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This paper presents a grid-based scan-to-map matching technique for accurate 2D map building. At
every acquisition of a new scan, the proposed technique matches the new scan to the previous scan
similarly to the conventional techniques, but further corrects the error by matching the new scan
to the globally defined map. In order to achieve best scan-to-map matching at each acquisition, the
map is represented as a grid map with multiple normal distributions (NDs) in each cell, which is
one contribution of this paper. Additionally, the new scan is also represented by NDs, developing a
novel ND-to-ND matching technique. This ND-to-ND matching technique has significant potential in
the enhancement of the global matching as well as the computational efficiency. Experimental results
first show that the proposed technique accumulates very small errors after consecutive matchings and
identifies that the scans are matched better to the map with the multi-ND representation than one
ND representation. The proposed technique is then tested in a number of large indoor environments,
including public domain datasets and the applicability to real world problems is demonstrated.
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1. Introduction

Understanding its location and the surroundings is of paramount importance for a mobile robot
placed in a totally unknown environment, before commencing any actions. The map of an envi-
ronment is one of the most basic representations that can be used by a robot to understand the
environment. This maps can be used for many aspects of robot navigation. The most common
type of map that is popular amongst the community that are helpful for such navigation tasks
are 2D grid maps.

The choicest way of addressing the problem of creating a map is known as Simultaneous
Localization and Mapping (SLAM), which is building a map of the environment while at the same
time localizing the robot in the map. One solution to this problem is given by iteratively observing
the surrounding environment and associating a new observation containing some objects to
the previous observation containing the same objects. The SLAM problem became even more
important when the robot needs to autonomously explore the environment, and it is obvious
that the ability of the robot is extremely limited without an accurate solution [1, 2]. Since SLAM
relies upon the successful association of the new observation to the past observations, existing
SLAM techniques can be classified in terms of the type of data extracted from the observation
into two categories, feature-based and scan-based. In the feature-based SLAM techniques, a set
of features including different types of distinct geometric models such as points, lines, curvatures,
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and any arbitrary shapes are extracted from the observation and used as landmarks to associate
the new and previous observations [3, 4].

Although feature based SLAM has become extremely popular in the field and has many
applications, in environments where it is not straight forward to extract features or when a grid
based map is required from sensors such as laser range finders (LRF), scan based SLAM methods
[5–8] are employed. These methods directly utilizes unprocessed scan readings as observations
which are generally sets of points obtained from aforementioned range sensors such as a sonar
[9] or LRF [10]. One of the fundamental issues of the scan-based SLAM has thus been the
association or matching of one scan to another, namely the scan-to-scan matching.

The most common scan-to-scan matching approach is based on the Iterative Closest Point
(ICP) technique [11] which allows the point-to-point matching between two scans by minimizing
the total distance between them. Despite the popularity of the technique, the point-to-point
matching may yield inappropriate data association since two corresponding points are not actu-
ally on the same position in the environment. Weiss and Puttkamer [12] proposed a technique
that avoids the point-to-point matching problem by calculating an angle between two neighbor-
ing scan points for every scan point and using the angles to match the two scans. Biber and
Straßer [13] represented a subdivided grid space and collectively describing a scan within each
grid cell by a normal distribution (ND). This grid-based technique, the so-called Normal Distri-
bution Transform (NDT), spatially associates every point of the new scan in a grid cell to the
ND in the cell. The NDT does not suffer from the point-to-point matching, but the matching
performance relies on the grid size and the initial guess.

Furthermore a number of approaches have been proposed in literature on integration of these
scan matching techniques in SLAM and improving accuracy. Early efforts include the work of
Lu and Milios [14], which performed the matching of the new scan to the previous scan and
further matched all the scans by storing the past scans. Thrun et al. [15] used the expectation
maximization (EM) algorithm that finds the best matching past scan to the new scan from all
the past scans. The matching of the new scan to all the past scans is then achieved by the
scan-to-scan matching of the new scan to this best past scan. Although they have demonstrated
capabilities in accurate matching, the approaches could still see accuracy issues without a loop
closure as they do not either implement a powerful scan-to-scan matching or utilize all the
past scans. In order for accuracy improvement the NDT technique was used to match the new
scan to multiple recent past scans sequentially, which also improve accuracy by the point-to-ND
matching [13]. Gutmann et.al. [10] presents a similar method that matches the new scan with
the past K scans which improved the accuracy of the map immensely. Due to the need for
matching to all the past scans for the best accuracy, Bosse et al. [16] introduced a subspace-to-
map matching technique where the new scan is matched to all the past scans of a subspace of
concern with any scan-to-scan matching technique and the subspaces are subsequently associated
to each other for global mapping. This technique achieves the matching of the new scan to all the
past scans, but the accuracy could still drop since the new scan points not in the subspace are
not matched to the past scans. KinectFusion by Nicombe et.al. [17] and the method proposed
by Tomono [18] constructs a global model by doing global transform of all previously acquired
scans, and uses signatures from that model for tracking the next robot pose. But these methods
can be computationally expensive as the metric that is used for matching needs to be extracted
from that global model at every iteration by using expensive techniques such as ray-casting in
the case of KinectFusion.

Another advantage of most of these techniques for scan matching is that they can directly be
extended to 3D mapping with minimal effort [19].

This paper presents a grid-based scan-to-map matching technique for making accurate maps.
The proposed technique matches the new scan to the previous scan using the conventional ICP
technique, but further corrects its scan-to-scan matching error by representing the new scan
globally through the estimation of the robot pose and matching it to the global map, namely
the scan-to-map matching. In order to best correct the scan-to-scan matching error in the scan-
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Figure 1. Scan-to-scan matching process

to-map matching process, the proposed technique represents the map to match as a grid map
with cells each with multiple NDs. The matching of the new scan to a ND, inspired by the NDT
technique, avoids the point-to-point matching error of the ICP technique. The representation
of a cell with multiple NDs further avoids errors in the scan-to-map matching process since the
scan in a cell may not be matched to a single map ND in the cell. In addition, the new scan
is also represented in terms of NDs, thereby characterizing the proposed scan-to-map matching
technique as a novel ND-to-ND matching technique. Matching the similarity of the normal
distributions using the Kullback-Leibler (KL) divergence, which makes the proposed technique
is theoretically sound. In addition, the ND-to-ND matching has the potential for additional
accuracy improvement and further dramatically improving computational time and novel over
all the point-to-X and NDT-to-X matching techniques [19].

