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Abstract. Fuzzy regression models have commonly been used to correlate engineering characteristics with consumer prefer-
ences regarding a new product. Based on the models, product developers can determine optimal engineering characteristics of 
the new product in order to satisfy consumer preferences. However, they have a common limitation in that they cannot guaran-
tee to include significant regressors with significant engineering characteristics or significant nonlinear terms. The generaliza-
tion capability of the model can be reduced, when too few significant regressors are included and too many insignificant re-
gressors are included. In this paper, a forward selection based fuzzy regression (FS-FR) is proposed based on the statistical 
forward selection to determine significant regressors. After the significant regressors are determined, the fuzzy regression is 
used to generate the fuzzy coefficients which address the uncertainties due to fuzziness and randomness caused by consumer 
preference evaluations. The developed model includes only significant regressors which attempt to improve the generalization 
capability. A case study of a tea maker design demonstrated that the FS-FR was able to generate consumer preference models 
with better generalization capabilities than the other tested fuzzy regressions. Also simpler consumer preference models can be 
provided for the new product development.  
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1.  Introduction 

For the past two decades, the role of product de-
velopers has been extended to include both sounding 
out consumers and determining the optimal engineer-
ing characteristics of a new product that will satisfy 
consumer preferences [1]. When the correlation be-
tween consumer preferences and engineering charac-
teristics is developed, a successful new product is 
more likely to be produced as consumer requirements 
can be satisfied based on the truly specified engineer-
ing characteristics [2]. Based on quality function de-
ployment (QFD) [1,3], these correlations can be rep-
resented by a matrix, namely houses of quality 
(HOQ), which relates consumer preferences to engi-

neering characteristics. However, development of the 
HOQ associated with engineering characteristics is a 
complex decision-making process as nonlinearities 
exist between engineering characteristics and con-
sumer preferences; moreover, an evaluation of the 
degrees of consumer preferences is fuzzy as it is 
normally accomplished in a subjective or heuristic 
manner. Therefore, the inclusion of correlated engi-
neering characteristics cannot be guaranteed when 
the consumer preferences cannot be accurately de-
termined. Alternatively, the empirical consumer pref-
erence models have commonly been developed in 
order to represent the relationship between consumer 
preferences and engineering characteristics [4]. These 
consumer preference models are developed using 



experimental or consumer survey data which illus-
trates correlations between engineering characteris-
tics to consumer preferences. 

Artificial neural networks can be used to develop 
models which correlate engineering characteristics to 
consumer preferences, when certain amount of con-
sumer preference samples is given. However, artifi-
cial neural networks generally lack transparency and 
they are represented as a black-box model. Explicit 
information for consumer preferences cannot be indi-
cated in the artificial neural networks. To generate 
explicit models, multivariate regression approaches 
are commonly used [5,6]. In general, statistical 
methods are more preferred as more explicit infor-
mation can be found than using the artificial neural 
networks. Compared with artificial neural networks, 
more explicit information can be found in statistical 
regression models which are in a polynomial form. 
Hence, variable significances and variable interac-
tions can be determined in the polynomial of the re-
gression models. However, to develop these regres-
sion models, it is necessary to assume that deviations 
between collected samples and model estimates are 
randomly distributed. As deviations between collect-
ed samples and model estimates can be caused by 
indefinite knowledge or imprecise evaluations of 
consumer preferences, errors in the models can be 
fuzzy since the models are unable to capture the fuzz-
iness of consumer preferences. To address the fuzzi-
ness of customers’ perceptual evaluations on a prod-
uct, the approaches of fuzzy modelling [7,8,9] have 
been commonly developed. However, these ap-
proaches can generate only implicit consumer prefer-
ence models of which explicit information cannot be 
indicated. These methods are not widely utilized by 
product developers, as they reveal no explicit reasons 
for new product development. Analytical information 
such as significances, sensitivities, and interactions 
for engineering characteristics cannot be illustrated 
on the models. 

Fuzzy regressions are commonly used for devel-
oping consumer preference models, as explicit and 
analytical information can be indicated within the 
model [10]; and also fuzziness caused by subjective 
evaluations of consumer preferences can be ad-
dressed by the model [11,12]. Different versions of 
fuzzy regression have been developed for new prod-
uct development. Kim et al. [11] and Sekkeli et al. 
[12] have applied fuzzy linear regression to generate 
consumer preference models, whereby fuzzy coeffi-
cients of the models consist of symmetric triangular 
memberships. To increase the flexibility for address-
ing fuzziness, advanced versions of fuzzy linear re-

gressions were developed based on asymmetric tri-
angular fuzzy memberships [13-16]. To address un-
certainties caused by fuzziness and randomness in 
consumer preference observations, fuzzy linear least-
squares regression has been developed [17]. More 
recently, the chaos optimization method [18] has 
been integrated with fuzzy regression [19], whereby 
the chaos optimization method is used to generate the 
nonlinear polynomial structure of the model. Based 
on the polynomial structure, fuzzy coefficients are 
generated in order to address nonlinearities for con-
sumer preferences.   

