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their disadvantage in accuracy. The zeros of Chebyshev polynomials having the highest allowable order 

will be utilized as the sampling candidates to improve stability and accuracy of the approximation. In the 

numerical process, a space-filling scheme is used to generate the initial set of samples, and then an 

incremental method based on the maximin principle is established to select more samples from all 

candidates. At the same time, the order of HOPSM is sequentially updated by using an order incremental 

scheme, to adaptively increase the polynomial order along with the increase of the sample size. After the 

order increment, the polynomial with the largest adjusted R-square is determined as the final HOPSM. 

Several typical test functions and two engineering applications are used to demonstrate the effectiveness 

of the proposed surrogate modelling method.” 
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“To avoid routine tasks of expensive computer simulations in engineering, the surrogate models have 

been widely used. This paper will propose a high-order polynomial surrogate model (HOPSM) that 

includes two novel aspects compared to conventional approximation of functions in high dimension, with 

a view to retaining advantages of low-order polynomial models in efficiency, transparency and simplicity 
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while overcoming their disadvantage in accuracy. In constructing HOPSM, firstly, the zeros of 

Chebyshev polynomials with the highest allowable order will be used as sampling candidates to improve 

stability and accuracy. An incremental sampling scheme using the maximin principle is developed to 

collect sampling points from the set of all candidates, with a space-filling scheme generating the initial 

samples. Secondly, the order of HOPSM is updated through an order incremental method, which will 

adaptively improve the order of the polynomial sequentially with the increase of the sampling size. The 

final HOPSM after the order increment will be determined as the polynomial that has the largest adjusted 

R-square. The HOPSM is compared with the well-known Kriging and RBF surrogate models using both 

test functions and two engineering applications, to demonstrate accuracy and robustness of the proposed 

method.” 
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Abstract 

This study will develop a new high-order polynomial surrogate model (HOPSM) to overcome routines of 

expensive computer simulations in engineering. The proposed HOPSM is expected to keep advantages of 

the traditional low-order polynomial models in efficiency, transparency and simplicity, while avoid their 

disadvantage in accuracy. The zeros of Chebyshev polynomials having the highest allowable order will be 

utilized as the sampling candidates to improve stability and accuracy of the approximation. In the 

numerical process, a space-filling scheme is used to generate the initial set of samples, and then an 

incremental method based on the maximin principle is established to select more samples from all 

candidates. At the same time, the order of HOPSM is sequentially updated by using an order incremental 

scheme, to adaptively increase the polynomial order along with the increase of the sample size. After the 

order increment, the polynomial with the largest adjusted R-square is determined as the final HOPSM. 

Several typical test functions and two engineering applications are used to demonstrate the effectiveness 

of the proposed surrogate modelling method. 
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1. Introduction 

Numerical simulations using accurate models for many real world problems in engineering often become 

unaffordable, as they involve routine evaluations of a large number of cost-prohibitive computations. A 

surrogate model is an engineering method for approximation of practical design problems, to avoid 

computation extensive simulations. For example, the finite element analysis of vehicle crashworthiness 

will usually take tens of hours to run one simulation, while the whole crashworthiness will take hundreds 

and even thousands of iterations to complete. Furthermore, the simulation model is in general a black box, 

with little or no additional information available for its inner mechanism except for the output it generates 

[1]. It is hard to explore, optimize or gain insight into the system. Hence, the surrogate models have been 

widely used as inexpensive approximation for computationally expensive models [2]. The surrogate 

model, also termed as meta-model, response surface or emulator, refers to any relatively simple 

relationship between parameters and response often based on limited data [3]. There are two main steps 

involved in the construction of a surrogate model: (1) the sampling or design of experiment (DOE) and (2) 

metamodeling via interpolation or regression algorithms after the sampling. 

 

There have been several types of surrogate models, including the traditional response surface (low order 

polynomials) [4], radial basic function (RBF) [5], Kriging [6, 7], multivariate adaptive regression splines 

(MARS) [8], support vector regression (SVR) [9, 10], high dimensional model representation (HDMR) 

[11, 12], or the combination of these surrogate models [13-15]. For example, Jin et al. [16] studied several 

surrogate models based on the multiple performance criteria, including accuracy, robustness, efficiency, 

transparency, and conceptual simplicity. Their results showed that the polynomial surrogate models may 

have advantages in efficiency, transparency, and conceptual simplicity over other models. They also 

noted that the performance of a surrogate model is influenced by sampling. Simpson et al. [17] showed 

that the approximations of Kriging and RBF models for high-order nonlinear problems are more accurate, 

while quadratic polynomials are better for low-order nonlinear functions. At the same time, Rijpkema et 

al. [18] shown that the Kriging model was less stable than the polynomials regression model in some 

cases. Hence, there is no one surrogate model suitable for all problems over different sampling schemes 

and different sample sizes. Further studies about the comparison of different kinds of surrogate models 

can be found in references [19-22]. 

 

As aforementioned, the low-order polynomials have been applied to many engineering problems due to 

their advantages, especially efficiency and transparency. However, due to low accuracy in fitting high-
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order nonlinear functions, the low-order polynomials have difficulty for problems with high nonlinearity. 

To keep the merits of low-order polynomials while overcome their weakness for building surrogate 

models, the high-order polynomials [23] can be applied to establish surrogate models, such as, the 

Bernstain polynomials [24, 25], Chebyshev polynomials [26, 27] and Gegenbauer functions [28]. 

However, how to build surrogate models using high-order polynomials is seldom studied in engineering, 

mainly because of two reasons: the first is the numerical instabilities, e.g. the Runge phenomena, and the 

second is the large number of samples for estimation of the unknown coefficients, particularly for high-

dimensional problems [29]. In fact, the first can be avoided by selecting new samples to improve stability 

and accuracy, e.g. the zeros of the first kind Chebyshev polynomials [30-34]. The second can be 

improved by using a suitable expression of polynomials (e.g. the simplex), which may reduce the number 

of high-order coefficients to be estimated in the model. It is noted that the required number of samples is 

more influenced by the extent of complexity and dimension of the function rather than the type of 

surrogate models. Thus, the required sampling size will increase with the increase of complexity and 

dimension, no matter which type of surrogate models is used. 