The proposed technique is able to exploit the high accuracy of sensors such as laser range
finders to produce highly accurate maps in fairly large indoor environments even without the
benefit of SLAM or other inputs such as odometry. Therefore the authors feel that the proposed
technique has high potential of being applicable to full SLAM in even larger environments, which
is proposed as future work.

This paper is organized as follows. The next section explains the fundamental formulations of
two existing scan-to-scan matching techniques, the ICP and the NDT, which are the most asso-
ciated with the proposed technique. The proposed grid-based scan-to-map matching technique
is presented in the section III including the globally defined map and the ND-to-ND matching.
Section IV presents a number of experiments which investigate the performance of the proposed
technique based on the error accumulation, and the effectiveness of multiple ND representation
together with the applicability to large indoor environments. Finally, Section V summarizes
conclusions and proposes future works.

2. Scan-to-Scan Matching Techniques

2.1 Overview

Figure 1 shows the schematic diagram of the general scan-to-scan matching technique. When
scans are taken by a range sensor on a moving robot, they are sequentially obtained with re-

spect to different robot coordinate systems. Let {R
−}Zk−1 =

{
{R−}zik−1|∀i ∈ {1, · · · ,m}

}
be the

previous scan in the previous robot coordinate system, and {R}Zk =
{{R}zik|∀i ∈ {1, · · · ,m}}

be the new scan in the new robot coordinate system, where k is the time step, m is the number
of points in the scan. {R−} and {R} denote the previous robot coordinate system and the new
robot coordinate system. Given the two scans, a scan-to-scan matching technique iteratively finds

relative transformation parameters,
{R−}
{R} pk = [txk, t

y
k, φk]ᵀ, composed of a translation, [txk, t

y
k]ᵀ,

and a rotation, φk, between the two coordinate systems by locally matching the two scans. The
first step is to transform the new scan in the new robot coordinate system to that in the pre-
vious coordinate system using the currently guessed transformation parameters. Note that the
initial transformation parameters can be estimated from readings of other sensors such as an
odometer, or can be set as zeros assuming that the two scans are close enough. Mathematically,
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the transformation of a point of the new scan in the new robot coordinate system to that in the
previous robot coordinate system is performed as,

{R−}zik(
{R−}
{R} pk) = R(φk) {R}zik + tk =

[
cos(φk) − sin(φk)
sin(φk) cos(φk)

] [ {R}zxi

k
{R}zyi

k

]
+

[
txk
tyk

]
(1)

where tk = [txk, t
y
k]ᵀ, and {R}zik = [{R}zxi

k ,
{R} zyi

k ]ᵀ. Then, each point of the new scan {R
−}Zk is

associated with {R
−}Zk−1 and finds the correspondence set, {R

−}Yk =
{
{R−}Y i

k |∀i ∈ {1, · · · ,m}
}

,

to which the new scan is to be compared. Note that the number of corresponding elements may be
less than m if any new scan point does not find a corresponding element. The new transformation
parameters are finally computed by minimizing the error metric between the new scan and the
correspondence, or equivalently maximizing the score function indicating how good the scan-to-
scan matching is. The way of finding {R

−}Yk and of computing the transformation parameters
varies by scan-to-scan matching techniques, which will be detailed in the following subsections.
The iterative identification of the transformation parameters stops when the absolute value of
the increment of computation is lower than the specified threshold value:∣∣∣∆{R−}{R} pk

∣∣∣ < δ (2)

2.2 Iterative Closest Point Technique

When the new scan is transformed to the coordinate system of the previous scan, the ICP
scan-to-scan matching technique calculates the distance to all previous scan points from each
new scan point and finds the corresponding point, i.e. {R

−}Y i
k ={R

−} yi
k, that has the minimum

distance. The corresponding point has the shortest distance to the new scan point:

d({R
−}zik,

{R−} yi
k) = min

{
d({R

−}zik,
{R−} zjk−1)|∀j ∈ {1, · · · ,m}

}
(3)

where d(·, ·) denotes a distance between two points. Given the correspondence the derivation of
{R−}
{R} pk is equivalent to solving the minimization problem of the error metric:

e(
{R−}
{R} pk) =

∑
i

∥∥∥{R−}yi
k − (R(φk){R}zik + tk)

∥∥∥2
→ min
{R−}
{R} pk

(4)

The ICP technique solves the minimization problem using the singular value decomposition
(SVD) [20]. The means of the new scan and its corresponding point set are first computed as:

{R}z̄k =
1

m

∑
i

{R}zik,
{R−}ȳk =

1

m

∑
i

{R−}yi
k (5)

Defining {R}aik ={R} zik −{R} z̄k and {R
−}bi

k ={R
−} yi

k −{R
−} ȳk, the error metric, e(

{R−}
{R} pk), in

Equation (4) can be then rewritten as:

e(
{R−}
{R} pk) =

nc∑
i=1

∥∥∥{R−}bi
k −R(φk){R}aik + ({R

−}ȳk −R(φk){R}z̄k − tk)
∥∥∥2

(6)
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Decoupling the rotation and the translation, the substitution of {R
−}ȳk −R(φk){R}z̄k − tk = 0

into Equation (6) yields:

e(
{R−}
{R} pk) =

nc∑
i=1

∥∥∥{R−}bi
k −R(φk){R}aik

∥∥∥2
=

nc∑
i=1

∥∥∥{R−}bi
k

∥∥∥2
+

nc∑
i=1

∥∥∥{R}aik∥∥∥2
−2tr(R(φk)Nk) (7)

where Nk =
∑nc

i=1
{R}aik

{R−}bi
k

ᵀ
. In the above equation, the error metric is minimized when

tr(R(φk)Nk) is maximized. Decomposing Nk by the SVD into Nk = UkDkV
ᵀ
k , the transforma-

tion matrices, R(φk), and tk are finally given by

R(φk) = VkU
ᵀ
k , tk = ȳk −R(φk)z̄k (8)

where Uk and Vk are real or complex unitary matrices, and Dk is a rectangular diagonal
matrix with nonnegative real number entries [20]. From R(φk), the orientational transformation
parameter, φk, can be derived as:

φk = atan2(R21, R11) (9)

where Rij is the entry of the matrix R in the ith row and the jth column.
It is to be noted that ICP has been used and researched on for many years and there are

multiple variants of ICP available in the literature. But throughout this paper we use the more
commonly used generic version of ICP, as it’s not one of the strengths of this paper.