Although all these fuzzy regression methods are 
able to address partially the characteristics and fuzzi-
ness of consumer preferences, these approaches have 
a common limitation: they cannot guarantee the 
model consists only of significant engineering char-
acteristics and significant nonlinear terms; and they 
also cannot guarantee insignificant engineering char-
acteristics can be excluded in the model. Using all 
regressors to develop a model is not effective for the 
development of the models [20]. Including too many 
insignificant regressors could reduce the model gen-
eralization capabilities and may cause an overfitted 
model [21]. Excluding significant one could lead to 
the model that cannot learn significant patterns for 
consumer preferences. Therefore, it is necessary to 
determine significant regressors which consist only 
of significant engineering characteristics and signifi-
cant nonlinear terms. Based on the model consists of 
significant regressors, strong correlation between 
engineering characteristics and consumer preferences 
can be developed. Accurate prediction of consumer 
preferences is more likely to be determined by the 
model. 

Although the heuristic method namely genetic 
programming has been used to develop the models 
involving with significant regressors, the genetic 
programming requires a lot more computational 
model evaluations than the statistical regression 
methods do [22]. Therefore, in this paper, a novel 
fuzzy modelling method, namely forward selection 
based fuzzy regression (FS-FR) which incorporates 
the approaches of fuzzy least square regression [23] 
and forward selection regression [24], is proposed. 
The FS-FR attempts to develop the consumer prefer-
ence model which consists only of significant regres-
sors. In the FS-FR, the mechanism of forward selec-
tion regression [24] is used to identify the significant 
regressors, where the forward selection regression 
has commonly been used on system modelling such 
as manufacturing process systems [25], product de-
velopment [26] and biomedical development [7] etc. 



Also we have compared the genetic programming 
[22,27] and the proposed FS-FR based on a case 
study of new product development. The case study 
shows that better generalization capability can be 
obtained by the proposed FS-FR. 

In the FS-FR, a model with no regressor is first 
initialized. The FS-FR then adds the significant re-
gressors one by one to the model, until the model 
cannot be improved by adding one more regressor. 
Finally, a model which includes only the significant 
regressors is developed. Based on the selected re-
gressors, the fuzzy coefficients are determined using 
the fuzzy least square regression [23] in order to ad-
dress the uncertainties caused by the quantitative 
evaluations of consumer preferences [27]. Hence, the 
resulting model consists of significant regressors 
only, and is able to address nonlinearities and sample 
uncertainties caused by consumer preference evalua-
tions. The effectiveness of the FS-FR is evaluated 
based on a case study of a tea maker design, as the 
consumer preferences for tea maker design are non-
linear. Also the collected samples of the consumer 
preferences are contaminated with uncertainties 
which are caused by fuzziness and randomness of the 
quantitative evaluations. The results obtained by the 
FS-FR are compared with those obtained by the 
commonly-used fuzzy regression methods and the 
recently developed fuzzy regression method for new 
product development [4]. Better generalization capa-
bilities can be obtained by the models developed by 
the FS-FR compared with the tested methods. Also 
less numbers of engineering characteristics are in-
volved on developed the models. Hence, more effec-
tive usage of engineering characteristics can be ob-
tained by FS-FR. 

2.  Fuzzy regression for consumer preference 
models 

In the new product development, the consumer 
preference model [4] described in (1) is essential to 
estimate the consumer preference, y :  

 1 2, ,..., ,  CPM my f x x x    (1) 

where jx  is the j-th engineering characteristic with 

1,2,...,j m , and jx  is correlated to y ; m is the 

number of engineering characteristics involved on 
the new product development; and CPMf  represents 

the functional relationship between jx  with 

1,2,...,j m   to y . CPMf can be formulated by the 

fuzzy polynomial form in (2), in order to address 
nonlinearities and fuzziness on y . 

0 1 1 2 2 ... ...
R Rk k N Ny A A z A z A z A z           , (2) 

where y  is the fuzzy estimate of the consumer pref-

erence and y  is denoted by the fuzzy number, 

 , ,C R Ly y y y     with Cy  be the center, Ry  be 

the right spread and Ly  be the left spread. NR is the 

number of regressors kz  with 1,2,..., Rk N   in (2); 

kz  are aligned with the linear, interaction and the 

high-order terms of the engineering characteristic. kz  

are represented as:  

1 1z x , 2 2z x ,…, m mz x , 1 1 1mz x x   , 

2 1 2mz x x   , 3 1 3mz x x   ,…, 

2 m mm
z x x  ,…,      1 2 ...k I I I dz x x x     with 

       1 , 2 ,..., 1,2,...,I I I d m  , 2 1 NRm k N    

and 3 d m  ,…, and 1 2 ...
NRN mz x x x   . 

(2) can be rewritten as (3) by substituting with the 
centers, left spreads and right spreads for the fuzzy 
coefficients. 

       0 0 0 1 1 1 1 2 2 2 2, , , , , ,C L R C L R C L Ry a a a a a a z a a a z   , 

    ... , , ... , ,
R R R R

C L R C L R
k k k k N N N Na a a z a a a z    ,   (3) 

Including all kz   may not be effective to estimate 

y , as some kz  is not significant in contributing the 

estimate of y . The estimate may not be better than 

only including the significant kz  on the model, and 

also the model may be overfitted as some insignifi-
cant kz  are included. Therefore, (3) is reformulated 

by (4) which only includes the significant regressors. 
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where NTerm is the number of significant regressors; 
and  I j  is the index of significant regressor which 

is significantly correlated to y , and the indexes are 

given by: 

   0,1,2,..., RI j N , but    I j I k  with j k   

and , 1,2,..., Termj k N .   (5) 



Section 3 proposes an approach, namely forward 
selection based fuzzy regression (FS-FR), which in-
corporates the mechanisms of fuzzy regression [23] 
and forward selection [24], in order to develop the 
model formulated in (5) of which the significant re-
gressors are only included. Also, the consumer pref-
erence model attempts to address uncertainties 
caused by the quantitative evaluations and measures 
of consumer preferences. As (2) is involved with 
linear terms, linear correlation between consumer 
preference and engineering characteristics can be 

addressed by the linear terms, 1z , 2z ,…, and mz . 