 

The approximation accuracy of a surrogate model is not only determined by the type of surrogate models 

but also by sampling information. The accuracy of a surrogate model will be improved when more data 

points are sampled. However, it is impossible to choose too many sample points due to the computational 

cost. How to evaluate the unknown information only in terms of a limited number of sampling points, to 

maintain a well trade-off between computational cost and accuracy is an important issue for sampling (or 

DOE). Traditionally, the DOE can be categorised as Factor Design (FD) [35], Central Composite Design 

(CCD) [35], Pseudo-Monte Carlo Sampling [36] (PMCS, e.g. the Latin Hypercube sampling [37], and 

Orthogonal Sampling [38]) and Quasi-Monte Carlo Sampling (QMCS) [3, 36, 39]. The FD and CCD, 

belonging to the classical DOE [3], are usually employed for laboratory experiments where the random 

errors are assumed to exist, while the modern DOE (PMCS and QMCS) are used in deterministic 

computer simulations without random errors [36]. 

 

The above sampling methods can be classified as “one-shot” sampling schemes, as the samples are 

chosen once and fixed in the fitting process [1]. These methods can be easily implemented and provide a 

good coverage of the design space without incorporating any prior knowledge of the system. However, 

the “one-shot” DOE may suffer from its inflexibility to learn the special characteristics of the shape of the 

response surface [40], and the number of sampling points is easily over or under estimated. 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 
 

To improve flexibility and efficiency of sampling, the sequential sampling strategy (e.g. the adaptive 

sampling [41], and incremental sampling [42]) has been developed. Sequential sampling analyses the data 

from samples and surrogate models in order to select new samples from the regions that are difficult to 

approximate, resulting in a more efficient distribution of samples in the entire design space compared to 

the traditional one-shot sampling scheme. That is, in the sequential sampling, a surrogate model is first 

built using an initial set of samples and then sequentially updated by adding new sample points. There are 

two schemes used in the sequential sampling: the first is the global exploration, which scatters samples in 

regions containing no sampling points, and the second is the local exploitation [43] which adds more 

samples to regions identified to be interesting. The exploration selects sampling points to fill the entire 

design space, which is mainly used to build global surrogate models, while the exploitation is mainly used 

in the surrogate model-based optimization. Furthermore, some studies combined exploration with 

exploitation to build global surrogate models, e.g. [1, 40, 43]. 

 

The exploration aims to place samples in the entire design space uniformly, which is the same as some 

modern DOEs. However, most QMCS and PMCS are non-incremental sampling methods, as augmenting 

the number of samples implies a completely different sampling of the parameter space with all new point-

locations [44], which will be too expensive to be used. Romero et al. [42] used the Progressive Lattice 

Sampling (PLS) incremental sampling designs to construct the progressive response surface. However, 

the PLS allows only a quantized increment M of samples to be added to an existing PLS level (point set) 

to achieve to a new level. This quantized incremental cost M accelerates quickly with the increase of the 

PLS level and dimension of the parameter space. To make the sequential sampling more flexible, Romero 

et al. [44] suggested to use the Halton points to build the progressive response surface, because Halton 

sampling does not suffer from the cost-scaling problems that the PLS does. Halton [45] is a lower 

discrepancy (degree of the nonuniformity) sequence method and has a hierarchical structure. The Halton 

points will be used to compare with the sampling scheme proposed in this paper. 

 

This study will focus on the proposal of a new global surrogate model using high-order polynomials, 

which can remain the merits of traditional low-order polynomial models while improve approximation 

accuracy. The sampling points will be sequentially and incrementally selected from a candidate set which 

is comprised of the zeros of first kind Chebyshev polynomials, to make the surrogate model more stable. 

In building the surrogate model, only some of the candidate samples are chosen as the required sampling 

points by using a sequential sampling scheme based on the maximin principle [46]. Since the initial 

samples, to be distributed uniformly, have obvious influence on the sequential sampling, a new efficient 

initialization algorithm will be proposed to select the initial samples from the candidate set. Furthermore, 
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the simplex format of polynomials is used to express HOPSM, to reduce the number of coefficients of the 

polynomials to be estimated. To achieve the best approximation accuracy, an order incremental strategy 

will also be used to update the order of HOPSM. Several mathematical test examples and two engineering 

applications are used to show the accuracy and robustness of the proposed method, in comparison with 

the two well-known Kriging and RBF surrogate models. 

2. Polynomial approximation using Chebyshev series 

2.1 The approximation theory of Chebyshev polynomials 

In this paper, it is assumed that the simulation model is continuous, and can be approximated by using 

polynomials. To simplify the problem, we consider a continuous function f(x) on x∈[-1,1] (any interval [a, 

b] can be normalized to [-1,1] via a linear transformation). f(x) can be approximated by the truncated 

Chebyshev series ( )np x  as follows: 

0

1

1
( ) ( ) ( )

2

n

n i i

i

f x p x f f C x


                                 (1) 

where fi are the Chebyshev coefficients that are constant, and Ci(x) denotes the Chebyshev polynomials 

 ( ) cos ,  arccos [0, ]iC x i x            (2) 

The coefficients can be obtained via the following equation as 

       1

21
1 1

( ) ( )2 2 2
( ) ( ) (cos )cos

1

m m
j j j ji

i i

j j

f x C x
f dx f x C x f i

m mx


 

 
 

  


        (3) 

where m is the order of the integral formula, x
(j)

 or 
 j , denoting the interpolation points of the integral 

formula in the x space or θ space, are the zeros of the Chebyshev polynomials of degree m, given by 

      2 1
cos ,  where , 1,2,...,

2

j j j j
x j m

m


 


         (4) 

To guarantee the accuracy of the Gauss-Chebyshev quadrature in computing the highest order coefficient 

fn, the order m in Eq. (3) should be larger than n, and it is usually set as n+1 to save the computational 

cost. More details about the Chebyshev polynomial can be found in References [32-34]. 

 

The coefficients can also be computed by using the least square method. To unify the symbol of 

coefficients, let β0=f0/2 and βi=fi for i>0, then truncated Chebyshev series can be expressed by  

   0

1 0

1
( )

2

n n

i i i i

i i

f x f f C x C x
 

                              (5) 

where the coefficients i  can also be calculated by using the least square method directly as 

   
1T T T

0 1 n  


 β C C C f     (6) 
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where C is the transform matrix with size m×(n+1) at the interpolation points, and f is the column vector 

including function values over all the interpolation points (1) ( ) T[ ]mx xx : 

       0 1 ,  and  nC C C f   C x x x f x     (7) 

 

Consider Eqs. (5)-(7), it can be found that the procedure of constructing the approximation polynomial is 

just the same process of constructing a response surface model, in which the Chebyshev polynomials are 

used as the basis. Therefore, when the sampling points are selected as the zeros (x vector) of the 

Chebyshev polynomials Ci(x), we can get the approximated Chebyshev series ( )np x , which is a 

polynomial with order n. As aforementioned, it is termed as high-order polynomial surrogate model 

(HOPSM). The Eq. (5) is the expression of 1-dimensional HOPSM, the multi-dimensional HOPSM will 

be developed in the following subsection. 