2.3 Normal Distribution Transform Technique

Unlike the ICP technique the NDT scan-to-scan matching technique compares each new scan
point to a ND. Since the NDT technique maps {R

−}zik onto a grid space having cells each
represented with a ND. The NDT technique first defines a grid space with respect to the previous
robot coordinate system and derives a ND for each grid cell after identifying {R

−}Zk−1 on the
space as shown in Figure 2. For the jth cell, the mean and covariance matrix are computed by

{R−}z̄jk−1 =
1

mj
k−1

mj
k−1∑

i=1

{R−}zjik−1 (10)

{R−}Σ̄j
k−1 =

1

mj
k−1

mj
k−1∑

i=1

({R
−}zjik−1 −

{R−} z̄jk−1)({R
−}zjik−1 −

{R−} z̄jk−1)ᵀ (11)

where {R
−}zjik−1 is the ith point of the previous scan in the jth cell, and mj

k−1 is the number
of scan points in the cell. After transforming every new scan point using the currently guessed
transformation parameters, each point is located in some grid cell. If {R

−}zjik sees a ND created

by the previous scan in the cell, the correspondence or the properties of the ND, i.e. {R
−}Y i

k ={
{R−}ẑjik ,

{R−} Σ̂ji
k

}
, are those of the ND of the previous scan:

{R−}ẑjik ←
{R−} z̄jk−1,

{R−}Σ̂ji
k ←

{R−} Σ̄j
k−1 (12)
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Figure 2. Two-dimensional grid space overlaped with the environment (left) and the ND based on scan points in the jth

cell (right)

Upon completion of the identification of the correspondence, the derivation of
{R−}
{R} pk is equiv-

alent to solving the maximization problem of the score function, s(
{R−}
{R} pk):

s(
{R−}
{R} pk) =

∑
j

mj
k∑

i=1

exp
−({R

−}zjik −
{R−} ẑjik )ᵀ({R

−}Σ̂ji
k )−1({R

−}zjik −
{R−} ẑjik )

2
→ max
{R−}
{R} pk

(13)

Since the score function is the sum of piecewise smooth functions, a standard quadratic opti-

mization method can be used. Applying Newton’s method,
{R−}
{R} pk is iteratively computed by

the increment ∆
{R−}
{R} pk:

∆
{R−}
{R} pk = −H−1

k gk (14)

where Hk and gk are the sums of the Hessian, H̃k, and the gradient, g̃k, of the score function:

Hk =
∑
j

mj
k∑

i=1

H̃ji
k , gk =

∑
j

mj
k∑

i=1

g̃ji
k (15)

For the ith new scan point {R
−}zjik in the jth cell, the gradient vector g̃ji

k is given by

g̃ji
k ({R

−}zjik ,
{R−} ẑjik ,

{R−} Σ̂ji
k ) = z̃ᵀk({R

−}Σ̂ji
k )−1 ∂z̃k

∂(txk, t
y
k, φk)

exp
−z̃ᵀk({R

−}Σ̂ji
k )−1z̃k

2
(16)

and the m,n entry of H̃ji
k is computed by

H̃ji
k ({R

−}zjik ,
{R−} ẑjik ,

{R−} Σ̂ji
k )[m,n] =− exp

−z̃ᵀk({R
−}Σ̂ji

k )−1z̃k
2

{−z̃ᵀk({R
−}Σ̂ji

k )−1 ∂z̃k
∂pk[m]

}

· {−z̃ᵀk({R
−}Σ̂ji

k )−1 ∂z̃k
∂pk[n]

}+ {−z̃ᵀk({R
−}Σ̂ji

k )−1 ∂2z̃k
∂pk[m]∂pk[n]

}

+ {− ∂z̃ᵀ

∂pk[n]
({R

−}Σ̂ji
k )−1 ∂z̃k

∂pk[m]
}

(17)

where z̃k ={R
−} zjik −

{R−} ẑjik and the first and second partial derivative of z̃k can be derived
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as

∂z̃k
∂(txk, t

y
k, φk)

=

[
∂z̃k
∂pk[1]

,
∂z̃k
∂pk[2]

,
∂z̃k
∂pk[3]

]
=

[
1 0 −{R}zxi

k sin(φk)−{R} zyi

k cos(φk)

0 1 {R}zxi

k cos(φk)−{R} zyi

k sin(φk)

]
(18)

∂2z̃k
∂pk[m]∂pk[n]

=


[
−{R}zxi

k cos(φk) +{R} zyi

k sin(φk)

−{R}zxi

k sin(φk)−{R} zyi

k cos(φk)

]
for m = n = 3[

0
0

]
otherwise

(19)

When ∆
{R−}
{R} pk is computed,

{R−}
{R} pk is then updated by:

{R−}
{R} pk ←

{R−}
{R} pk + ∆

{R−}
{R} pk (20)

As can be seen in this section, the concept of the ICP is very simple and easy to implement,

but it requires the exact point-to-point matching. Therefore, finding
{R−}
{R} pk can be significantly

affected by wrong correspondence, and the point-to-point error metric tends to converge to
local minima. The NDT avoids this point-to-point matching problem by using a collectively
represented correspondence of ND as in Equation (13). However, due to its representation of the
scan on the grid space, the performance of the NDT relies on the size of the grid and the initial
guess.

