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1 Introduction

Financial markets exhibit extraordinary diversity in investor trading strategies. Widespread

among traders are attempts to extract rent through market participation. Vigorous trading

and extensive market commentary suggests a lack of uniformity among market participants and

possible disagreement as to the true price determination process.

This paper explores a process by which reasonable data-driven adaptation and learning by

market participants shape market evolution. The developed model places traders into an im-

perfect information environment in which the rational expectations equilibrium is analytically

inaccessible to the traders for its dependence on a hidden endogenous state variable. An opti-

mizing approach has traders update trading strategies through learning and adaptation. The

process can continue without end due to the model’s absence of a fixed point. In the developed

setting market-based strategies have a role, potentially improving market efficiency, in extract-

ing information from market observables. To the market’s potential detriment, while they are

able to trade profitably, the traders lack all of the information necessary to employ the market

information without error and without potentially distorting the market price.

The financial market setting draws on models of divergent beliefs, learning, and adaptive

behavior in financial markets. Foundational investigations such as Hellwig (1980) and Grossman

and Stiglitz (1980) considered the role of markets in aggregating and filtering information and

the equilibrium implications of the market participants trading on others’ private information

extracted from the market. Investigations such as Frankel and Froot (1990), De Long et al.

(1990a), and De Long et al. (1990b), consider the possible sustainability of multiple beliefs

in static settings. Subsequent analysis considered heterogeneous traders in dynamic settings

that endogenize current market impact. One approach has traders choose between discrete

information options based on past performance. For the models developed in Brock and LeBaron

(1996), Brock and Hommes (1998), De Grauwe et al. (1993), and Giardina and Bouchaud

(2003), among others, the popularity of a particular information source depend directly on

relative performance. Relative performance determines the innovation in popularity in Sethi

and Franke (1995), Branch and McGough (2008), and Goldbaum (2005).1 Another source of

1Wealth accumulation to those using the particular information or strategy is another mechanism generating
evolution in market impact, as in Chiarella and He (2001), Farmer and Joshi (2002), Chiarella et al. (2006), and
Sciubba (2005). Other mechanisms have been considered as well. Lux (1995), for example, relies on investor
sentiment, Routledge (1999) incorporates dispersion through random encounters, while dispersion occurs over a
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evolution in markets comes from traders updating how they use information in developing a

trading strategy. Statistical learning tools, such as Marcet and Sargent (1989a), Marcet and

Sargent (1989b), and Evans and Honkapohja (2001). Non-statistical approaches such as the

genetic algorithms in LeBaron et al. (1999) and Bullard and Duffy (1999) offer mechanisms by

which traders can improve available trading tools, generating evolution in market behavior as

strategies improve, following the lessons suggested by recent past events.

Failure by a fundamental trader dominated market to achieve perfect efficiency creates an

opportunity for market-based traders to extract information from the price. To make the non-

fundamental information viable, models such as developed in Grossman and Stiglitz (1980),

Evans and Ramey (1992), Brock and Hommes (1998), Droste et al. (2002), and Chiarella and

He (2003) offer market-based trading as a low-cost alternative to acquiring the same information

known to an informed group of traders. The alternative approach to information adopted in

this paper handicaps fundamental information with private idiosyncratic noise, as in Brock and

LeBaron (1996), while making contemporaneous the market extraction of the information, as in

Grossman and Stiglitz (1980). In this environment, market-based trading offer the potential to

take advantage of the market’s filtering properties to gain profitable information not possessed

by any individual fundamentally informed trader. The resulting competitive or even superior

market-based information, achieved without imposition of cost on the private fundamental

information, is, to my knowledge, unique to the developed model.

Market-based trading strategies, particularly low cost trend-following rules, introduce insta-

bility in the dynamic financial market system in Brock and LeBaron (1996), Brock and Hommes

(1998), De Grauwe et al. (1993), Giardina and Bouchaud (2003), Goldbaum (2003), Lux (1998),

and Panchenko et al. (2013). In contrast, for the developed model in which market-based infor-

mation is capable of generating profits while improving market efficiency, the model captures

an environment inherently supportive of traders’ use of market-based information. Model mis-

pricing is thus not hardwired into the market-based trading strategy. Mispricing arises only

circumstantially when traders, for historical or path dependent reasons, use market-based in-

formation inappropriately for the particular realized state.