Also (2) is involved with high order and interaction 

terms, 1mz  , 2mz  ,…,and 
NRNz . Based on [21], those 

high order and interaction terms can be used to ad-
dress system nonlinearity. Hence, the nonlinear cor-
relation between consumer preference and engineer-
ing characteristics can be generated by the FS-FR.  

3. Forward selection based fuzzy regression 

3.1.  Mechanism of regressor selection  

The FS-FR is proposed to generate the fuzzy re-
gression models which only consist of significant 
regressors. The FS-FR determines NTerm and 

   0,1,2,..., RI j N  with  j =1, 2, …, NTerm, when 

the original data, namely i
oD , is given;  i

oD  consists 

of the samples which correlate the i-th consumer 

preference, iy , and the m engineering characteristics. 

Here we consider the number of consumer prefer-
ences can be larger than or equal to one. Hence, 1i  .  

The FS-FR first uses i
oD  to generate the full data set 

for each regressor, namely i
FD , which represents the 

relationship between the regressors, jz  with 

1,2,..., Rj N , and  iy . Based on i
FD , the  FS-FR 

uses the mechanism of forward selection [24] to 
identify the significant regressors. The FS-FR then 
develops an ‘empty’ consumer preference model 
with no regressor. It adds the significant regressors 
one-by-one to the consumer preference model, where 
the significances of the regressors are determined 

based on the hypothesis test with respect to iy . The 

FS-FR stops adding regressors until the consumer 
preference model cannot significantly be improved 
by adding another regressor. When NTerm, and 

   0,1,2,..., RI j N  with  j =1, 2, …, NTerm are 

determined, the fuzzy coefficients for the significant 
regressors,  I jz  with j =1, 2, …, NTerm, are generated 

based on the fuzzy least square regression [4,23] in 
order to address interaction and high-order terms for 
engineering characteristics, and uncertainties caused 
by the quantitative evaluations and measures of con-
sumer preferences. The mechanism of the FS-FR is 
detailed as follows: 

Step 0: Generate the full data set, i
FD , based on the orig-

inal data set, 

        1 2, , ,..., | 1,2,...,i
o i m DD y k x k x k x k k N   (6) 

where ND is the number of collected samples; 

        , ,C R L
i i i iy k y k y k y k  is the k-th fuzzy sam-

ple with respect to the i-th consumer preference; and 

 jx k is the k-th data with respect to the j-th engineer-

ing characteristic. i
FD , is given as: 

             0 1, , , , ,...,
R

i C R L
F i i i ND y k y k y k z k z k z k     

           1,2,..., Dk N                   (7) 

where RN  is given by (4):  

   1 1z k x k ,    2 2z k x k ,…,    m mz k x k ; 

     1 1 1mz k x k x k   ,      2 1 2mz k x k x k   ,…, 

     2 m mm m
z k x k x k


  ; …, 

             1 2 ...j p p p dz k x k x k x k     with 

       1 , 2 ,..., 1,2,...,p p p d m , 3 d m   and 

 2 1 NRm m j N    ,…; and 

       1 2 ...
NRN mz k x k x k x k    .  

Step 1: Perform the hypothesis test for 1
0H  and 1

AH : 

   1
0 :   is insignificant to ,   

        with 1

R
i kI kH z y I k I

k

 




 (8) 

   1 :   is significant to ,   

        with 1

R
A i kI kH z y I k I

k

 




 (9) 

where R
kI  is a set of possible regressor indexes not be-

ing picked out before Step k; here 1k   and hence 1
RI  

contains all regressors being considered and is given by 

 1 0,1,2,...,R
RI N . The hypothesis test for 0

kH  and 
k
AH  is discussed in Section 3.1. 

If 1
0H  is accepted, the procedure of F-SR terminates 

and no regressor is correlated to iy . 



If 1
AH  is accepted, at least one regressor is correlated 

to iy . Then, Step 1.1 and Step 1.2 are conducted: 

Step 1.1: The index with the most significant regres-

sor,  1I , is picked out from R
kI  with k=1, where 

 1I is identified from the hypothesis test for 0
kH  

and k
AH  with k=1.  

Step 1.2: Set k=2 and Step k is performed. 
Step k: (with 2k  ): Perform the hypothesis test for 

0
kH  and k

AH : 

     

1

0
1

:   is insignificant to , 
k

k i
iI k I j I j

j

H z y B z




 
  

 
   

         R
kI k I     (10) 

     

1

1

:   is significant to , 
k

k i
A iI k I j I j

j

H z y B z




 
  

 
   

         R
kI k I     (11) 

where R
kI  is identical to 1

R
kI   except that  1I k   is 

excluded from 1
R
kI  , and R

kI  is given as: 

      , 1 ,...,R
k RI I k I k I N  .  (12) 

If 0
kH  is accepted, no significant regressor can be 

found in R
kI , 1K k   is set, and the Final Step is 

performed. 