3. The Proposed Grid-based Scan-to-Map Matching

3.1 Overall Process

Figure 3 shows the overall process of the proposed grid-based scan-to-map matching technique
which is based on the NDT’s grid-based matching. Instead of the previous scan, the proposed
technique matches the new scan to the globally defined map which is an accumulation of new
scans after the scan-to-map matching. When the new scan {R}Zk is obtained, the proposed
technique first performs the ICP scan-to-scan matching to derive the transformation parameters,
{R−}
{R} pICP

k , and transforms each new scan point in the {R} coordinate system to that in the {R−}
coordinate system:

{R−}zik(
{R−}
{R} pICP

k ) = R(φICP

k ) {R}zik + tICP

k (21)

where
{R−}
{R} pICP

k = [tICP

k
ᵀ, φICP

k ]ᵀ. Having the new scan matched to the previous scan, each new

scan point {R
−}zik is further transformed to that in the global coordinate system, {G}, using the

robot pose estimated at the previous time step in the {G} coordinate system:

{G}zik = R({G}θk−1){R
−}zik +{G} xk−1 (22)

where {G}xk−1 = [{G}xk−1,
{G} yk−1]ᵀ and {G}θk−1 are the robot pose in the global coordinate

system estimated at time step k − 1. The iterative estimation of the robot pose in the global
coordinate system is performed by considering the robot movement, {R

−}xk and {R
−}θk, which

is equivalent to tICP

k and φICP

k , respectively:

{G}xk = R({G}θk−1){R
−}xk +{G} xk−1 = R({G}θk−1)tICP

k +{G} xk−1
{G}θk = {R−}θk +{G} θk−1 = φICP

k +{G} θk−1
(23)

7



February 29, 2016 Advanced Robotics ADVR˙Kunjin˙v6

Figure 3. Proposed grid-based scan-to-map matching technique

This global coordinate system is, however, incorrectly located due to the misalignment of the
previous robot coordinate system by the ICP scan-to-scan matching as well as the error of
estimation of the robot pose. Once the new scan is transformed to the {G} coordinate system,
the proposed technique iteratively matches the new scan to the map in the {G+} coordinate
system, which is the global coordinate system corrected by the proposed technique from the
original guess of the global coordinate system, and derives the new scan in the {G+} coordinate
system:

{G+}zik(
{G+}
{G} pk) = R(φk) {G}zik + tk (24)

where
{G+}
{G} pk = [tᵀk , φk]ᵀ is the error correction parameters, or the scan-to-map matching trans-

formation parameters, and transforms the new scan to the corrected global coordinate system.
The derivation of the error correction parameters is detailed in the next subsections. Simultane-

ously, the robot pose in the {G} coordinate system is also corrected by
{G+}
{G} pk:

{G+}xk = R(φk){G}xk + tk
{G+}θk = {G}θk + φk

(25)

Because the misalignment of the previous robot coordinate system and the error of the robot
pose are corrected by matching the new scan to the map, the proposed technique does not
accumulate the scan-to-scan matching error as well as the pose estimation error.
Having the overall process of the scan-to-map matching identified, the representation of the grid
map having multiple NDs in each cell is first defined in Subsection 3.2. In addition to the map
NDs, the scan NDs are then derived from the new scan and paired with map NDs for scan-to-

map matching. Subsection 3.3 presents the derivation of
{G+}
{G} pk via the ND-to-ND matching,

whereas the update of the grid map using the derived
{G+}
{G} pk is detailed in Subsection 3.4. In

order to simplify the notation the corrected global coordinate system, {G+}, will be dropped
from now on, and all notations without the coordinate system are considered as being in the
corrected global coordinate system.

3.2 Grid Map Representation and Selection of Matching Map Normal
Distribution

Figure 4 illustratively shows the grid map with multiple map NDs in each cell together with the
matching of new scan to the map NDs. As shown in the figure, the new scan of an object can be
significantly different depending on where the scan is taken. The grid map with multiple NDs
allows the matching of the new scan to a map ND irrespective of the robot pose. Mathematically,
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Figure 4. The grid map is represented by multiple NDs (right) and new scans to be matched to the grid map (left)

such a grid map updated up to time step k − 1 for deriving
{G+}
{G} pk is represented as

M1:k−1 =
{
M j

1:k−1|∀j ∈ {1, · · · , n
g}
}

where M j
1:k−1 is the property of the jth grid cell, and ng is the number of grid cells. M j

1:k−1 is
given by

M j
1:k−1 =

{
M jl

1:k−1 =
{
z̄jl1:k−1, Σ̄

jl
1:k−1,m

jl
1:k−1

}
|∀l ∈

{
1, · · · , njk−1

}}
where M jl

1:k−1 is the property of the lth map ND in the jth cell with the mean, z̄jl1:k−1, covariance

matrix, Σ̄jl
1:k−1, and the total number of scan points, mjl

1:k−1. njk denotes the total number of

map NDs in the jth cell.
With the new scan transformed to the {G} coordinate system, the scan ND in the jth cell to

match to a map ND in the same cell is derived simply as

{G}z̄jk =
1

mj
k

mj
k∑

i=1

{G}zjik (26)

{G}Σ̄j
k =

1

mj
k

mj
k∑

i=1

({G}zjik −
{G} z̄jk)({G}zjik −

{G} z̄jk)ᵀ (27)

where {G}zjik is the ith scan point in the jth cell and mj
k is the total number of points in the jth

cell. The selection of a matching map ND for the scan ND in the proposed technique starts with
quantifying the similarity of the scan ND to each map ND in the same cell. The similarity can
be computed by the KL divergence, DKL, which is a mathematically solid method for measuring
the distance between two probability distributions:

S
(
N({G}z̄jk,

{G} Σ̄j
k), N(z̄jl1:k−1, Σ̄

jl
1:k−1)

)
= −DKL

(
N({G}z̄jk,

{G} Σ̄j
k)||N(z̄jl1:k−1, Σ̄

jl
1:k−1)

)
= −1

2

{
tr
(

(Σ̄jl
1:k−1)−1{G}Σ̄j

k

)
+ (z̄jl1:k−1 −

{G} z̄jk)ᵀ(Σ̄jl
1:k−1)−1(z̄jl1:k−1 −

{G} z̄jk)− ln
det({G}Σ̄j

k)

det(Σ̄
jl
1:k−1)