What the modeled traders do not know for certain is how to interpret the market informa-

tion. Addressing this uncertainty is confounded by the self-referential aspect of beliefs and by

network in Panchenko et al. (2013).
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the model’s state-dependent mapping between market observables and investment fundamen-

tals. The former can be overcome with a convergent learning process but only in the absence

of continued evolution in the latter.2 Following Goldbaum and Panchenko (2010), the analysis

points to the role of the process governing the population dynamics in shaping market behavior.

The presence of the fixed point anchors the asymptotic behavior of the market. The interac-

tion between the self-referential learning and the adaptive behavior can be either a source of

asymptotic stability or instability in the absence of a fixed point.

Boundedly rational behavior is a common feature of models exploring trader heterogeneity,

divergent beliefs, and learning. Analysis of the model includes an exploration of bounded ratio-

nality imposed through memory length. Brock and LeBaron (1996) and LeBaron et al. (1999)

highlight the stabilizing influence of long memory on the dynamic system. Long memory, for

example, helps to stabilize the inherently destabilizing cobweb model in Branch and McGough

(2008) to produce asymptotically similar behavior between the replicator dynamic (RD) and

the discrete choice dynamic (DCD) processes.

Incorporating individual rationality of an agent unaware of the correct model, the misspec-

ified equilibrium of Branch and Evans (2006) and the mixed expectations equilibrium of Guse

(2010) both describe a fixed point supporting heterogeneous beliefs. The bounded rationality

appears in the form of an under-parameterized model that nonetheless appears consistent with

the actual law of motion.3 Goldbaum (2006) imposes constraints consistent with a rational

expectations equilibrium solution on the traders’ behavior, though the solution itself is hidden.

Relaxing these rationality restrictions and incorporating other boundedly rational behavior in-

troduces a variety of mechanisms through which mispricing arises.

The analysis of this paper offers new insight into the market consequences of imperfect id-

iosyncratic information by analytically extending the model in Goldbaum (2006) and developing

a number of new application treatments. The model is attractive for supporting divergent beliefs

without arbitrary costs or limitations on choice. Explored are the role of dynamic processes,

bounded rationality, and memory in shaping near term evolution and asymptotic behavior.

The remainder of the paper proceeds as follows. Section 2 introduces the structure of the

2Bullard (1994), Bullard and Duffy (2001), and Chiarella and He (2003) offer examples with non-convergence
in learning.

3The mis-specification of the under-parameterized minimum squared variance model is absorbed into the error
term. In Guse (2010), the mis-specified model persists supported by a cost advantage.
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financial market, trader behavior, and the available information. Also developed in the section

is a rational expectations equilibrium as it depends on a hidden endogenous state variable for

reference against which to compare market price and beliefs under boundedly rational settings.

Both the replicator and discrete choice dynamic models for driving the state variable are evalu-

ated. A model of trader learning is also developed. Different notions of bounded rationality as

they may apply to traders in the financial market are discussed in this section as well. Section

3 offers computation analysis of the market, highlighting the interactions between the state

variable, learning, and rationality. Conclusions are drawn in Section 4.

2 The Model

Analysis of the model reveals that an equilibrium cannot be achieved with traders employing

fundamental information alone. There is a role for market-based information in support of

portfolio decisions. With divergent beliefs, the relationship between the price and payoff is

found to depend on the unobserved extent to which traders rely on fundamental versus market-

based information. A dynamic model is developed based on traders estimating the relationship.

2.1 Information and model development

A large population of N traders trade a risky dividend-paying asset and a risk-free bond paying

R. The risky asset can be purchased at price pt in period t and is subsequently sold at price

pt+1 after paying the holder dividend dt+1 in period t + 1. The dividend process follows an

exogenous AR(1) process

dt+1 = φdt + εt+1, φ ∈ (0, 1) (1)

normalized to mean zero with innovations distributed εt ∼ IIDN(0, σ2ε ). Available to the traders

for time t trading is a combination of public and private fundamental information as well as

market-based information,

Zit = {sit, pt, dt, pt−1, dt−1, . . . }.

The dividend dt is paid at the start of the period and its value is public knowledge at the time

of trade. The Walrasian price pt is not yet realized but can be conditioned on when the trader

5



submits a demand function. Each trader has access to a private idiosyncratically noisy signal,

sit, centered on next period’s dividend,

sit = dt+1 + eit (2)

eit ∼ IIDN(0, σ2e).