2.2 The expression of high-order polynomial surrogate model 

Extending the 1-dimensional space to k-dimensional space, the input variables are expressed as x ∈ [-1,1]
k
. 

The HOPSM of the k-dimensional continuous function f(x) with order n can be expressed as the tensor 

product of the HOPSM, with respect to each dimensional variable xi [34] 

       
1 1

1

... ...

0 ,...,

ˆ ,
k k

k

n i i i i

i i n

f C
 

 x x

 

and 1,..., 0,1,...,ki i n    (8) 

where 
1 ... ki i  denote the coefficients, 

1... 1 1( ) cos( )...cos( )
ki i k kC i i x  represent the k-dimensional 

Chebyshev polynomials, and θ=arcos(x) ∈ [0, π]
k
. The subscript of coefficients 

1 ... ki i  forms a “hypercube” 

(from 0 to n), so Eq. (8) is called the hypercube format of HOPSM. It should be noted that the number of 

the coefficients need to be determined in Eq. (8) is (n+1)
k
, which will be extremely large when k and n are 

large, so it may not be suitable for high dimensional problems. 

 

Besides the hypercube format, the HOPSM can also be expressed as a “simplex” format, which only 

contains the terms when the order without exceeding n 

       
1 1

1

... ...

0 ...

ˆ
k k

k

n i i i i

i i n

f C
   

 x x , and 1,..., 0,1,...,ki i n       (9) 

It should be noted that Eq. (9) is different from Eq. (8), where the subscript in the former forms a simplex 

while the latter forms a hypercube. As a result, the number of coefficients to be estimated in Eq. (9) is 

much less than that in Eq. (8) for high dimensional problems, which is given by 

 
 !

,
! !

C

k n
N n k

k n


           (10) 
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To reduce the number of coefficients to be estimated, this paper uses the simplex format for HOPSM. All 

the coefficients can be calculated by the least square method (LSM) after the two problems are solved: the 

selection of sampling points and the order determination of HOPSM. Both will be addressed in Section 3. 

2.3 The evaluation index of surrogate models 

To evaluate the accuracy denoting the fitting goodness of the surrogate model, some evaluation indexes 

should be introduced. The root-mean-square error (RMSE) and average absolute error (AAE) are widely 

employed to describe global accuracy, while the maximum absolute error (MAE) is usually used to 

indicate the local accuracy. In order to avoid ambiguity or to enable comparisons of surrogate models 

across disciplines, then relative error averages are sometimes used in the literature, such as AAE relative 

to the standard deviation, R-square [16], or AAE and RMSE measures relative to the average response f 

[47]. This paper will use R-square, AAE, and MAE to describe the accuracy, but some normalized 

operation will be used to make these indexes more clearly. 

 

The R-square, denoted as R
2
, is a statistical characteristic, which is expressed as follows: 

      2 =1-
SSE

R
SST

      (11) 

where SSE and SST denote the residual sum of square and the total sum of square, respectively 

           
2 2

=1 =1

ˆ= -  and = -
N N

n i i i

i i

SSE f f SST f f x x x     (12) 

where f  is the mean value of observed data (real value at the test points), xi is the test point, and N is the 

size of test points. The R
2
 can also be used to pre-estimate the accuracy by using the sampling points as 

the test points in the construction of HOPSM. Generally, the larger value of R
2
 means higher fitness of the 

regression model. However, if the sampling points are used as the test points, the R
2
 will improve when 

the number of estimated coefficients increases, so we need to adjust the R-square to pre-estimate the 

fitting degree of regression model. The adjusted R-square 
2R  has been widely used, defined as 

     
  

 
02

0

, 1
=1-

1

cSSE s N n k
R

SST s

 


    (13) 

where s0 denotes the number of samples, Nc(n,k) is the number of estimated coefficients given by Eq. (10). 

In this case, even when the number of coefficients increases, the adjusted R-square 
2R  may still decrease. 

2R  will be used to pre-estimate the fitness of HOPSM in the model constructing period, while R
2
 will be 

used to indicate its actual fitness in the validation period. 

 

The definition of AAE and MAE are given as 
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          
1

1 ˆ ˆAAE -  and  MAE max -
N

n i i n i i
i

i

f f f f
N 

  x x x x   (14) 

In solving different problems, the AAE and MAE may change in large range. To make the two indexes 

more clearly, we transform them into the normalized average absolute error and the normalized maximum 

absolute error, respectively, noted as NAAE and NMAE. 

        
1

1
NAAE AAE  and NMAE MAE max min

N

i i i
ii

i

f f f
N 

 
   

 
 x x x  (15) 

The smaller values of NAAE and NMAE are, the better the surrogate model is. Both NAAE and NMAE 

will be used in constructing the HOPSM, to pre-estimate the fitness by using the sampling points as the 

test points. More detailed content will be given in next section. 

3. Incremental modelling of HOPSM 

3.1 The sampling candidate set 

As described in Section 2.1, the sampling points of one-dimensional HOPSM are the zeros of Chebyshev 

polynomials, and the order of Chebyshev polynomials should be higher than the order of HOPSM. For 

the multi-dimensional case, the sampling points can be produced by the tensor product of the zeros of 

Chebyshev polynomials. However, the operation of the tensor product will produce too many sampling 

points to be used directly. Therefore, we only use the tensor product operation to produce a sampling 

candidate set, and then the sampling points will be chosen from the set. 