If k
AH  is accepted, at least one regressor is significant 

to iy . Then, Step k.1, and Step k.2 are conducted: 

Step k.1: The index with the most significant regres-

sor,  I k , is picked out from R
kI  where  I k is 

given by the hypothesis test for 0
kH  and k

AH . 

Step k.2: Set k =k+1 and Step k is performed again. 
Final Step: The F-SR returns the number of significant 

regressors as NTerm=k. Also, it returns the indexes of the 

significant regressors,       1 , 2 ,..., termI I I N , which 

can be used to develop the consumer preference model 
given in (14) based on the fuzzy least square regression 
in (Chan et al. 2014): 

                 
, , , , , ,
1 1 1 1 2 2 2 2, , , , ...i C i L i R i C i L i R

i I I I I I I I Iy b b b z b b b z      

        
, , ,      , ,

term term term term

i C i L i R
I N I N I N I Nb b b z                 (13) 

3.2. Hypothesis test for 0
kH  and 0

kH  

The hypothesis test for 0
kH  and 0

kH  can be 

performed, when i
FD  is given and the samples 

of each of the three numbers,  C
iy k ,  R

iy k , 

and  L
iy k , with 1, 2,..., Dk N  are assumed to 

be distributed normally. Based on the regressor 

indexes,       1 , 2 ,...,R
k termI I I I N  given in 

(13), the consumer preference model represent-
ed by (14) can be developed by the fuzzy least 
square regression [2,23].  

            
             

, , , , ,
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1 1
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R
k
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i R i C i L i R
I k I k I N I N I N I N

y b b b z b b

b z b b b z

 

 

  

   



                (14) 
The significance of the  I j -th regressor, 

 I jz  with  , 1 ,..., Rj k k N  , in (14) is de-

termined based on the t-values of the regressor 
with respect to the center, left spread and right 
spread respectively as given by (15a), (15b) and 
(15c) respectively, where C

jt , L
jt  and R

jt   are 

used to address the significances of the center, 
left spread and right spread for the j-th regressor 
respectively. More discussions about the t-
values can be found in [20]. The larger the three 
t-values, the more significant the regressor is. 

 
,i C

I jC
j C

j

b
t

C
 , with  , 1 ,..., Rj k k N   and 

 C C
j jC = λ ×s , if Cs 0 ,          (15a) 

 
,i L

I jL
j L

j

b
t

C
 , with  , 1 ,..., Rj k k N   and 

L L
j jC s  , if 0Ls  ,          (15b) 

 
,i R

I jR
j R

j

b
t

C
 , with  , 1 ,..., Rj k k N   and 

R R
j jC s  , if 0Rs  ,          (15c) 

where j  is the j-th diagonal element of 

   1

z z
TD D



  and  z
TD  is the transpose of 

zD ; zD is developed based on i
FD  of which 

only the data with the indexes,  I k ,  1I k  ,  

…,  RI N  are included and zD  is given as: 
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            (16) 
Cs , Ls  and Rs  in (15a), (15b) and (15c) are 

the hybrid errors of estimates with respect to 
center, left spread and right spread, and they are 
given in (17a), (17b) and (17c) respectively: 

     , , ,y y b z y
T TD C D C C D D C

i i i
C

f
s

d

   
 , 

                                          (17a) 

     , , ,y y b z y
T TD L D L C D D L

i i i
L

f
s

d

   
 , 

              (17b) 

     , , ,y y b z y
T TD R D R C D D R

i i i
R

f
s

d

   
 . 

              (17c) 
where fd  is the degree of freedom [20]. It is 
illustrated in the t-values formulated in (15a), 
(15b) and (15c) that t-values, C

jt , L
jt  and R

jt , are 

large when the corresponding j-th diagonal ele-
ment, j  is small, and the hybrid errors of es-

timates,  Cs , Ls  and Rs , are small. When 

0R L Cs s s   , all regressors with the index 
in R

kI  are significant to iy ; 
,y D C

i , ,y D L
i  and ,y D R

i  in (18a), (18b) and 

(18c) are given by the centers, left spreads and 
right spreads of the consumer preferences de-

scribing in i
FD . They are given respectively as: 

      , 1 2 ...y
TD C C C C

i i i i Dy y y N  

             (18a) 

       , 1 1      2 2y D L C L C L
i i i i iy y y y    

            ... 
TC L

i D i Dy N y N           (18b) 

       , 1 1      2 2y D R C R C R
i i i i iy y y y  

          ...
TC R

i D i Dy N y N             (18c) 

bC , bL  and bR  in (18a), (18b) and (18c) 
are given by the centers, left spreads and right 

spreads of the fuzzy coefficients. They are giv-
en respectively as: 

      , , ,
1 ...b

R

T
C i C i C i C

I k I k I Nb b b          (19a) 

       
, , , ,

1 1     bL i C i L i C i L
I k I k I k I kb b b b        

             , ,

R R

T
i C i L
I N I Nb b            (19b) 

       
, , , ,

1 1     bR i C i R i C i R
I k I k I k I kb b b b        

             , ,

R R

T
i C i R
I N I Nb b             (19c) 

For all   , 1 ,..., Rm k k N  , if the t-values 

for the center, left spread and right spread, C
mt , 

L
mt  and R

mt , are larger than a threshold value, 

thresholdT , and C
mt , L

mt  and R
mt  are the largest 

among all the others, i.e.: 

,  , ,  and , , ,C C L L R R C L R
m j m j m j m m m thresholdt t t t t t t t t T   

         , 1 ,...,  but Rj k k N m j    ,        (20) 

then the hypothesis, k
AH , is accepted. Hence, the 

hypothesis concerning the three fuzzy components 
including center, left spread and right spread at a 
time of which a confidence region is satisfactory. 