− λ
}

(28)

where l ∈
{

1, · · · , njk−1,
}

, λ is the dimension of the NDs, and N({G}z̄jk,
{G} Σ̄j

k) and

N(z̄jl1:k−1, Σ̄
jl
1:k−1) are the scan ND and the lth map ND, respectively. Out of the map NDs
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the most similar one to the scan ND is that with the highest similarity value:

S
(
N({G}z̄jk,

{G} Σ̄j
k), N(z̄jl

∗

1:k−1, Σ̄
jl∗
1:k−1)

)
= min

{
S
(
N({G}z̄jk,

{G} Σ̄j
k), N(z̄jl1:k−1, Σ̄

jl
1:k−1)

)
|∀l ∈

{
1, · · · , njk−1

}}
(29)

The l∗th map ND is regarded as the matching map ND for the scan ND if the similarity is greater
than the specified threshold value:

S
(
N({G}z̄jk,

{G} Σ̄j
k), N(z̄jl

∗

1:k−1, Σ̄
jl∗
1:k−1)

)
> γ (30)

Having the matching map ND identified for each scan ND, the derivation of
{G+}
{G} pk is possible

by matching all the scan NDs to the corresponding matching map NDs.

3.3 Derivation of Error Correction Parameters

Since a scan ND in each cell is compared to a matching map ND, the correspondence is derived

not for every point but for every cell, i.e., Y j
k =

{
ẑjk, Σ̂

j
k

}
. The correspondence for each cell is

equivalent to the property of the matching map ND in the same cell:

ẑjk ← z̄jl
∗

1:k−1

Σ̂j
k ← Σ̄jl∗

1:k−1

if S
(
N({G}z̄jk,

{G} Σ̄j
k), N(z̄jl

∗

1:k−1, Σ̄
jl∗
1:k−1)

)
> γ (31)

Note that a scan ND that does not have a matching map ND is not thus considered in the

derivation of
{G+}
{G} pk. Given the correspondence of the scan NDs, the derivation of

{G+}
{G} pk begins

with the initial values set to 0 as it is valid to assume that the ICP scan-to-scan matching and the
previous robot pose estimation is reasonably correct. The proposed technique first transforms
the mean and covariance matrix of each scan ND to those in the {G+} coordinate system using

the currently guessed
{G+}
{G} pk:

z̄jk = R(φk) {G}z̄jk + tk (32)

Σ̄j
k = R(φk) {G}Σ̄j

k R(φk)−1 (33)

With all the scan NDs and the matching map NDs described in the {G+} coordinate system, the

transformation parameters
{G+}
{G} pk can be then computed by maximizing the objective function

given by the sum of similarities between the scan NDs and the matching map NDs:

f(
{G+}
{G} pk) =

∑
j

S
(
N(z̄jk, Σ̄

j
k), N(ẑjk, Σ̂

j
k)
)

(34)

The objective function of the proposed technique equally sums the similarities. In other words,
similarities with a small number of scan points can be treated as equally as those with a large
number of scan points. This could allow the proposed technique to match the new scan to the
map more globally than the conventional point-to-X techniques. The ND-to-ND matching could
also dramatically improve the computation time.
Although the analytical expressions of the gradient and the Hessian may be obtained for the
objective function, the small-size optimization problem, with only three parameters for the two-
dimensional scan, could be easily solved with the Newton method numerically computing the
gradient and the Hessian.
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3.4 The Update of the Grid Map

The grid map is initially that with the first scan NDs, and this is regarded as the first grid map
updated up to the previous time step. Given the mean and the covariance matrix of the scan
ND of each cell in the {G} coordinate system shown in Equation (26) and (27), the proposed
technique then updates map NDs in the same cell differently depending on whether there is a
matching map ND. If there is a matching map ND, only this matching map ND is updated
with the scan ND. The mean and covariance matrix of the matching map ND in the jth cell are
updated according to the weighted mean formulation:

z̄jl
∗

1:k =
mj

1:k−1z̄
jl∗
1:k−1 +mj

k z̄
j
k

mj
1:k−1 +mj

k

(35)

Σ̄jl∗
1:k =

mj
1:k−1Σ̄jl∗

1:k−1 +mj
k Σ̄j

k

mj
1:k−1 +mj

k

(36)

After the update, the number of scan points for the map ND is also updated:

mjl∗
1:k = mjl∗

1:k−1 +mj
k (37)

On the other hand, if the scan ND has found no matching map ND, the scan ND is simply added
as a new map ND without any update to the current map NDs. Let the index of the new map
ND be l+ = njk + 1. The mean and the covariance matrix of the map ND in the jth cell are given
by

z̄
jl+
1:k = z̄jk (38)

Σ̄
jl+
1:k = Σ̄j

k (39)

The number of scan points of the map ND is, similarly, the number of scan points of the scan
ND:

m
jl+
1:k = mj

k (40)

After the scan ND is added, the number of the map NDs becomes njk ← njk + 1. The update of
the grid map completes by applying the cell-wise update to all the grid cells.

4. Experimental Results

This section is aimed at investigating the performance of the proposed scan-to-map matching
technique and demonstrating the applicability of the proposed technique in real indoor environ-
ments. All experiments were conducted using a ground mobile robot with a forward-facing LRF,
Hokuyo UTM-30lx, mounted on the robot (Figure 5). No other sensors such as an odometer and
an IMU were used to estimate the pose of the robot and to build a map. In the first experiment,
the performance of the proposed technique is investigated based on the position and orientation
error seen from landmarks at every matching of the new scan to the map. The second experi-
ment focuses on showing the effectiveness of multi-ND representation within a grid cell instead
of having a single ND. Finally, the proposed technique is tested within a number of real indoor
environments each of which is relatively large and unstructured. This includes the popular public
domain dataset from Freiburg University Building 079 [21]. Table 1 shows the parameters used
in the experiments.
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Figure 5. Ground mobile robot with laser range finder