 

The candidate set can be expressed in x space and θ  space, respectively 

1 1... ,    ...k k     x x θ θX θ         (16) 

where xi and iθ denote the candidates (the zeros of the Chebyshev polynomial) of the ith variable in x 

space and θ space, respectively, and  denotes the tensor product operation. Based on Eq. (4), the 

candidates in dimension i are expressed by 

  2 1
cos , , 1,2,...,

2

j

i i i

j
j m

m




 
    

 
x θ θ       (17) 

How to choose m which is the order of sampling candidate set is important. A very small m may reduce 

the accuracy of the surrogate model, and a very large m will usually waste the sampling information. 
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Figure.1 (a) Candidates for k=2 in θ space  Figure.1 (b) Candidates for k=2 in x space 

  

Figure.2 (a) Candidates for k=3 in θ space  Figure.2 (b) Candidates for k=3 in x space 

 

We have two approaches to determine the order of the candidate set. The first is to use the lowest 

allowable order to produce the candidate set, i.e. m=n+1, where n is the order of HOPSM. m will be 

gradually increased with the increase of n (n will increase sequentially in the process of constructing 

HOPSM). The drawback of this method is that there will be more redundant sampling information with 

the increase of order m, so the sampling efficiency is low. The second is to determine m based on the 

highest allowable order of HOPSM, to keep the candidate set unchanged. All the sampling points will be 

chosen from the unique candidate set for any n, which makes the sampling more efficiently. The highest 

allowable order of HOPSM (nmax) can be determined by the most allowable sampling size Nmax. The 

number of coefficients must be smaller than the sampling size, so nmax will satisfy 

 
 max

max max

max

!
,

! !
C

k n
N n k N

k n


      (18) 

The order m of the candidate set should be larger than nmax, so it will be set to m=nmax+1 to minimize the 

size of the candidate set. We should note that the number of sampling candidates NS shown in Eq. (19) is 

much larger than the number of the coefficients NC, especially for a larger dimension k. 
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   max, 1
k

SN m k n       (19) 

For example, if the Nmax=200, and k=2 or 3, then nmax=18 or 8, and m=19 or 9, respectively. The plot of 

candidate sets in x space and θ spaces for the two cases are shown in Figs. 1 and 2. It is noted that the 

candidate set is a symmetrical grid in θ  space but an unsymmetrical grid in x space. The samples 

distribute denser in the regions closing the boundaries of the design space, which is different from the 

traditional equidistant full factor design. 

3.2 The initial sampling algorithm 

The initial samples have large influence on the performance of the final sampling. Generally, the initial 

samples are expected to distribute uniformly in the entire space. One of the most widely used measures to 

evaluate the uniformity of a sampling set is the maximin metric introduced by Johnson et al [46]. The 

following scalar-valued criterion function [48] is mainly used to rank competing sampling set as 

      
0 0

1

1 1

,

q
s s q

i j

q

i j i

d


  

 
   

 
Θ θ θ     (20) 

where the q is a large positive integer and set as 100 in this paper, Θ  is the sampling set, s0 denotes the 

number of samples, and the distance 
    1 2,

j j
d θ θ  is measured by the p-norm in the θ  space: 

        1 2 1 2

1

1

,

p
k p

j j j j

i i

i

d  


 
  
 
θ θ     (21) 

Here p is set as 2, which yields the Euclidean norm. 

 

In the above equation, a smaller q  indicates more uniformity of the sampling set. However, minimizing 

q  is an NP-complete problem. In this study, a new sequential algorithm will be developed to produce a 

uniform distribution of the initial samples. To seek the uniformity, the sampling points should be located 

in all levels in each dimension, and they should be equivalently located in each level, although it is 

difficult to achieve. 

 

The number of initial samples is set to N0=mk. To simplify the notation, we use the levels (from 1 to m) to 

denote the location of samples. The samples can be expressed by a matrix with a size of k×mk, where the 

column denotes the sequence of variables and row denotes the sequence of sampling points. The first m 

elements of the first row are set as 1, 2 … m sequentially, and the level of the first column for the ith 

variables is set as i. If the order m is smaller than i, the level of the ith variable will be set as the 

remainder of i m . The first row is called as the reference row, marked by “*”. For example, considering 
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the case m=5 and k=6, the matrix is given in Table 1, and the levels are denoted by the bold numbers, 

while the reference row includes the numbers marked with blue colour. 

 

Table 1 has given the first column and the first 5 elements of the first row, so we need to determine the 

remaining elements to uniformly distribute the samples. Choose new sampling points in sequentially, 

through minimizing the maximin metric
q . Denote the sampled set as Θ  and the remaining candidate set 

as Ψ . When a new point from Ψ  is added into the sampling set Θ , this point should minimize 
q  of the 

new sampled set comprised by Θ  and the new sampling point  
1

j
θ , expressed as 

                          
0 0 0 0

1 2 1 1

1 2 1 1 1

1 1

1 0 0 0 1 0 1

1 1 1 1

, , , ,

q q
s s s sq q qqj i i i j i j

q q

i i i i i

d d d
  

    

   
        

   
   Θ θ θ θ θ θ Θ θ θ (22) 

where  
0

i
θ Θare the sampled points,  

1

j
θ Ψ  is the new sampling point, and s0 is the number of points 

in the sampled set. Since the first term in the right side keeps unchanged, the minimizing operation will 

be applied to the second term, denoted as 

       
0

1

1 0 0 1

1

, ,

q
s q

j i j

q

i

s d




 
  
 
θ θ θ     (23) 

Therefore, the new sampling points can be chosen by minimizing q . If all the candidates are directly 

used to calculate q , the computational cost will still be expensive as O(m
k
). Producing the level of each 

dimensional variable sequentially, the number of calculation will be reduced to O(m×k). 

 

To describe the procedure more clearly, we still use the data shown in Table 1. The first step is to 

calculate the second element of the second column (the level of the 2nd sampling point in the 2nd 

variable). In this case, the distance defined in Eq. (21) is calculated in a 2-dimensional space constructed 

by the first and second design variable. After the evaluation, when the level of the second variable is 5, 

the q  get the minimum value. Go to the third row of the same column, and determine the level of the 

third variable by minimizing q . However, the distance in Eq. (23) is calculated in a 3-dimensional space 

of the first three design variables. Repeat this procedure until the level of the last variable is determined. 

 

After the second column is determined, the sampled set Θ  should be updated, and then we can calculate 

the elements in the third column based on the same approach. Repeat the process until the mth column is 

determined, and the results of the first 5 sampling points are shown in Table 2. 
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Table 1. The initialization design matrix for k=6, m=5 

                               No. of samples 

No. of variable 
1 2 3 4 5 6 … 30 

1* 1 2 3 4 5    

2 2        

3 3        

4 4        

5 5        

6 1        

 

Table 2. The design matrix for k=6 and m=5 

                          No. of samples 

No. of variable 
1 2 3 4 5 6 … 30 

1* 1 2 3 4 5    

2 2 5 1 4 2    

3 3 1 5 4 1    

4 4 1 1 5 2    

5 5 1 1 1 4    

6 1 5 3 1 4    

 

More columns need to be determined. It can be implemented by using the same approach. However, we 

can find that the levels of Table 2 are not distributed uniformly except for the first variable (reference row) 

which is pre-fixed uniformly. The levels of other design variables should also be distributed uniformly, so 

we can pre-fix the levels of other design variables by moving the first row to the last, and other rows 

forward in sequence. After that, the reference row will be the second variable. Pre-fix the elements from 

the column 6 to 10 of the reference row as 1 to 5, shown in Table 3, and then determine the levels of other 

rows of columns 6 to 10. After per m new samples are determined, there will be rows moving operation. 

