is located at

pose Xk|k−1 = (xk|k−1,yk|k−1,φk|k−1)
�, (Fig. 1), the observation

vector z consists of n range readings (r) at given bearings (θi).

It is proposed that the CD between the map of the environment

and the Cartesian coordinates Xo that correspond to the range

measurement endpoint shown in(2)

h(X,z) =
1

n

n−1

∑
i=0

DT (Xoi
) =CD (2)

where Xo is given by,

Xoi
=

{
xoi

yoi

}
=

{
xk|k−1 + ri cos(θi +φk|k−1)
yk|k−1 + ri sin(θi +φk|k−1)

}
(3)

The CD of a single range scan, as the estimate for the

position of the robot (x,y) is varied in the vicinity of the true

pose (at ≈ 1.1, 1.1 for Fig. 2.a and ≈ 0.45,0.45 for Fig. 2.b) is

shown in the contour map in Fig. 2 [18]. The minimum CD,

which will be equal to zero when there is no measurement

noise, is obtained when the robot is placed at its true pose

resulting in the map and the laser scan to be fully aligned.

Therefore, setting CD to zero in (2) yields the measurement

equation (4), suitable for robot localisation.

h(X,z) = 0 (4)

Traditional formulation of the EKF requires an observation

equation of the form z = h(x). The alternative formulation that

is proposed below can directly deal with an implicit form of

the measurement equation, is an adaptation of [14].

B. Prediction

Let the estimate of the robot pose be Xk−1|k−1 =

(xk−1|k−1,yk−1|k−1,φk−1|k−1)
� and is subjected to a control
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Fig. 2: CD variation in the vicinity of the true robot pose for

two parts of the Intel Research Labs dataset.[18]

command of uk = (vk,ωk)
�, where vk is the linear velocity

and ωk is the angular velocity demand over a period of Δt.

Then the predicted location of the robot is given by (5) and

it’s covariance by,

Xk|k−1 = F(Xk−1|k−1,uk.Δt) (5)

Pk|k−1 = ∇FXPk−1|k−1∇F�
X
+∇FuQk∇F�

u (6)

where ∇FX and ∇Fu are respectively the Jacobin of the

control function F w.r.t. X and u, obtained by linearising about

the robot pose estimate Xk−1|k−1 , while Qk is the control noise

covariance matrix.

C. Observation

h(X,z) = 0

Assuming that each range measurement of the scan z,

corrupted by noise ηr with N (0,σ2
r ) and bearing θ is noise

free, the covariance of the measurement vector is given by the

diagonal matrix, Σz = diag(σ2
r )n×n.

D. Update

Update equations can be written as follows based on the

derivations presented in [14]. The filter gain K is given by,

K = Pk|k−1∇h�
X
(∇hXPk|k−1∇h�

X
+∇h�

z
Σz∇hz)

−1 (7)

The state update is given by,

Xk|k = Xk|k−1 +K(−h(Xk|k−1,z)) (8)

while the covariance update is,

Pk|k = (I −K∇hX)Pk|k−1 (9)

The Jacobians ∇hX and ∇hz (defined in (10)) at the appro-

priate linearisation points can be calculated using (11).

∇hX =
∂h(X,z)

∂X
z,Xk|k−1

∇hz =
∂h(X,z)

∂z
z,Xk|k−1

(10)

∂h(X,z)

∂x
z,Xk|k−1

=
∂DT

∂xoi

.

∂xoi

∂x

∂h(X,z)

∂y
z,Xk|k−1

=
∂DT

∂yoi

.

∂yoi

∂y

∂h(X,z)

∂φ
z,Xk|k−1

=
∂DT

∂xoi

.

∂xoi

∂φ
+

∂DT

∂yoi

.

∂yoi

∂φ

∂h(X,z)

∂ ri
z,Xk|k−1

=
∂DT

∂xoi

.

∂xoi

∂ ri

+
∂DT

∂yoi

.

∂yoi

∂ ri

(11)

∂DT
∂xoi

and ∂DT
∂yoi

in (11) can be obtained by looking up the

gradients of the distance transform with respect to global xo, yo

coordinates. As previously mentioned, the distance transform

and its derivatives can be precomputed using the grid map

and stored to make the gradient calculations computationally

efficient. The remaining components of the gradient can be

analytically derived from (3).

E. Improving the Robustness of the Algorithm

A simple innovation gate is used in the algorithm to filter

outliers that are related to objects not present in the map, such

as people walking around. The individual entries of DT (Xo)
vector is tested to be within 2σDT bounds and the ones that are

beyond these bounds are ignored.

III. EXPERIMENTS

In order to evaluate different aspects of performance of the

proposed algorithm, three experiments are presented in this

section, conducted using three different datasets: a simulation

based data set and two real world datasets.

The simulation based dataset (Dataset 1) was generated

using Player/Stage [19] robot simulator available in ROS, and

the example map “Hospital Section” which comes with ROS.

This dataset consists of the ground truth and exact sensor

uncertainties. The sensor readings were collected at a 10Hz

frequency and the noise parameters shown in Table I were

used during data collection.