In forming demand for the risky asset, traders use available information to forecast the future

payoff, pt+1+dt+1. The population is heterogeneous in how much weight to place on fundamental

versus market-based information. The proper balance turns out to be state dependent and

hidden so that the selective use of information will be consistent with the developed model. At

one extreme for trader type, the “fundamental” trader completely discounts market variables

as a source of useful information, relying entirely on pubic and private fundamental information

to form expectations. At the other extreme, the “market-based” trader uses public information

to the exclusion of the noisy private signal. In each period, the traders select

Zit = ZFit ∪ ZMit

ZFit = {sit, dt, dt−1, . . . }

ZMit = ZMt = {pt, dt, pt−1dt−1, . . . }.

Traders choose between these two extreme positions.4

The equity demand component of the agents’ optimal control problem collapses to a spot

market decision with negative exponential utility. Given prices {pt}∞t=0, optimal equity demand

is given by

q̂kit(pt) = (E(pt+1 + dt+1|Zkit)−Rpt)/γσ2kt, k = F,M and for all t (3)

with σ2kt = Varit(pt+1 + dt+1|Zkit). The competitive equilibrium consists of a population of

N = NF
t + NM

t optimizing traders and a price series {pt}∞t=0 that clears the spot market in

equities in each period.

4Alternatively, allow every trader use of Zit. There is no REE solution as the trader should optimally ignore
the private signal and rely on pt to extract dt+1, a strategy that is inconsistent with an informative price if
universally employed. See Goldbaum (2006) for the derivation and for simulations based on this alternate model.
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An equilibrium-consistent fundamental trader belief has pt that is linear in dt and dt+1 of

the form

pt =
1

R− φ
((1− α)φdt + αdt+1) (4)

with α ∈ [0, 1].5 Iterated expectations applied to (1) and (4) produce the fundamental infor-

mation based forecast of the excess payoff to the risky asset,

E(pt+1 + dt+1|ZFit ) =

(
R

R− φ

)
E(dt+1|ZFit ). (5)

Independence of the expected payoff from α is convenient from a modeling perspective as

the market clearing price is robust to the trader’s belief, right or wrong, rational or irrational,

regarding the value α. A deficiency in the fundamental understanding of the price process

captured by ignorance of the particular value of α does not impact the market. A modeling

choice to impose or relax rationality through α does not affect demand for the risky asset.

Beliefs that deviate from (4) do affect the market.

Fundamental traders project dt+1 on their available ZFit information, obtaining the mean

squared error minimizing forecast with

E(dt+1|ZFit ) = (1− β)φdt + βsit (6)

and β = σ2ε /(σ
2
ε + σ2e). Thus, fundamental traders’ uncertainty, the consequence of awareness

of the idiosyncratic component of their signal, leads to fundamental trader reliance on dt when

forecasting dt+1.

The market-based traders employ a forecasting model that is linear in all relevant variables

consistent to forecasting the following period’s payoff,

E(pt+1 + dt+1|ZMt ) = c0t + c1tpt + c2tdt. (7)

Let qkt be the average demand of the population of type k traders, k = F,M . Based on

5The fundamental trader belief is supported by an initial guess of an unconstrained linear price, pt = b0+b1dt+
b2dt+1, subsequently verified by the market clearing solution expressed in (11) - (13). The equilibrium-consistent
market-based trader belief, including (23), produce the zero intercept and constrained coefficients incorporated
into (4).
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individual expectations (5) and (7),6

qFt =

(
R

R− φ
((1− β)φdt + βdt+1)−Rpt

)
/γσ2Ft, (8)

qMt = (c0t + c2tdt − (R− c1t)pt)/γσ2Mt. (9)

Though no individual fundamental trader knows the value of dt+1, it is reflected in qFt without

noise as aggregation filters the idiosyncratic component of sit. With portion nt of traders

using the fundamental approach and 1−nt employing the market-based approach, a consistent

Walrasian price function is

pt = pt(nt, ct) = b0t + b1t(nt, ct)dt + b2t(nt, ct)dt+1 (10)

in which ct represents a vector of the coefficients in (7). The coefficients of (10) solve the market

clearing condition, ntq
F
t + (1− nt)qMt = 0 at

b0(nt, ct) =
c0t(1− nt)κ2t

ntR+ (1− nt)(R− c1t)κ2t
, (11)

b1(nt, ct) =
nt

R
R−φ(1− β)φ+ (1− nt)c2tκ2t
ntR+ (1− nt)(R− c1t)κ2t

, (12)

b2(nt, ct) =
nt

R
R−φβ

ntR+ (1− nt)(R− c1t)κ2t
(13)

where κt = σFt/σMt.