Then, the index of  I m  is picked out from R
kI  and 

the index,  I m , is returned as the solution of the 

hypothesis test, which is the most significant regres-
sor among all the tested regressors. Otherwise, if all 

C
jt , L

jt  and R
jt are smaller than thresholdT , then the hy-

pothesis, 0
kH , is accepted. Hence, no significant re-

gressor can be found. 

4. Evaluation of Forward selection based fuzzy 
regression 

The effectiveness of the FS-FR is evaluated using 
the case study of a tea maker design, as the consumer 
preferences regarding the tea makers are nonlinear 
and also the collected samples of the consumer pref-
erences are uncertainties caused by the fuzziness and 
randomness of the quantitative evaluations and 
measures. The effectiveness of the FS-FR is com-
pared with that achieved by the commonly-used 
fuzzy regression methods for developing consumer 
preference models. 



4.1. A Case study of tea maker design 

The tea maker design is involved with, three con-
sumer preferences, namely catechin content, y1, con-
centration, y2, and tea temperature, y3. y1 represents 
the amount of antioxidant which was found in great 
abundance in the tea leaves. Its health benefits have 
been under close examination. y2 represents the three 
tea ratings in terms of aroma, texture and overall 
taste. y3 represents tea temperature after the tea brew-
ing process. The following five steps are involved for 
brewing a tea. Also, the steps are involved with the 
five engineering characteristics namely the reheating 
temperature, x1, the number of dips in the first brew-
ing, x2, the dipping time, x3, the number of dips in the 
second brewing, x4, and the dipping time in the sec-
ond brewing, x5. 

Step 1) Heating the fresh water: Fresh water in 
the tea container is heat to 98 degrees Celsius. 

Step 2) Loading the tea leaves and reheating 
the water: 7 grams of tea leaves are loaded in-
to the tea infuser and are placed into the tea 
maker container. The water is reheated to the 
reheating temperature x1. 

Step 3) First brewing: The tea infuser is 
dropped into the water for x2 times. In each 
drop, the tea infuser is dipped for 10 seconds 
and is elapsed for 10 seconds before the next 
drop. 

Step 4) Tea dipping: The tea infuser is im-
mersed in the water for x3 times. 

Step 5) Second brewing: The second brewing 
cycle is similar to the first brewing cycle. The 
tea infuser is dipped into the water for x4 times. 
The dipping time is x5. 

Before developing the three consumer preference 
models for y1, y2, and y3, experiments were conducted 
by setting different values for the five engineering 
characteristics, x1, x2, x3, x4, and x5. In the experi-
ments, the ranges of the engineering characteristics 
are given and are quantized into four levels as illus-
trated in Table 1. Table 2 show the 16 experimental 
configurations of the orthogonal array, L16(4

5), which 
studies the effects of x1, x2, x3, x4, and x5. In order to 
study the fuzziness of evaluating the three consumer 
preferences, the experiments configured with L16(4

5) 
were repeated twice; the fuzzy observations for cate-
chin content, tea concentration, and tea temperature 
are shown in Table 3. The details of the experiments 
can be referred to [2]. 

4.2.  Experimental results and comparisons 

The consumer preference models for y1, y2, and y3 
can be evaluated by investigating the mean absolute 
errors, which indicate the difference between the 
fuzzy observations and the fuzzy estimates of the 
models. The mean absolute errors are defined by 

i
MAEe , with i=1, 2 and 3, where 1

MAEe , 2
MAEe , and 3

MAEe  

represent the errors for y1, y2, and y3 respectively: 

         
  

1 5
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* ,...,
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c
i i

i k
MAE

D i
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(21) 

DN  is the number of observations to be investigat-

ed;    1x I k ,   2x I k ,   3x I k ,   4x I k  and 

  5x I k  are parameter values for the   -thI k  ex-

perimental configuration of  5
16 4L , where 

 I k   1,2,..., DN , but    I k I j with k j  

and , 1,2,..., Dj k N . Here 16DN  , as 16 experi-

ments have been conducted; 

      1 5* ,...,if x I k x I k and   *iy I k  are the 

crisp values for the   -thI k fuzzy estimate and the 

fuzzy observation respectively. The crisp value, *z , 
is defuzzified from a fuzzy number,  , ,C L Rz z z z , 

based on the weighted fuzzy arithmetic [28] which is 
particularly developed for defuzzification of triangu-
lar fuzzy numbers generated by fuzzy regressions. 
The weighted fizzy arithmetic integrates the fuzzy 
interval with respect to the membership level of the 
fuzzy number, and divides the integral of the mem-
bership function of the fuzzy number. It performs 
defuzzification of z  as: 

1 1

0 0
1

0

d  d
*

 d

L R
h hz h h z h h

z
h h

  
  


   (22) 

where    , z 1 , 1L R C L C R
h hz z h z z h z            is 

the fuzzy interval with respect to z  and h is the 
membership level. By simplifying (22), defuzzifica-
tion of *z  can be given as: 