The operation of moving rows will guarantee every level occurring in each variable at least once. 

 

Table 3. The design matrix for k=6 and m=5 

                   No. of samples 

No. of variable 
1 2 3 4 5 6 7 8 9 10 … 30 

2* 2 5 1 4 2 1 2 3 4 5   

3 3 1 5 4 1        

4 4 1 1 5 2        

5 5 1 1 1 4        

6 1 5 3 1 4        

1 1 2 3 4 5        

 

The plot of the initial sampling points is shown in Fig. 3, expressed through the level. The number of each 

level located in each dimensional variable, termed as occurrence number, is summarized in Table 4. It can 

be found that the occurrence number for each level of each dimensional variable is close to 6 (changing 
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from 4 to 9), with the samples uniformly distributed. Fig. 4 shows the plot of producing two dimensional 

sampling points with m=9. The number in the figure denotes the sequence of sampling. The points 

denoted by “” are the samples determined by using the first variable as the reference row, while “” 

denotes the sampling points selected by considering the second variable as reference row. 

Table 4. The occurrence number of each dimensional variable 

                           No. of levels 

No. of variable 
1 2 3 4 5 

1 8 5 6 5 6 

2 8 5 5 5 7 

3 9 4 5 4 8 

4 9 4 7 6 4 

5 8 5 7 4 6 

6 7 5 6 6 6 

 

  

Figure.3 The distribution of initial sampling points 

 

Figure.4 The sequence of initial sampling 
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3.3 The sequential sampling scheme 

The exploration strategy, to fill up the domain as evenly as possible, will be used to choose more 

sampling points. The new samples can still be chosen by minimizing 
q  in Eq. (23), to locate the new 

sample to the region without containing samples. This can be described by the following optimization 
 

  
1 1

1 0

Find:   ,    1,...,

min:   ,

j

j

q

j s

s

θ

θ
     (24) 

where s1 denotes the number of points in the remaining candidate set Ψ . 

 

The sampling point can be chosen by performing the above optimization one by one, until the termination 

condition is satisfied. However, in each exploration, it should be noted that the optimization model 

requires to compute the distance d in O(s0×s1) time. This may require expensive computational cost, 

especially when k and m are relatively large, since s1 is close to m
k
. However, we do not need to compute 

the maximin criterion for all candidates except in the first exploration, as q  always keeps increasing after 

each exploration, which can be used to reduce the computational cost. 

 

For the first exploration, the maximin criterion q  of each candidate point will be calculated firstly. Then 

we can sort the candidates in ascending order of q , such that 1( )(1)

1 0 1 0( , ) ( , )
s

q qs s  θ θ . The candidate 

that has the minimum ( )

1 0( , )j

q s θ will be chosen as the new sampling point, and so the first candidate (1)

1θ

will be the new sampling point. After the new data point is picked, we can update the amount of samples 

to 0 1s  . In this way, a new sample ( 0( 1) (1)

0 1

s 
θ θ ) will be added into the sampled set Θ , while the 

candidate (1)

1θ  is also deleted from the candidate set Ψ . Subtracting 1 for the sequential number of each 

candidate, the remaining candidates still keep the ascending sequence as 1( 1)(1)

1 0 1 0( , ) ( , )
s

q qs s  
 θ θ . 

 

For the second exploration, based on the Eq. (23), q can be calculated as follows: 

           
          0

1
1

1 0 1 0 0 1, 1 , ,
q

qq
sj j j

q qs s d 


    
 

θ θ θ θ        (25) 

Eq. (25) will save computational cost related to Eq. (23), as we have known 
  1 0,

j

q s θ . Calculating 

  1 0, 1
j

q s θ  in ascending order until a candidate is found to make 
     1

1 0 1 0, 1 ,
J J

q qs s 


 θ θ , which 

means the J-th candidate is better than the candidates with larger sequential number than J, as the 

maximin criterion always increases after each exploration (
   ( )

1 0 1 0, 1 ( , )
j j

q qs s  θ θ ). The J is termed 

as criterion sequential number. This operation would also save more computational cost, because most of 

the candidates which are close to the sampled points can never be selected in the exploration. The q  of 

the first J candidates have been updated, denoted as 
  1 0, 1  for 

j

q s j J  θ , while other candidates have 
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not updated yet, expressed by ( )

1 0( , ) for j

q s j J θ . To distinguish them, we introduce another notation Mj, 

which denotes the number of points in the sampled set used to calculate the 
q of ( )

1

j
θ . 

 

Therefore, 
q  of ( )

1

j
θ is re-noted as ( )

1( , )j

q jM θ . After the second exploration,  0 1jM s j J   , 

 0jM s j J  . Sorting the remaining candidates in ascending order once again, the first candidate (1)

1θ

will be added into the sampled set Θ and deleted from the candidate set Ψ . After the second exploration, 

in a more general case, the 
q  can be calculated by 

          
0

0

1

1

1 0 1 0 1

1

, , ,
j

q
qs M

q s ij j j

q q j

i

s M d 
 

 



         
θ θ θ θ    (26) 

where 0s   is the size of the sampled set before the exploration. 

 

Repeat the same process for the second exploration, another new sample can be selected. After the 

evaluation of q , the Mj should be updated, i.e.  0jM s j J  . The procedure of the proposed 

exploration can be described by the following Algorithm 1. When the number of sampling points 

exceeds the required samples Nc(n,k), the least square method can be used to construct the HOPSM. 

Algorithm 1 

Input:      0 1, , , , ,k q s sΘ Ψ  

Initialize:     0 0 1 1, 0,  , 0,  1, ...,
j

j q js s M M j s    θ   

Compute: Do  

        for j=1:s1 

    1 0 0, ; ;
j

q js M s  θ  

if      1

1 1 1, ,
j j

q j q jM M 


θ θ  

    Break  

end if 

        end for  

        Sort：     1 1, ,  1, ...,
j

q jM j s θ ;  

               0 0 1 11; 1;s s s s      

             0 1

0 1

s
θ θ (Add  1

1θ intoΘ );  

        
         1 1

1 1 1 1 1 +1 1, , ,  , , 1, ...,
j j j j

q j q j j jM M M M j s 
 

   θ θ θ θ  (Delete  1

1θ fromΨ );  

  End  do 

Output: 0 1, , ,s sΘ Ψ  
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3.4 The incremental modelling of HOPSM 

The order of HOPSM will largely influence the approximation accuracy. A problem to be solved is that 

which order is mostly suitable for balancing accuracy and efficiency, since the higher order polynomial 

may have higher approximation accuracy but requires more samples. This problem can be solved by the 

order increment strategy, which changes the polynomials from low-order to high-order gradually. The 

criterions of order increase and termination are based on the evaluation indexes given in Section 2. 