The extent to which the market clearing price reflects the public dt or the private dt+1

depends on the confidence of the fundamental traders in their signal (β), the beliefs of the

market-based traders about the relationship between market observables and future payoffs

(c0t, c1t, c2t), the traders’ relative uncertainties in predicting future payoffs (κ2t ), and the pro-

portion of the market employing the fundamental strategy (nt). Naturally, also present in the

price coefficients are the opportunity cost of investing in the risky asset (R) and the AR(1)

coefficient of the dividend process (φ).

Let π̂kt represent the performance measure associated with type k strategy using information

up to the realizations of time t dividends. With each fundamental trader trading based on

6Formally, qFt = R(((1 − β)φdt + β(dt+1 + 1
ntN

∑
eit))/(R − φ) − pt)/γσ

2
Ft but with a large ntN population

of fundamental traders, the last term is approximately zero.
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idiosyncratic information, π̂Ft is the average of the fundamental population. Two processes for

governing how popularity evolves in response to performance differentials are considered for how

they alter the long run and evolutionary processes of the system. Let innovation population

dynamic (IPD) identify the set of processes in which the performance differential determines

the innovation in popularity. The example adopted for analysis is the 2-choice version of the

more general K choice replicator dynamic (RD) model found in Branch and McGough (2008).

The model generates the transition equation

nt+1 = g(π̂Ft − π̂Mt , nt) =


nt + r(π̂Ft − π̂Mt )(1− nt) for π̂Ft ≥ π̂Mt

nt + r(π̂Ft − π̂Mt )nt for π̂Ft < π̂Mt

(14)

with

r(x) = tanh(δx/2) (15)

driving the nt process. Unlike its biological origins, the RD as employed need not be absorbing

at the boundaries. According to (14), estimates of superior performance by the counterfactual

strategy move the population away from the boundary.7

Let level population dynamic (LPD) identify the set of processes in which the performance

differential determines the level of popularity. The example adopted for analysis is the dis-

crete choice dynamics (DCD) process, employed in Brock and Hommes (1998), which identifies

popularity as a direct function of the performance differential,

nt+1 = f(π̂Ft − π̂Mt ) =
1

2
(1 + tanh(ρ(π̂Ft − π̂Mt )/2)). (16)

The parameters δ and ρ play similar roles in setting the sensitivity of the trader population

to the magnitude of π̂Ft − π̂Mt . Under the RD process, the more successful strategy attracts

adherents from the less successful strategy, consistent with the process described in Grossman

and Stiglitz (1980). Under the DCD, π̂Ft − π̂Mt maps directly into nt with the superior strategy

always employed by the majority of the population.

Conditional variance, σ2kt = Varit(pt+1 + dt+1|Zkit), is derived using (10) and the appropriate

7Parke and Waters (2007) and Guse (2010) have to contend with absorbing boundary conditions. The bound-
aries of the present model are shown to be reflective.
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(5) or (7) with,

pt+1 + dt+1 − E(pt+1 + dt+1|ZFit ) =

(
1 + b1t+1 + φb2t+1 −

R

R− φ

)
φdt

+

(
1 + b1t+1 + φb2t+1 − β

R

R− φ

)
εt+1

+b2t+1εt+2 − β
R

R− φ
eit (17)

pt+1 + dt+1 − E(pt+1 + dt+1|ZMt ) = (φ(1 + b1t+1 + φb2t+1)− c1t(b1t+1 + φb2t+1)− c2t)dt

+(1 + b1t+1 + φb2t+1 − c1tb2t+1))εt+1 + b2t+1εt+2. (18)

In the order in which they appear in (17), fundamental trader error arrises (i) when the market

misprices dividends, (ii) as a result of down-weighting private information about the future

dividend due to the noise in the signal, (iii) the unobservable et+2 component of pt+1, and

(iv) the realized idiosyncratic noise. Market based trader error arrises as a consequence of (i)

inconsistence between c1t and c2t, (ii) misinterpretation of the market information through error

in c1t, and (iii) the unobservable et+2 component of pt+1. The developed analytical solution will

identify conditions under which certain sources of error can be eliminated.