 1
*

6
C R Lz z z z       (23) 

Using the 16 fuzzy observations shown in Tables 3, 
the consumer preference models for y1, y2, and y3 are 



developed based on the proposed FS-FR and are giv-
en by (24), (25) and (26) respectively. The model for 
y1 in fuzzy numbers is developed as: 

   1 11.568,  2.465,2.472 0.17,0.497,0.496y x  
     (24) 
where the training error involved with the 16 fuzzy 
observations with respect to 1

MAEe  is 4.034%. The 

model for y2 in fuzzy numbers is developed as: 

   2 11.634,1.567,  1.57 0.300,0.139,  0.14y x    

  1 20.0872,  0.625,  0.626    x x      (25) 

where training error is 2.382%. The model for y3 in 
fuzzy numbers is developed as: 

   3 186.345, 35.45, 35.37 3.379, 9.788, 9.805y x  
     (26) 
where the training error is 2.382%.  To evaluate the 
generalization capability of the models developed by 
the five methods, four commonly-used approaches 
for generating consumer preference models were 
employed to compare the results obtained by the pro-
posed FS-FR: 

a) Tanaka and Watada’s fuzzy regression (TS-
FR) [29] can generate models based on a small 
amount of samples. It has been used to generate 
the consumer preference models [14,15]. 

b) Peters’ fuzzy regression (P-FR) [30] is a new 
version of T-FR, where the estimated interval on 
the generated model is bounded by all samples 
and the generated model is effective on detecting 
presence of outliers. P-FR has been used to de-
velop consumer preference models for mobile 
phone design [22]. 

c) Hybrid fuzzy least square regression (H-
FLSR) [2] can be used to address the uncertain-
ties caused by fuzzy and random natures of the 
samples. H-FLSR was used to develop consumer 
preference models for packing machines [17]. 

d) Genetic programming-based fuzzy regression 
(GP- FR) [22] can be used to generate fuzzy non-
linear regression models. In the GP-FR, the poly-
nomial structures are generated by genetic pro-
gramming, where polynomial structures are in-
volved with the linear, high order and interactions 
terms for the dependent variables. The polynomi-
al structures attempts to represent the nonlinear 
correlation between dependent and independent 
variables. The fuzzy coefficients of the polyno-
mial structures are determined by TS-FR [29]. 
The GP-FR was implemented based on the rou-
tines of the GP Matlab package [31] which is 
available for the public. As GP-FR is a stochastic 

method, 31 runs were performed on GP-FR and 
the median results were used as the comparison. 
Madar et al. [31] showed that the GP parameters 
and mechanisms given in Table 4 are able to find 
good solutions for various problems. Hence, these 
parameters and mechanisms are used in the GP-
FR. The detailed operations of the GP-FR can be 
referred to [22].  

Table 4  
GP parameters setting of the GP-FR 

Population size 100 
Generation number 500 
Crossover operation One-point crossover 

with two parents 
Mutation operation Point mutation 
Crossover rate 0.5 
Mutation rate 0.5 

Cross-validations based on the 16 experimental 
samples given in Tables 5, 6 and 7 are conducted in 
order to evaluate the generalization capability of the 
proposed FS-FR, and the other four algorithms (i.e. 
TS-FR, P-FR, H-FLSR and GP-FR). The cross-
validation uses two samples from the whole sampling 
set as the validation samples, and the remaining sam-
ples as the training samples for the algorithms. The 
pair sets for the two samples are given in the first 
column of the tables. For example, the first validation 
used the 1st and 2nd samples as the validation samples, 
and it used the rest of the samples, 3rd to 16th samples, 
as the training samples. The second validation used 
the 2nd and 3rd samples as the validation samples, and 
it used the 1st, 4th to 16th samples as the training sam-
ples. The cross validations were repeated until all 
pair sets were used as the validation samples. For 
modelling the Catechin content, the cross-validation 
results are shown in Table 5 which summarizes the 
generalization errors of the five methods, and the 
mean generalization error of each method. Also, the 
ranks of each method are shown in the table. It indi-
cates that the generalization errors obtained by the 
proposed FS-FR are generally smaller than those of 
the other four tested methods, TS-FR, Peters-FR, H-
FLSR and GP-FR. Also, the rank of the proposed FS-
FR is the first. Similar cross-validation results are 
shown in Table 6 and Table 7 regarding the tea con-
centration and the tea temperature respectively. The 
ranks of the proposed FS-FR for both consumer pref-
erences are both the first. The generalization errors 
obtained by the proposed FS-FR are generally small-
er than the other four tested methods. Therefore, bet-
ter generalization capability can be achieved by the 
proposed FS-FR in modelling the consumer prefer-
ences. Better generalization capability can be ex-



plained by the mechanisms of the proposed FS-FR of 
which only significant engineering characteristics are 
included in the models. The other four tested meth-
ods may include insignificant engineering character-
istics and may exclude the significant ones from the 
models. 