 

The order of HOPSM starts from 2, and then it will increase successively until the termination conditions 

are satisfied. When the order of HOPSM keeps unchanged, the approximation accuracy of the surrogate 

model will improve gradually if the data points are added using the sequential sampling scheme. However, 

the improvement of the approximation accuracy will become very small when the sampling size has got a 

certain large number, known as the sampling saturation. When the sampling saturated, the increase the 

order of HOPSM to 3 may further improve the approximation accuracy. After enhancing the order, the 

sampling saturation may become unsaturation, as the number of coefficients to be estimated has increased. 

Therefore, the sequential sampling procedure will be implemented again until the sampling saturation is 

reached. Then the implementation of the order incremental operation was followed by the sequential 

sampling process repeatedly. Three evaluation indexes are used to judge when the order incremental 

operation should be implemented. 

 

In the sampling saturation period, the three evaluation indexes have little variation, which can be used as 

the variation of these evaluation indexes as the criterion of incremental operation. The variation of the 

three evaluation indexes can be defined as follows: 

0 0 0

2 2 2= - ,s s s kR R R  0 0

0

0

NAAE -NAAE
NAAE =

NAAE

s s k

s

s




 

and 0 0

0

0

NMAE -NMAE
NMAE =

NMAE

s s k

s

s


   (27) 

where the subscript denotes the number of sampling points, and k is the dimensional size of design 

variables. The incremental criterions are given by 

    
0 0

2

1 2, NAAE ,s sR     
 
and 

0 3NMAEs         (28) 

where 1 2 3, ,    are some small positive percentage, e.g. 0.01%, 0.1%, and 1%, respectively. 

The order will increase when all the three inequalities are satisfied. In some cases the rate of convergence 

of these indexes is very slow, so we add another incremental criterion, given by 

       0 2 ,Cs N n k         (29) 

 

This incremental criterion may avoid the phenomenon that the order of HOPSM is trapped at low orders. 

When one of the criterions in (28) and (29) is satisfied, the order increment operation will be performed. 
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The following termination criterions are also based on the three indexes. The first one is the same as 

incremental criterion given in inequality (28), while the second is expressed as follows: 

0 0

2

1 2, NAAE ,s sR     and 
0 3NMAEs        (30) 

where 1  is a number close to but smaller than 1, e.g. 0.99, and 2  and 3  are two small positive 

percentages (e.g. 2% and 10%), respectively. The third termination criterion is the number of sampling 

points, which should not exceed the allowed maximum sampling size. 

      
0 maxs N            (31) 

The procedure of the sequential sampling will be stopped when both the inequalities in (28) and (30) are 

satisfied simultaneously, or the inequality (31) is satisfied. 

 

When the sampling process is finished, the highest order of the HOPSM may not be the best order in 

demand, and the best order will be chosen by using the adjusted R-square. Therefore, after the sequential 

sampling is terminated, we will fit the HOPSM with respect to all the allowable orders, the coefficients to 

be estimated are less than the sampling points. The order of the HOPSM which has the largest value of 

adjusted R-square will be selected as the final order. Use 
0

2

,n sR to denote the adjusted R-square of HOPSM 

with the order n and sampling size s0. The best order of HOPSM will be determined by 

  0

2

, 0  max  , ,opt n s C
n

n n R N n k s       (32) 

The final order of HOPSM will be optn , and the best HOPSM is given by  ˆ
optnf x  produced by s0 samples. 

Input:

Initialize: 
m a x , 1 2 3 1 2 3

,  , ,  ,  ,  ,  ,  k N      

Calculate the 

Produce the candidate set      

Produce the initial sampled set      ,

Exploration (Algorithm 1) 

Produce the polynomial model            by the LSM

Calculate
0 0 0

2
,  N A A E , N M A E

s s s
R

Yes

No

 

0 0 0

2

1 2 3

0

, N A A E , N M A E ,

               o r  2 ,

s s s

c

R

s N k n

       



0 0 0

2

1 2 3

0 m a x

,N A A E ,N M A E ,

                o r    

s s s
R

s N

    



Output:  

Yes

Yes

No

No 

n=n+1

 0
,

c
s N k n

Ψ

Θ

0 0
s s 

 ˆ
n

f x

= ,  2n Θ

m a x
n

 0 m a x
1s n k 

Θ

Exploration (Algorithm 1) 

Yes

No

Θ

0 0
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0 0 0

2
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2
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Figure.5 The flow chart of constructing HOPSM 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

19 
 

The flow chart of constructing HOPSM is shown in Fig. 5, which mainly includes five steps: candidates 

generation, initial sampling, exploration sampling, order increment, and order determination. 

 

The candidates Ψ  are the tensor product of the zeros of Chebyshev polynomials, shown in Section 3.1. 

The initial sampling method has been given in Section 3.2, and it will produce a small uniform sampling 

set Θ . The algorithm of the exploration sampling is given in Section 3.3, which selects more samples 

from the candidates and keeps the data points distribute uniformly. The order incremental plan is used to 

update the order of HOPSM, and improve the approximation accuracy gradually. The exploration 

sampling and order incremental operation will be repeated until the termination criterions are satisfied. 

Lastly, the order determined by Eq. (32) may make HOPSM best. 

4. Numerical examples 

4.1 Mathematical test examples 

Here we consider several benchmark mathematical testing examples, their expressions are given in Table 

5. These mathematical examples contain strong nonlinear characteristics and different dimensional size, 

which are suitable for demonstrate the accuracy and robustness of the proposed surrogate model. 