2.2 Solution

The market-based traders are capable of possessing correct beliefs consistent with the actual

pricing function (10).

Definition 1. An nt-dependent Rational Expectations Equilibrium describes a market in which

the coefficients of the market-based strategy in (7) correctly reflect the projection of pt+1 +dt+1

on dt and pt. Further, the fundamental strategy employs beliefs about the price function

consistent with (4) and forecast dividends according to (6).

Recall κ2 = σ2F /σ
2
M . The nt-dependent Rational Expectations Equilibrium (REE(nt)) solu-
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tion is the b2 and κ2 that solve (21) and (24) of the following so that, for nt ∈ (0, 1],

p∗t = p∗t (nt) = b∗1(nt)dt + b∗2(nt)dt+1 (19)

b∗1(nt) =
nt(1− β)φ

(R− φ) (nt + (1− nt)κ∗(nt)2)
(20)

b∗2(nt) =
ntβ + (1− nt)κ∗(nt)2

(R− φ) (nt + (1− nt)κ∗(nt)2)
(21)

c∗1(nt) =
R

(R− φ)b∗2(nt)
=
R
(
nt + (1− nt)κ∗(nt)2

)
ntβ + (1− nt)κ∗(nt)2

(22)

c∗2(nt) =
φ

R− φ
(R− c∗1(nt)) = − ntR(1− β)φ

(R− φ) (ntβ + (1− nt)κ∗(nt)2)
(23)

κ∗(nt)
2 =

σ∗F (nt)
2

σ∗M (nt)2
= 1 +

(1− β)R2

(R− φ)2b∗2(nt)
2

(24)

where k∗2 follows from

σ∗F (nt)
2 =

(
(1− β)

(
R

R− φ

)2

+ b∗2(nt)
2

)
σ2ε (25)

σ∗M (nt)
2 = b∗2(nt)

2σ2ε . (26)

As nt → 0, then b∗1(nt)→ 0, b∗2(nt)→ 1/(R+ φ), c∗1(nt)→ R, and c∗2(nt)→ 0. For nt = 0, then

b∗1(0) = φ/(R− φ), b∗2(0) = 0 as derived from the consistent solution c∗1(0) = 0 and c∗2(0) = R.

Accepting the partition of information into fundamental and market-based, the REE(nt)

deviates from a true rational expectations equilibrium in that the derived market-based traders’

beliefs at the REE(nt) relies on treating expectations of all future nτ , τ ≥ t + 1, as a point

estimate unchanging from to the current nt. Deviations would have consequence on the price

stream. A constant nt may or may not be consistent with the process driving nt at the REE(nt)

solution.

Let p0t and p1t represent the price at the two information extremes based on the accuracy of

the private signal. With zero content in the signal, with σε →∞, then β = 0. Zero error, with

σε = 0, results in β = 1. For nt 6= 0,8

p0t ≡ p∗t (1)|β=0 =
φ

R− φ
dt

p1t ≡ p∗t (nt)|β=1 =
1

R− φ
dt+1.

8Prices p0t and p1t also correspond to the Fama (1970) semi-strong and strong form efficient prices.
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Let pFt represent the price at the extreme of a market populated by only fundamental traders.

With nt = 1,

pFt ≡ p∗t (1) =
(1− β)φ

R− φ
dt +

β

R− φ
dt+1. (27)

The opening for profitable employment of the market-based information follows from pFt ∈

[p0t , p
1
t ], introducing predictability in the price as a consequence of dt+1 contributing to the

value of both pt and pt+1. The presence of the market-based traders moves the market towards

the efficient market price, as reflected in p∗t (nt) ∈ [pFt , p
1
t ] with lim

nt→0
p∗t (nt) = p1t . Since p∗t (0) = p0t

there is a Grossman and Stiglitz (1980) type discontinuity at nt = 0.

Observe that b∗1(nt) + φb∗2(nt) = φ/(R− φ)∀nt. Let

α∗t = α∗(nt) =
ntβ + (1− nt)κ∗(nt)2

nt + (1− nt)κ∗(nt)2
, (28)

allowing the REE(nt) price to be expressed as p∗t = 1
R−φ ((1− α∗t )φdt + α∗t dt+1). With α∗t ∈

[β, 1], the REE(nt) price can be interpreted as the present discounted value reflecting the ag-

gregation of the market’s forecast of future dividends. The extent to which the REE(nt) price

reflects the public dt or the private dt+1 depends on the quality of the signal, as reflected in β,

and the traders’ choice of information, as reflected in nt.