 

Table 5 
Generalization errors (%) for Catechin content obtained by 

the tested methods 
Cross 

validation 
number 

FS-
FR 
(%) 

TS-
FR 
(%) 

Peters-
FR 
(%) 

H-
FLSR 
(%) 

GP-
FR 
(%) 

1,2 6.796 13.605 16.094 3.898 6.170 
2,3 6.011 5.256 13.808 2.788 5.676 
3,4 12.024 8.141 14.233 3.203 7.959 
4,5 5.308 8.888 5.197 6.772 5.167 
5,6 3.258 9.418 7.107 6.078 8.744 
6,7 5.852 3.892 3.577 1.608 7.842 
7,8 5.501 4.622 8.426 6.485 6.455 
8,9 2.170 8.559 3.130 9.392 4.102 

9,10 4.897 8.869 2.426 3.347 5.494 
10,11 3.403 0.8617 3.728 2.569 4.994 
11,12 1.271 3.342 7.448 9.814 2.838 
12,13 1.214 7.370 9.603 9.153 5.347 
13,14 9.666 5.362 27.027 3.008 7.941 
14,15 7.407 9.738 10.624 7.240 9.394 
15,16 6.795 5.737 26.927 10.785 7.668 
16,1 6.476 7.385 7.998 6.534 7.481 

Mean 
errors 

5.503 6.940 10.46 5.792 6.454 

Rank 1 4 5 2 3 
 

Figure 1 shows the relative improvements when 
each of the four tested methods, TS-FR, Peters-FR, 
H-FLSR and GP-FR, is compared with the proposed 
FS-FR, where the relative improvement (Rel. imp.) is 
the difference between the mean error obtained by 
the proposed FS-FR (Err. FS-FR) and the one ob-
tained by the other tested method (Err. Other algor.). 
The relative improvement is given by the following 
formulation: 

    
 

100% Err. FS-FR Err. other algor.
Rel. imp.

Err. other algor.

 


 

For the three consumer preferences, the proposed FS-
FR obtained the improvements with more than 15% 
relatively to Peters-FR, and GP-FR. Also, the pro-
posed FS-FR obtained the improvement with more 
than 5% relatively to H-FLSR and TS-FR. These 
improvements further indicate the better generaliza-
tion capabilities of the models developed by the pro-
posed FS-FR. 

 
 
 

Table 6  
Generalization errors (%) for tea concentration obtained by 

the tested methods 
Cross 

validation 
number 

FS-
FR 
(%) 

TS-
FR 
(%) 

Peters-
FR 
(%) 

H-
FLSR 
(%) 

GP-
FR 
(%) 

1,2 6.235 4.758 6.146 9.070 6.384 
2,3 11.531 3.084 13.514 7.629 12.009 
3,4 13.008 20.144 14.246 5.075 13.309 
4,5 2.091 10.525 8.486 12.15 3.836 
5,6 5.158 2.311 8.145 5.749 5.281 
6,7 3.792 4.169 3.278 3.792 2.781 
7,8 2.285 1.183 7.236 6.632 4.531 
8,9 4.784 4.035 10.221 6.238 5.153 

9,10 2.416 16.841 29.130 2.416 3.525 
10,11 1.295 1.089 1.692 1.295 1.283 
11,12 1.694 5.369 15.710 6.494 4.714 
12,13 3.615 5.829 7.817 3.615 8.734 
13,14 5.468 3.887 16.721 5.468 8.449 
14,15 4.963 9.924 10.478 3.501 6.182 
15,16 5.468 5.093 5.115 5.468 8.135 
16,1 6.014 9.780 9.485 7.902 9.272 

Mean 
errors 

4.988 6.751 10.464 5.781 6.473 

Rank 1 4 5 2 3 
 

Table 7  
Generalization errors for tea temperature obtained by the 

tested methods 
Cross 

validation 
number 

FS-
FR 
(%) 

TS-
FR 
(%) 

Peters-
FR 
(%) 

H-
FLSR 
(%) 

GP-
FR 
(%) 

1,2 2.937 3.714 3.077 3.165 5.873 
2,3 1.442 0.7550 1.822 2.551 5.187 
3,4 0.734 4.364 6.174 1.065 5.931 
4,5 1.451 1.697 3.988 1.606 3.976 
5,6 1.896 2.361 3.088 1.743 2.331 
6,7 1.410 2.841 1.816 1.410 2.623 
7,8 2.679 4.158 2.513 5.241 3.527 
8,9 3.705 3.823 2.514 4.473 5.459 

9,10 6.126 3.007 3.344 1.761 7.358 
10,11 5.128 3.459 3.150 1.928 6.334 
11,12 2.090 0.602 4.831 3.374 3.083 
12,13 2.592 3.667 3.389 6.548 4.390 
13,14 1.811 3.102 3.204 6.576 3.239 
14,15 1.968 1.977 4.862 1.915 3.486 
15,16 2.937 2.679 5.049 1.170 4.700 
16,1 3.418 3.034 4.926 3.043 5.137 

Mean 
errors 

2.645 2.827 3.609 2.973 4.5396 

Rank 1 4 5 2 3 

 
  

 



 
Fig. 1. Relative improvements between the proposed FS-

FR to TS-FR, Peters-FR, H-FLSR and GP-FR 
 

Also, the average numbers of engineering charac-
teristics involved in the models developed by the five 
methods are shown in Figure 2 for the three consum-
er preferences. Figure 2 illustrates that the models 
developed by TS-FR, Peters-FR, and H-FLSR all 
have five engineering characteristics, as the methods 
require all the five engineering characteristics for 
developing the models. For the GP-FR, the numbers 
of engineering characteristics are smaller than those 
used by TS-FR, Peters-FR and H-FLSR, where on 
average 3.267, 4.533 and 4.333 engineering charac-
teristics are used by the GP-FR when modelling cate-
chin content, tea concentration, and tea temperature 
respectively. The number of engineering characteris-
tics used by the  proposed FS-FR is the smallest, 
where on average only 2.267 engineering characteris-
tics are used for catechin content; only 2.000 engi-
neering characteristics are used for tea concentration; 
and only 1.267 engineering characteristics are used 
for tea temperature. Therefore, the simplest configu-

ration can be produced by the proposed FS-FR as 
fewer engineering characteristics are involved in the 
models. 