TABLE I: Noise parameters for Dataset 1

Parameter Noise Value

Laser range finder Measurement Noise N (0,0.022m2)
Linear velocity noise N (0,0.042m2s−2)
Angular velocity noise N (0,0.012rad2s−2)



Fig. 3 shows the estimated poses and the map drawn from

the laser scans projected from these estimated poses. The 2σ
uncertainty ellipses are also depicted (plotted intermittently

to avoid clutter) at the relevant poses. As the ground truth

is available, the error of each of the components in the

pose, x,y,φ are shown Fig. 4 with the respective 2σ bounds,

clearly demonstrating that the EKF produces consistent pose

estimates.

In order to evaluate the algorithm’s performance in a real

environment with true noise characteristics, the second exper-

iment was conducted with the popular the Intel Research Lab

[20] (Dataset 2) public domain dataset. The OGM was created

with the aid of the GMapping [21] algorithm by selectively

choosing every other laser scan. Remaining laser scans were

used to evaluate the proposed method of localisation. As with

the previous dataset the estimated pose trail and the laser

projection from those estimated poses are represented in the

Fig. 5 with the uncertainty ellipses.

Finally, another real world dataset collected at Centre

for Autonomous Systems(CAS), University of Technology,

Sydney (Dataset 3) was used for evaluating the proposed

algorithm. Scans in this dataset consist of the three people

moving about the area as the robot moves so that the impact

of unknown dynamic objects can be examined. It was collected

using a TurtleBot™ from WillowGarage™ and Clearpath

Robotics™(Fig. 6) with a Hokuyo® UTM-30LX, 30m laser

range finder, traversing the environment in multiple loops. The

first run, conducted when the environment is free of dynamic

objects was used to create the OGM using GMapping. The

proposed technique was then used to localise the robot within

this map during subsequent loops. Fig. 7 shows the poses

and laser range readings superimposed on each other based

on the estimated robot pose. It can be seen that the walls

in the environment are aligned well, providing a qualitative

indication of the accuracy of the pose estimates. The clutter

seen in the corridors are a result of people moving around in

the environment and occluding the laser.

The Experiments were conducted on Mathworks® MAT-

LAB 2013b environment using single threaded programming

on a single core of Intel® Core™ i5-2400 CPU @ 3.10GHz.

IV. DISCUSSION

When observing results of all three datasets it can be seen

that laser range finder scans are considerably well matched

with the map walls providing a qualitative indication of the

pose estimation accuracy. The pose uncertainty ellipses also

show obvious characteristics that are to be expected, for

example, elongated ellipses confirming that the uncertainty of

the pose estimate along the direction of the corridor is larger

due to the lack of information available in this direction.

The error plots for Dataset 1 shown in Fig. 4 confirms that

the pose error for each component in the state vector is more

than 95% within the 2σ bounds and therefore the estimate is

consistent throughout.

Fig. 6: TurtleBot™ from WillowGarage™ and Clearpath

Robotics™. A Hokuyo® laser range finder is mounted on top

of the robot.

The results from Dataset 2 shown in Fig. 5 the walls

confirms that the proposed algorithm can cope up with real

world noise characteristics.

From the experiments with Dataset 3, it can be seen that

even amidst clutter the proposed algorithm can effectively

reject outliers in the environment. Furthermore, as before the

laser scans successfully align with the wall suggesting accurate

localisation. It was further observed that a single update of

the EKF takes less than 15ms in average in the MATLAB

environment.

V. CONCLUSION

In this paper, the problem of localising a mobile robot on

an OGM of an indoor 2D environment with the use of a laser

range finder sensor mounted on the robot is formulated within

an EKF framework. The observation equation for the EKF

is based on the implicit constraint that the unsigned distance

transform based CD of the range scan should equal to zero.

It is also shown that the algorithm makes use of pre-

computed distance transform values and their gradients, which

makes the algorithm computationally efficient. A method for

making the filter more robust against outliers in the measure-

ment as a result of dynamic objects in the environment is also

proposed.

The performance of the algorithm has been experimentally

verified using a Player/Stage based simulation, the Intel Re-

search labs public domain dataset and a dataset collected by

the authors using a TurtleBot™ robot from Willow Garage™

and Clearpath Robotics™ in a dynamic environment at the

Centre for Autonomous Systems, University of Technology,

Sydney. Results showing the well alignment of the laser

scans drawn from the estimated poses with the wall suggests

accurate localisation, and the error plots show that the EKF is

consistent.



Fig. 3: Simulation dataset. Poses, laser trace and 2σ uncertainty ellipses are shown.
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Fig. 4: Plots of errors against ground truth with their 2σ bounds.

Fig. 5: Intel Dataset. Poses, laser trace and 2σ uncertainty ellipses are shown.



Fig. 7: CAS Dataset. Poses and laser trace. Clutter in corridors represents footsteps of people moving about.

There are three different versions of distance transform

based observation models that can be used with the proposed

algorithm. Namely, signed distance transform based model,

unsigned distance transform based model and the Chamfer

Distance based model that is presented in this paper. Further

investigation to assess the technical merits of the proposed

distance based observation model under each of these repre-

sentations is planned for future work.

Further online experiments of the algorithm is planned with

a C++/ ROS based implementation in the immediate future.

A proper benchmarking of the computational performance of

the filter would also be possible with such an implementation.

As the proposed algorithm is much more lightweight and

computationally efficient than using a PF based localisation

method, authors also plan to use and evaluate it with the

next version Smart Hoist system [22] to aid its navigation

capabilities.
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