Table 5 Mathematical test functions 

Functions Expression Domain Dimension (k) 

Michalewicz    

20
2

1

sin sin
k

i
i

i

ix
f x



  
   

  
x  0 ix    2 

Ackley 
 

 

2

1 1

1 1
20exp 0.2 exp cos 2

           20 exp 1

k k

i i

i i

f x x
k k


 

   
          

 

 x  2 2ix    3 

Deceptive 

   

 
   

   

0.5

1

1
,

0.8                  0 0.8

5 4                      0.8

5 1 1   0.2 0.8

1 1 0.8     0.2 0.8 1

k

i i

i

i i i i

i i i i i

i i

i i i i i i

i i i i

f g x
k

x x

x x
g x

x x

x x

 

  

   

 



 
  

 

   


  
 

     
      

x

 
0 1ix   4 

Rastrigin     2

1

10 10cos 2
k

i i

i

f k x x


  x  1 1ix    5 

Schwefel     
1

sin
k

i i

i

f x x


 x  100 100ix    6 
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The maximum allowable sampling size to construct the HOPSM is set as 200, 400, 600, 800, and 1000, 

respectively. The R2 and NMAE shown in Section 2.3 are used to validate the approximation accuracy of 

HOPSM. The well-known RBF and Kriging model will be employed to compare with the proposed 

HOPSM. For the sampling methods, the proposed Chebyshev incremental sampling strategy will be 

compared with the Halton sequential sampling in [45]. To keep the uniformity of test points, we use the 

Hammersely [49] sequence to produce 10000 test points. The plot of the R-square and NAME are shown 

in Figs. 6 to 10, respectively. 

 

The legend is expressed as ‘surrogate model - sampling method’, where ‘C’ denotes the Chebyshev 

sampling and ‘H’ denotes the Halton sequential sampling, e.g. the ‘HOPSM-C’ means the HOPSM based 

on the Chebyshev sampling. 

 

For the Michalewicz function in Fig. 6, the Kriging-Halton gives the best R-square, followed by the 

HOPSM-Chebyshev. The RBF-Halton and RBF-Chebyshev have close R-square, while the Kriging-

Chebyshev is not good when the sampling size is large. For the NMAE, the HOPSM-Chebyshev has the 

smallest error, followed by the Kriging-Halton. RBF-Chebyshv and RBF-Halton still give close NMAE, 

but the Halton sampling provides better result when the sampling size is relatively small. HOPSM-Halton 

gives the worst result, so it is not shown in the figure to make other curves can be distinguished easily.  

   

Figure.6 R
2
 and NMAE for the Michalewicz function 

   

Figure.7 The R
2
 and NMAE for the Ackley function 
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For the Ackley function, both the R-square and NMAE show that the HOPSM-Chebyshev has the best 

performance, and then the Kriging-Halton has good accuracy, following with the RBF-Halton, RBF-

Chebyshev and Kriging-Chebyshev. The HOPSM-Halton provides the worst accuracy. 

    

Figure.8 The R
2
 and NMAE for the Deceptive function 

 

The performance of the Deceptive function can be ranked from high to low as follows: HOPSM-

Chebyshev, Kriging-Halton, RBF-Chebyshev, Kriging-Chebyshev, RBF-Halton, HOPSM-Halton (which 

is not shown in the figure). 

   

Figure.9 The R
2
 and NMAE for the Rastrigin function 

 

For the Rastrigin function, the convergence ratio can be ranked from high to low as follows: HOPSM-

Chebyshev, Kriging-Halton, Kriging-Chebyshev, RBF-Chebyshev, RBF-Halton, HOPSM-Halton (which 

is not shown in the figure). 

   
Figure.10 The R

2
 and NMAE for the Schwefel function 
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The HOPSM-Chebyshev has the highest convergence ratio for the Schewefel function. The Kriging and 

RBF model using the Halton sampling have slightly better accuracy than using the Chebyshev sampling. 

 

To compare these models comprehensively, we plot the mean value and standard deviation of R-square 

and NMAE based on these test functions, shown in Fig. 11. Both the mean and standard deviation of the 

two indexes show that the HOPSM-Chebyshev has the best performance, when the sampling size is 

relatively large (e.g. > 500), while the Kriging-Halton performs the best accuracy and robustness when 

the sampling size is relatively small (e.g. < 400), but the HOPSM-Chebyshev also has better performance 

than other methods (RBF and Kriging-Chebyshv) with the sampling size. The NMAE of both the 

Kriging-Halton and Kriging-Chebyshev become worse when the sampling size close to 1000, so the 

Kriging model may be instable for problems with large sampling sizes. For the mean value, the RBF-

Halton is better than the RBF-Chebyshev for a small number of samples, but the result is contrary when 

the sampling size becomes large. The standard deviation of RBF-Chebyshev is smaller than that of RBF-

Halton, so the former should be more robust. 

 
(a)       (b) 

 
(c)       (d) 

Figure.11 The robustness of the test functions 

 

The HOPSM-Halton (not shown in the figure) has the worst performance with respect to both R-square 

and NMAE. The worst performance of HOPSM-Halton may be explained by the instability of high-order 

polynomials, e.g. the Runge phenomenon, but it can be overcome by using the zeros of Chebyshev 
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polynomials as the sampling points, shown as the best performance of HOPSM-Chebyshev. The Kriging 

model gives an opposite conclusion that the Halton sampling is much better than the Chebyshev sampling. 

The RBF model is insensitive to the sampling method compared with HOPSM and Kriging model. 

 

For the computational cost, the five test functions takes 155s, 165s, 129s, 120s, and 145s on the computer 

equipped with a 2.60 GHz i5-2540M CPU, respectively. In surrogate modelling, this computational cost 

is quite low compared with the practical engineering problems, since each running of the engineering 

model may take more than several minutes or even several hours. Therefore, the computational cost for 

surrogate modelling is very cheap, while the most expensive part is the sampling for original complicated 

simulation model. 

 

To show the two sampling methods more directly, the locations of the 2-dimensional sampling points are 

shown in Fig. 12, considering a sampling size 100, 200, and 400, respectively. It can be found that the 

samples of the Chebyshev sequential sampling method distribute more uniformly than that of the Halton 

sequential sampling method when the sampling size is small. There are more samples located in the 

regions closing to the boundary of the design space for the Chebyshev sequential sampling scheme with 

the increase of the sampling size. 

 

 

(a) 100 samples - Chebyshev   (b) 200 samples - Chebyshev   (c) 400 samples - Chebyshev 

 

(d) 100 samples - Halton   (e) 200 samples - Halton  (f) 400 samples - Halton 

Figure.12 The location of samples for Chebyshev sampling and Halton sampling 
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4.2 Engineering Applications 

Application 1: Vehicle Handling 

The vehicle handling stability affects the safety of vehicles, especially when the vehicle speed is high. 