 
Fig. 2. Numbers of engineering characteristics involved in 

the models developed by the proposed FS-FR, TS-FR, 
Peters-FR, H-FLSR and GP-FR 

5.  Conclusion 

In this paper, a FS-FR is proposed by incorporat-
ing the approaches of fuzzy least square regression 
and statistical forward selection. The proposed FS-
SR attempts to develop a consumer preference model 
which includes only significant regressors of engi-
neering characteristics. It attempts to develop con-
sumer preference models with better generalization 
capabilities than those developed by the other fuzzy 
regression methods. It overcame the limitations of 
the commonly-used fuzzy regression which cannot 
guarantee that the models only consist of significant 
regressors and do not consist of insignificant regres-
sors. The proposed FS-FR uses the statistical forward 
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selection to determine the polynomial model which 
only includes significant regressors. Then it uses the 
fuzzy least square regression to determine the fuzzy 
coefficients in order to address the uncertainties due 
to fuzziness and randomness caused by consumer 
preference evaluations.  A case study of a tea maker 
design demonstrated that the proposed FS-FR was 
able to generate consumer preference models with 
smaller generalization errors than the other tested 
fuzzy regression methods. Also, the proposed FS-FR 
was able to generate consumer preference models 
with fewer engineering characteristics than those 
generated by the other tested methods. Hence, the 
proposed FS-FR was able to develop simpler and 
more effective consumer preference models. 
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Table 1  
Experimental ranges for the five engineering characteristics 

Engineering charac-
teristic 

Reheating tem-
perature (degrees 

Celsius) 
x1 

Number of drops 
in the first brew-

ing cycle 
x2 

Dipping 
time 

(minutes) 
x3 

Number of drops in 
the second brewing 

cycle 
x4` 

Immersion time 
in the second 
brewing cycle 

(seconds) 
x5 

Experimental ranges 93-99 1-4 8.5-10 2-5 10-40 
Level 1 93 1 8.5 2 10 
Level 2 95 2 9 3 20 
Level 3 97 3 9.5 4 30 
Level 4 99 4 10 5 40 

 

Table 2 
The orthogonal array, L16 (4

5), used for the tea maker design 
Experiments Reheating tem-

perature (de-
grees Celsius) 

x1 

Number of drops 
in the first brew-

ing cycle 
x2 

Dipping 
time 

(minutes) 
x3 

Number of drops in 
the second brewing 

cycle 
x4` 

Immersion time in the 
second brewing cycle 

(seconds) 
x5 

1 1  1 1 1 1 
2 1 2 2 2 2 
3 1 3 3 3 3 
4 1 4 4 4 4 
5 2 1 2 3 4 
6 2 2 1 4 3 
7 2 3 4 1 2 
8 2 4 3 2 1 
9 3 1 3 4 2 

10 3 2 4 3 1 
11 3 3 1 2 4 
12 3 4 2 1 3 
13 4 1 4 2 3 
14 4 2 3 1 4 
15 4 3 2 4 1 
16 4 4 1 3 2 

 

Table 3 
Fuzzy observations for the catechin content, y1, tea concentration, y2, and tea temperature, y3 

The k-th fuzzy observation Catechin content  1y k  Tea concentration  2y k  Tea temperature  3y k  

1 (1.607,0.077,0.077) (1.556,0.011,0.011) (87.800,2.200,2.200) 
2 (1.671,0.064,0.064) (1.723,0.047,0.047) (85.950,2.250,2.250) 
3 (1.522,0.041,0.041) (1.665,0.222,0.222) (86.600,0.500,0.500) 
4 (1.566,0.063,0.062) (1.719,0.132,0.132) (86.400,0.300,0.300) 
5 (1.466,0.104,0.104) (1.781,0.011,0.011) (87.000,2.800,2.800) 
6 (1.595,0.029,0.029) (1.739,0.159,0.159) (87.000,1.700,1.700) 
7 (1.686,0.144,0.144) (1.833,0.054,0.054) (88.200,0.500,0.500) 
8 (1.582,0.085,0.085) (1.835,0.023,0.023) (84.450,0.850,0.850) 
9 (1.690,0.079,0.079) (1.851,0.084,0.084) (88.250,3.850,3.850) 
10 (1.644,0.042,0.042) (1.847,0.200,0.200) (90.850,5.550,5.550) 
11 (1.738,0.058,0.058) (1.847,0.070,0.070) (88.750,2.050,2.050) 
12 (1.727,0.067,0.067) (1.915,0.049,0.049) (88.900,1.500,1.500) 
13 (1.687,0.023,0.023) (2.081,0.019,0.019) (87.300,1.500,1.500) 
14 (1.821,0.114,0.114) (1.941,0.163,0.163) (91.850,0.250,0.250) 
15 (1.580,0.137,0.137) (1.860,0.048,0.048) (89.850,1.350,1.350) 
16 (1.883,0.049,0.039) (2.007,0.002,0.002) (89.400,2.700,2.700) 

 