Table 1. Default parameters for the scan-to-map matching technique

Parameters Value
LRF scanning angle 0◦ to 180◦

Scanning interval 0.5◦

LRF scanning frequency 10 Hz
Grid cell size 1m by 1m

Threshold (δ) for the scan-to-scan matching technique 0.001
Threshold similarity (γ) -2

4.1 Effect of the Scan-to-Map Matching

Figure 6 shows the first experiment where there is a L-shaped object at the end of a corridor. The
robot was initially located at the starting point which was known in the global coordinate system.
In order to exclude environmental parameters that might have influence on the experiment, the
environment was selected to be simple. In the experiment the robot observed the entire object
at all time and was manually driven along two different paths, one of which was a straight line
and the other was a curvature. The robot took 190 scans and 348 scans for the linear and the
nonlinear motion, respectively. At every acquisition of the new scan, the robot performed the
scan-to-map matching and every scan points were mapped onto the global coordinate system.
The left and right edge, and the center point of the object are considered as detectable features,

and the position error εfik of the ith feature at time step k is given by

εfik =

√(
xfi0 − x

fi
k

)2
+
(
yfi0 − y

fi
k

)2
(41)

where fi is either left or right edge (i.e. fl or fr),
[
xfi0 , y

fi
0

]ᵀ
is the initial position of fi, and[

xfik , y
fi
k

]ᵀ
represents the position mapped onto the corrected global coordinate system at time

step k. The slope of the line connecting the center point and the left edge of the object is also
calculated in order to to see the orientation error.

Figure 7(a) and 7(d) show accumulated scan points after the scan-to-map matching for the
linear and nonlinear motion, respectively. To address the effect of the global correction by the
proposed technique, the figure also shows scan point mapped onto the global coordinate sys-
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(a) Linear motion (b) Nonlinear motion

Figure 6. Robot takes scan images and matches them to previous scans and global map following (a) a straight line and
(b) a curvature

(a) Proposed (linear motion) (b) ICP without global matching

(linear motion)

(c) NDT without global match-

ing (linear motion)

(d) Proposed (nonlinear motion) (e) ICP without global matching

(nonlinear motion)

(f) NDT without global match-

ing (nonlinear motion)

Figure 7. Accumulated scan points of the object by the proposed, ICP, NDT

tem after sequential scan-to-scan matchings by the ICP and NDT technique, but without the
global correction. As shown in the figure, the scans transformed by the proposed technique at
different time steps are well aligned to one another. This indicates that the estimations of the
transformation parameters by the local scan-to-scan matchings are well corrected by the global
scan-to-map matching parameters. On the other hand, the scans transformed by the sequential
scan-to-scan matchings without the global correction do not lie on the same position. From these
results the effect of the global correction can be qualitatively verified. In both cases of the linear
and nonlinear motion the ICP technique without the global correction generates relatively larger
position error than the others. This is because the L-shaped corner is initially away and thus
only captured by a small number of scan points. ICP match of the close-by walls represented by
high-density scan points.
The error produced by NDT is due to the absence of global-correction

Usage of different ICP techniques available in literature, would exploit different features in the
environment and yield slightly different results. For example using a point-to-line ICP for the
particular example shown in Fig. 7 would produce much better results as it exploints the lines
in the environment. But if the environment was to be composed of curved lines, that technique

13
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(a) Left edge (linear motion) (b) Right edge (linear motion)

(c) Left edge (nonlinear motion) (d) Right edge (nonlinear motion)

Figure 8. Position errors seen at the left and right edge

(a) Linear motion (b) Nonlinear motion

Figure 9. The slope of the line connecting the center point and the left edge of the object

would not produce good results. Therefore as explained in Section 2.2, the proposed algorithm
uses generic ICP throughout.

Figure 8 and 9 quantitatively show the position error and the slope of the line connecting the
center point and the left edge for the linear and nonlinear motion. As expected from the previous
figure showing the accumulated scan points, the proposed technique has the smallest position
errors for both motions. There is nearly no difference between the linear and nonlinear motion
case and the error is consistent in its value regardless of time step. The slope does not change a
lot with respect to time step, indicating that the orientation error is small and not accumulated
with time. Note that these errors are caused not only by the matching process, but also by the
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Table 2. Initial and final positions of left (LE) and right edges (RE) estimated by three methods and position errors

Proposed ICP NDT

L
in

ea
r

m
ot

io
n

LE
[xfl0 , y

fl
0 ] [−0.85, 9.64]

[xfl190, y
fl
190] [−0.89, 9.64] [−0.81, 9.45] [−0.99, 9.73]

εfl190 (m) 0.044 0.194 0.174

RE
[xfr0 , y

fr
0 ] [0.5, 9.69]

[xfr190, y
fr
190] [0.52, 9.67] [0.61, 9.45] [0.42, 9.81]

εfr190 (m) 0.025 0.26 0.141
N

on
li

n
ea

r
m

ot
io

n

LE
[xfl0 , y

fl
0 ] [5.92, 7.85]

[xfl348, y
fl
348] [5.89, 7.82] [5.71, 7.57] [5.9, 8.04]

εfl348 (m) 0.041 0.353 0.185

RE
[xfr0 , y

fr
0 ] [6.98, 6.97]

[xfr348, y
fr
348] [6.94, 6.97] [6.74, 6.71] [6.95, 7.21]

εfr348 (m) 0.034 0.358 0.233

LRF with the scanning interval of 0.5◦ which observes the features at different positions for
each scan. However, when new scans are matched only to their previous scans using the ICP
and NDT technique, position errors become large. For both the linear and nonlinear motion the
ICP scan-to-scan matching technique shows the largest position errors which increase with time.
Position errors by the NDT scan-to-scan matching are less than the ICP, whereas, slopes at the
initial and the last time step are slightly distinct, which implies there exist orientation errors.
According to Table 2 the proposed technique has successfully removed the position errors by the
scan-to-scan matchings with 6.67 and 4.62 times lesser errors than the ICP and NDT technique
without the global correctness for the linear motion, and 9.62 and 5.64 times lesser errors for
the nonlinear motion, respectively. It is important that the position errors do not accumulate
with time step, but it stays within 4cm.