Figure 13 shows a state of the vehicle turning [50]. The vehicle handling characteristic can be studied by 

simplifying the vehicle model to a 2-DOF bicycle model without considering the influence of steering 

system and suspension system, and assuming that the longitudinal velocity of vehicle keeps constant, as 

shown in Fig. 14. O is the center of gravity of the vehicle, and 'O is the turning center of vehicle. 1YF and 

2YF  are the lateral force of front and rear wheels, respectively. a and b are the distance from the front and 

rear axles to the center of gravity, respectively. u  denotes the longitudinal velocity of the vehicle which 

is set as 110 km/h, v denotes the lateral velocity for the center of gravity, respectively. 1u  and 2u  are the 

velocity for front and rear wheels, respectively. 1 2,  and  denote the slip angle for the front wheel, rear 

wheel and center of gravity.  is the steering angle for the front wheel and   is the angle between the 

direction of velocity for front wheel and x axis.   is the yaw velocity of the vehicle. 

 





1u
1

2u

2

'O

O


V
u

a b
L 1YF

2YF



2

y

x
v



 

Figure. 13  Vehicle turning                    Figure. 14 The 2DOF Bicycle model for vehicle 

 

We consider the dynamic response of the steer angle step input, which increases the steering angle and 

then keeps the steering angle unchanged. The step input of the front tire turning angle is shown in Fig. 15. 

More detailed expressions can be found in reference [50]. 
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Figure. 15 Steering angle step input   Figure. 16 The yaw velocity 

 

As shown in Table 6, we identify 6 design variables and will build a surrogate model of the maximum 

yaw velocity, which has large influence on the vehicle handling characteristic. Solving the 2-DOF model, 

the yaw velocity when the design variables are equal to the mean value is shown as Fig. 16. The HOPSM, 

RBF, and Kriging model are used as the surrogate model, respectively, while both the Chebyshev and 

Halton sampling schemes are applied to produce 50, 100, 150, 200, and 250 sampling points, respectively. 

10000 Hammersely points are used as the test points. 

 

Table 6  Design variables of a car 

Parameters 
Mass 

 kg  

Mass 

moment of 

inertia 

 2.kg m  

a 

(m) 

b 

(m) 

Cornering 

Stiffness of 

front tire 

 /N rad  

Cornering 

Stiffness of  

rear tire 

 /N rad  

Range [1100, 1300] [1900, 2100] [1.02, 1.22] [1.12, 1.32] [-3.5,-2.5]×10
4
 [-5,-4]×10

4
 

 

 

Figure. 17 R
2
 and NMAE for the maximum yaw velocity 

The R-square and NMAE of the maximum yaw velocity are given in Fig. 17. For the R-square, the 

HOPSM and RBF have very close performance and are much better than the Kriging model. For the 
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NMAE, the HOPSM-Chebyshev has the highest accuracy, and then the RBF-Chebyshev and HOPSM-

Halton. The Kriging model still gives the worst result. 

 

Application 2: Engine Mount 

In this section we use the HOPSM to study the ride comfort of automotive. A typical work condition for 

ride comfort is to drive the car across an obstacle in a constant speed, and then measure the acceleration 

of floor or the driver’s seat. The memory shake of the driver’s seat is a dimensionless number, which is 

used as the evaluation index to characterise the performance of ride comfort. We use the AES Bump as 

the obstacle, the section plot is given in Fig. 18, and the vehicle velocity is 20 mph. 

 

180mm 30mm

30mm

driver’s seat

floor

v=20 mph

wheel

suspension

steering wheel

 

Figure.18 The schematic of ride comfort experiment 

 

The simulation model is built by using Hyperworks MotionView, and the time for each simulation is 

about 450 seconds, which would be too long to analysis or optimization of this system directly. Therefore, 

we will use the proposed method to build a surrogate model of the ride comfort as the simulation model. 

Here five parameters of the engine mount are considered as the design variables, the description and 

range are shown in Table 7. There are three engine mounts, and the locations are shown in Fig. 19. 

 

Table 7. The description of design variables 

Parameters Description Lower bound Upper bound 

Keng Engine mount vertical stiffness (N/mm) 200 340 

Ktrans Transmission mount vertical stiffness (N/mm) 200 410 

Ceng Engine mount vertical damping (N s/mm) 0.2 4.5 

Ctrans Transmission mount vertical damping (N s/mm) 0.2 4.5 

Kts Torque strut lateral stiffness (N/mm) 150 300 
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Engine Mount Transmission 

Mount
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Figure.19 The collocation of mounts 

 

Since the computational cost of the simulation model is expensive, 128 samples will be collected by using 

the proposed Chebyshev sampling method and the Latin Hypercube sampling (LHS) method, respectively. 

Use the two groups of 128 samples to construct the HOPSM of the simulation outputs (memory shake) 

with order 2 and 3, respectively. To save the cost of test points, 500 Hammersely points and additional 21 

data points produced by the orthogonal table will be used as the test points. The results are shown in 

Table 8. It can be found that the Chebyshev sampling provides better result than the Latin Hypercube 

sampling for all the three surrogate models, especially for NMAE. The NMAE of HOPSM based on 

Chebyshev sampling has the best accuracy, while the Kriging model and RBF model are equivalent. For 

the R-square, the RBF and HOPSM are very close and have better performance than the Kriging model. 

Table 8. Approximation accuracy of surrogate model for memory shake 

 Chebyshev sampling Latin Hypercube sampling 

R
2
 NMAE R

2
 NMAE 

HOPSM 0.7385 0.3236 0.7193 0.5067 

RBF 0.7435 0.3423 0.7352 0.5038 

Kriging 0.7042 0.3423 0.6521 0.5038 

5. Conclusions 

This paper has proposed a new high-order polynomial surrogate model (HOPSM), based on a Chebyshev 

sequential sampling scheme and an incremental modelling process. There are two reasons accouting for 

the use of the Chebyshev polynomials: (1) the first of which is that we would employ the zeros of the 
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Chebyshev polynomials as the set of all sampling candidates. These samples can avoid the Runge 

phenomenon occurred in polynomials with high-order interpolation; (2) the second of which is that the 

truncated Chebyshev series is closer to the best uniform approximation, which may improve the 

approximation accuracy of the surrogate modelling. The sequential sampling and incremental modelling 

can flexibly control the sampling size and the approximation accuracy. To demonstrate the performance 

of the proposed HOPSM, the well-known Kriging model and RBF model are used as the references. 

Through the comparison by using several strong nonlinear mathematic testing examples and two 

engineering applications, the results show that the Chebyshev sequential sampling based HOPSM has 

good accuracy and robustness. However, it should be noted that the HOPSM is only suitable for the 

Chebyshev sampling method, because other sampling methods may make it unstable, while other 

surrogate models, e.g. RBF model, may be fit for various types of sampling methods. 
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