Contributing to the robustness of the model, fundamental trader ignorance of nt does not

undermine the existence of the REE(nt) solution. Equivalent to previously identified freedom

from the fundamental traders’ beliefs regarding, the REE(nt) solution requires only that each

fundamental trader holds beliefs regarding price formation consistent with b1t+φb2t = φ/(R−φ),

free from particular knowledge of b1t and b2t individually. Without consequence on the REE(nt)

solution or the market clearing price, each fundamental trader can independently employ the

correct p∗t (nt), mistakenly employ p∗t (mt) for mt 6= nt, or naively employ the pFt , p0t , p
1
t , or any

other price structure consistent with (4). Given a price realization consistent with (4), accuracy

of the fundamental trader forecast is a reflection of the accuracy of their forecast of dt+1 and is

independent of the believed α.

Useful for consistency of trader behavior when encountering non-equilibrium pricing, the

condition imposed on market-based trader beliefs to ensure b1t + φb2t = φ/(R − φ) is weaker

than the conditions necessary to generate the REE(nt). It only requires c2t = (R−c1t)φ/(R−φ)

12



as evidenced by substituting for c2t in (12) to produce b1(nt, c1t) + φb2(nt, c1t) = φ/(R − φ)

regardless of the value of c1t. Thus, the condition c2t = c∗2(c1t) implied by (23) is a sufficient

condition to support the price structure underpinning the fundamental strategy. That is, in

order for the fundamental traders’ forecast to conform to the requirements of a REE(nt), the

market-based traders need only employ a c2t value that is REE(nt) consistent with c1t without

necessarily employing the correct REE(nt) implied c1t = c∗1(nt).

For c2t = c∗2(c1t), all trader beliefs are consistent with the price determination process. For

the market-based traders, error arises from ignorance of nt that leads to errors in estimating

dt+1, not erroneous beliefs about how prices are formed according to nt. In the error terms

expressed in (17) and (18), the market-based traders’ employment of c2t = c∗2(c1t) eliminates

the first term of (18) and the resulting b1t + φb2t = φ/(R− φ) eliminates the first term of (17)

as well.

The payoff to the risky asset is never without some level of uncertainty. The closer pt is to

p1t , the more pt+1 reflects the yet unobserved dt+2, increasing the market’s uncertainty about

investing in the risky asset. The same level of uncertainty also arises for nt = 1 and β = 0 or

for nt = 0. In both of these latter cases, pt+1 depends on dt+1 only but no time t trader has

information concerning the value of dt+1.

Realizing the REE(nt) requires that the market-based traders employ ct = c∗(nt). It is

appropriate to ascertain whether the traders can deduce c∗ analytically from their knowledge

of the market. From (23), c∗2 can be expressed in terms of c∗1. For a known zero net supply

of the risky asset, the traders can derive analytically that c∗0 = 0. For market-based traders

incorporating these two conditions into their understanding of the market, only c∗1 remains to

be derived. From (22), solving for c∗1 requires knowledge of nt. Reasonably, nt is not directly

observable. For an nt that is the endogenous product of a dynamic system, the question becomes

whether some fixed point nfp value can be identified that is consistent with REE(nt).

2.3 Performance

Define performance in terms of individual profit,

πkit = qkit(pt+1 + dt+1 −Rpt). (29)
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Using the REE(nt) consistent c0 = 0 and c2t = c∗2(c1t), and the market clearing condition for

b2t from (13), (29) generates, for nt ∈ (0, 1],

E(πFt ) = (1− nt)∆t (30)

E(πMt ) = −nt∆t (31)

so that E(πFt − πMt ) = ∆t. Here,

∆t = ∆(c1t, nt) =

(
nt(1− β)R+ (1− nt)(R− c1t)κ2

(ntR+ (1− nt)(R− c1t)κ2)2

)(
R

R− φ

)2 (R− c1t)βσ2ε
σ2M

. (32)

The REE(nt) expected profit differential, E(π∗F − π∗M ), based on c1t = c∗1(nt), reduces to

∆∗(nt) = −
(

1− β
nt + (1− nt)κ∗(nt)2

)2( R

R− φ

)2 ntσ
2
ε

σ∗2M
. (33)

That ∆∗(nt) < 0 for all nt 6= 0 reveals the benefit to extracting filtered information from the

REE market over direct access to noisy information. The fundamental traders only profit in

the presence of error in the market-based traders’ model, as c1t deviates sufficiently from c∗1(nt),

allowing ∆t to be positive.