4.2 Effect of Multiple Normal Distributions in a Single Cell

Having identified the effect of global correction capability by the proposed scan-to-map matching
technique, this experiment investigates the effectiveness of maintaining multiple NDs instead of
a ND in a single grid cell. In this experiment the robot possibly sees different parts of an object
while it operates in a simulated environment, so that NDs from scan points in the jth cell can be
largely different depending on the pose of the robot. The robot took 43 scans and two different
grid maps were independently updated where the first grid map maintained multiple NDs within
each grid cell whereas the other grid map contained a single ND in each cell. As shown in Fig.
10(a), the robot could observe only one side of the corner at the initial time step, however,
at time step k1 it started seeing both sides of the corner. From time step k2 the robot again
observed only one side of the corner. With the two grid maps updated using the 43 scans, the
robot was located at three different positions and the similarities between map NDs and the
scan NDs are computed to find the most similar map NDT for each case (Fig. 10(b)).
Figure 11(a) and 11(b) show the similarities between the scan NDs and the most similar map

NDs in the jth cell when the grid map maintains multiple NDs and a single ND (includes
methods such as [22, 23]), respectively. For the multi-ND representation, when the robot first
observes different side of the corner at time step k1 (i.e. k1 = 23), the similarity drops down
to -20.17. However, the similarity immediately goes up at the next time step after the scan
ND at time step k1 is added as a new map ND. Similarly, at time step k = 28 and k2 (i.e.
k2 = 34), when the similarity is lower than the threshold value, a new map NDs is added and
the similarity increases again at the next time step. When the grid map is updated using the
single-ND representation, the similarity drops at time step k1 and keeps decreasing since the
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(a) Robot turns around the corner and starts

observing another side of the corner

(b) Robot revisits and sees the corner from dif-

ferent positions with different bearing angles

Figure 10. Experiment for investigating the effect of multiple normal distributions in a single cell

(a) Multi-ND representation (b) Single-ND representation

Figure 11. Similarity between the scan ND and the most similar map ND

existing map ND becomes less and less similar to the scan ND as the robot sees the other part of
the corner more. The corresponding ND to the scan ND after time step k1 are not appropriate,
which may cause inaccurate matching between the scan ND and the map ND. Conclusively, the
multi-ND representation in each cell can increase the accuracy of the scan-to-map matching.
After the grid map is updated by 43 scans using the multi-ND representation, the jth cell

contains 4 map NDs. Having the grid map updated, Table 3 shows the similarities between the
scan NDs and map NDs when the robot is placed at three different locations. When the robot
is on Position (a) and obtains the new scan, the first map ND, updated by the first 22 scans, is
selected as the most similar map ND to the scan ND with the similarity of -1.72. The last map
ND, updated by the last 10 scans, has the minimum similarity to the scan ND. When the robot
observes the corner from Position (b), both the second map ND, updated by the 23rd to 27th
scans, and the third map ND, updated by the 28th to 33rd scans, are quite similar to the scan
ND. Although the third map ND can be a good matching map ND for the scan ND, the second
map ND is selected as the matching map ND, which enables the proposed technique to match the
new scan more accurately to the grid map. When the robot is on Position (c), the result seems
to be opposite to the first case, where the last map ND has the maximum similarity and the first
map ND has the minimum value. Due to the multi-ND representation, the scan ND can find the
exact matching map ND regardless of the pose of the robot. Since the potential strength of the

Table 3. Similarities between the scan ND and the map NDs

Position Map ND 1 Map ND 2 Map ND 3 Map ND 4
a -1.72 -2.89 -3.63 -98.37
b -47.12 -1.12 -2.89 -61.38
c -173.28 -4.27 -2.793 -1.732

16



February 29, 2016 Advanced Robotics ADVR˙Kunjin˙v6

10
−0.9

10
−0.5

10
−0.1

10
0.3

10
−0.4

10
−0.2

10
0

0.1

0.2

0.3

0.4

0.5

0.6

Grid sizeThreshold (scaled)

A
v
e

ra
g

e
 e

rr
o

r

Figure 12. Represents the change in average error as per (41), with respect to the changes in grid size and threshold for
multi-NDs.

(a) Environment 1: McBryde Hall (b) Environment 2: Newman Library (c) Environment 3: Randolph Hall

Figure 13. Test Environments

proposed technique is its high accuracy by the multi-ND representation rather than the resolution
of the grid space, this subsection finally identifies the accuracy of the proposed technique with
respect to the threshold of similarity and the grid size. The experimental data with non-linear
motion shown in Fig. 6(b) was used with a different set of similarity threshold and grid size.
The scholar error quantified was the average of the left and right error in (41). Figure 12 shows
the error surface created with different sets of similarity threshold and grid size. It is first seen
that the error is consistently small regardless of the grid size when the similarity threshold is
small. This is because more map NDs can be created in each grid with small similarity threshold.
Seen next is that the error is consistently small regardless of the threshold when the grid size
is small. This is due to the fact that the grid size is small enough to be able to better capture
the distribution of scan points. These results clearly indicate that the multi-ND representation
yields the high accuracy strength of the proposed technique.

4.3 Application: Mapping Large Environments

This subsection demonstrates high accuracy and versatility of the proposed technique in solving
the SLAM problem in indoor environments shown in Figure 13. The environments were partially
structured or unstructured with static and mobile objects including walking people. The envi-
ronments had long corridors (Environment 2 and 3), a large number of random shaped objects
such as chairs and desks (Environment 1, 2, and 3), and large loops (Environment 1,2 and 3) to
be closed. During the experiment the robot took 2489, 2426, and 3873 scans for Environment
1, 2, and 3, respectively. Similar to the first experiment, since the autonomous exploration was
out of the scope of this paper, the robot was manually driven following pre-determined paths
(i.e. a-e-b-c-d-e for Environment 1, a-b-c-d-c-b-a for Environment 2, a-b-a-c-a-d-e-d-f-g-d for
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Environment 3).

(a) Environment 1 (b) Environment 2

(c) Environment 3

Figure 14. Trajectory of the robot in the three environments

Figure 14 shows trajectories of the robot in the three environments estimated by the proposed
technique. In order to emphasize the effect of the global correction made by the proposed tech-
nique, trajectories of the robot estimated by the two scan-to-scan matching techniques without
the global correction are also plotted in the same figure. As shown in the figure when the pose
of the robot is computed by the proposed technique the robot successfully closes loops in the
environments, though this is not an active loop closure. For all the environment the total dis-
tances the robot traveled are 186 m, 258.2 m, and 374 m, and accumulated orientation changes
of the robot are 3646◦, 1949◦, and 3729◦, respectively. On the other hand, when the pose of the
robot is estimated by the scan-to-scan matching techniques without the global correction, there
exist deviations in the trajectories of the robot ending up with the failure in closing the loops.

In Figure 15 maps of all three environments built by the proposed technique are shown.
The localization error can be qualitatively analyzed by seeing the quality of the map since the
localization and the map building are directly related to each other. In order to have better
understanding of the accuracy, each map is overlapped on top of the satellite view of each
environment where a red line is the trajectory of the robot. No other additional techniques such
as active loop closure are used in the proposed algorithm. For all the environments the results
demonstrate the high accuracy of the proposed scan-to-map matching technique in real SLAM
scenarios. When the robot visits the same areas in the environments more than once, it observes
the same features more than once. The accumulated pose error is then roughly calculated by
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comparing the positions of the same features observed at different time steps. As shown in
the figure the intersections that the robot has visited more than once are zoomed in and the
features in the intersections are highlighted. In each environment there exists small amount of
a position error (Environment 1), both a position and an orientation error (Environment 2),
or nearly no error (Environment 3) after the robot comes back to the same area. In Table 4
numerical results of the position and orientation errors from the proposed technique are listed.
For all the environments the error rates defined as the position or the orientation error divided
by the total distance or the accumulated orientation changes are less than 0.001, which indicates
that the position and the orientation errors are less 10cm and 0.1◦ after traveling 100m with
the accumulated orientation changes of 100◦. The results show that the proposed technique is
successful in estimating the robot pose and building the map in three different real environments.
These errors were obtained manually by measuring distance between prominent features present
in the map that were identified visually (Eg.: corners).

Table 4. Position and orientation error produced by the proposed technique in Environment 1, 2 and 3

Environment Total
Proposed method

Error Error Rate

1
186 m 12.2 cm 0.000656
3646◦ 0.64◦ 0.000176

2
258 m 25 cm 0.00097
1594◦ 1.17◦ 0.00073

3 (Point a)
112 m

Loop successfully closed, therefore error not measurable
1204◦

3 (Point d)
182 m
1770◦

Furthermore we used the popular and publicly available Freiburg 079 dataset [21] with the
proposed algorithm to create the map shown in Fig. 16. This dataset contains near-ground truth
relations data that had been obtained by authors by manually matching scans at the given
timestamps [24]. The plot in Fig. 17 shows the error ε(δij), which is obtained using (42) [25],
against the relation number from the dataset.

ε(δij) = δij � δ∗ij (42)

Were δij is the relative displacement between two poses i and j and δ∗ij is the corresponding
near-ground truth displacement from the dataset. These poses i and j are matched to be within
±0.1s from the timestamps that are given in the dataset.

5. Conclusion

In this paper a grid-based scan-to-map matching technique for accurate mapping has been pro-
posed. The proposed technique performs the local scan-to-scan matching and corrects the error
from the matching by the use of a global scan-to-map matching technique. The map to match is
a grid map which may hold multiple NDs within each grid cell. Due to the scan-to-map matching
with the multi-ND representation, the proposed technique exhibits little errors in the scan-to-
map matching, and does not further accumulate the errors. The new scan is also represented by
NDs enabling the novel ND-to-ND scan matching mechanism. The equal treatment of cells in
the proposed ND-to-ND matching could further contribute to the accurate global scan-to-map
matching.
The proposed scan-to-map matching technique was applied to three different experiments. The
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(a) Environment 1

(b) Environment 2

(c) Environment 3

Figure 15. Maps of test environments by the proposed technique overlapped on satellite view of the environments and
critical intersections the robot visited multiple times

first experiment investigated the proposed scan-to-map matching technique in terms of the po-
sition and orientation error while the robot moved and sequentially obtained new scans. The
experiment showed that the accumulated orientation error was negligible and that the position
error stayed within 4cm after traveling around 10m. The second experiment, investigating the
effectiveness of maintaining multiple NDs within a cell, showed that the scans were matched
better to the map with higher similarity when the cell had multiple NDs than one ND. The
experiment also demonstrated the robust effect of the use of multiple NDs. Finally, the proposed
technique was used to create the maps in four real environments to demonstrate its applicability
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Figure 16. Map of the Freiburg University building 079 public domain dataset [21], created using the proposed algorithm.

relation #

0 200 400 600 800 1,000 1,200

e
rr

o
r 

(m
)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Figure 17. Shows the error in relative displacement in the nominated poses against the near-ground truth given in the
dataset.

to real world problems. The resulting maps showed that the proposed technique, without any
post processes such as the loop closure, generated position errors in the order of ten centimeters
with very small orientation errors for the first three environments after traveling around 200m
with large orientation changes. Furthermore the results from the public domain Freiburg dataset
when compared to the near-ground truth data given in the dataset shows to have a root mean
square error of 0.0446m, a mean absolute error of 0.0285m and a maximum absolute error of
0.3477m.
This paper is focused on the development of a new technique for scan-to-map matching, and
much work is still left open to demonstrate its practical usefulness. Ongoing work primarily
includes the investigation into computational efficiency as the proposed ND-to-ND matching
technique is supposed to be significantly superior to the point-to-X matching techniques. The
extension of the proposed technique to provide a full SLAM solution which would include propa-
gation of uncertainty of the robot pose and loop closures is also being investigated. The potential
of this method in being applied to 3D mapping is also currently investigated. Future works also
include the applications of the proposed technique to different multi-task robotic problems in
combination with other works of the authors [26–28].
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