A fixed point to the entire dynamic system requires the REE(nt) solution combined with

a fixed point to the population process. The fixed point condition depends on the population

regime.

Proposition 1. Given a level population dynamic (LPD) for nt, the REE(nt) competitive

equilibrium has a unique fixed point nfp at which nfp = f(∆∗(nfp)) .

Proof. Under the LPD population process, nt+1 = f(π̂Ft − π̂Mt ) according to (16) and at the

REE(nt), π̂
F
t − π̂Mt = ∆∗(nt) . For ρ < ∞, f(x) is continuous and monotonically increasing

in x. A fixed point solution is nfp such that nfp = f(∆∗(nfp)). Since lim
nt→0

∆∗(nt) = 0 and

∆∗(nt) is monotonically decreasing as nt increases to one, a unique nfp, 0 < nfp ≤ 1/2, such

that nfp = f(∆∗(nfp)) exists.

Figure 1 captures the existence of the fixed point under the DCD population process. Since

the slope of f(x) |x=0 increases with ρ in Figure 1, the value of nfp ∈ (0, 1/2] decreases with

increasing ρ. At the extremes, ρ = 0 results in a horizontal f(πF − πM ) and nfp = 1/2 while
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Figure 1: nfp for DCD population dynamics.

ρ→∞ approaches a step function in f(πF −πM ) so that nfp → 0. With E(πFfp−πMfp) < 0, the

inferior profits of the fundamental strategy at nfp support the realization of nfp < 1/2. The

DCD fixed point is inconsistent with the Grossman and Stiglitz (1980) notion of an equilibrium

in which the expected performance differential is zero.

Proposition 2. Given an innovation population dynamic (IPD) for nt, the REE(nt) competi-

tive equilibrium excludes a fixed point in nt.

Proof. Under the IPD population process, the fixed point condition requires the existence of

an nfp such that nfp = g(∆∗(nfp), nfp). With n = g(∆, n) if and only if ∆ = 0, the fixed

point requires ∆∗(nfp) = 0. Since no such nfp exists, there can be no fixed point to the RD

population process.

The existence of an REE depends on the existence of a (nfp, c1) combination for which

nfp = n∗(c∗1(n
fp)). Such a point does not exist since for c1t = c∗1(nt), ∆∗(nt) < 0 for all

nt ∈ (0, 1] and E(πFt − πMt ) > 0 for nt = 0. The Grossman and Stiglitz (1980) discontinuity

means that the nt = 0 boundary is reflecting rather than absorbing.

2.4 Learning

Consider a fixed nt = n ∈ (0, 1] for all t. Allow traders to update the market-based model based

on empirical observations. Least-squares learning involves a process of updating the coefficients
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of (7) according to

ĉt = ĉt−1 + λt(Q
−1
t xt−2(pt−1 + dt−1 − ĉt−1xt−2))

′ (34)

Q̂t = Q̂t−1 + λt(xt−1x
′
t−1 − Q̂t−1) (35)

with λt = 1/t and xt = {1, pt, dt}. Here, ĉt reflects the time t estimate of the corresponding

coefficient of (7) based on the learning algorithm while Q̂t is the estimate of the variance-

covariance matrix for xt used in the estimation of ĉt.

Proposition 3. Given a fixed n, σ2kt = σ2k(n, ct), a sequence of market clearing prices {pt}∞t=0,

and least squares updating of beliefs and performance, the REE(n) competitive equilibrium is

locally stable.

Proof. See Appendix

By Proposition 3, the self-referencing system of prices and beliefs is locally stable at the

REE(n) under least-squares learning. As the fixed point to the learning process, c∗(n) are

the rational expectations coefficients for the market-based traders and REE(n) is a rational

expectations equilibrium for market-based traders.

The parameters λt regulates the learning process. With λt = 1/t, the traders update the

market-based model consistent with the standard least-squares learning algorithm of Marcet

and Sargent (1989b), giving equal weight to each observation. Least-squares learning is a

natural choice for the traders given a fixed hidden state variable. The perpetually evolving

state of the RD processes can make other parameter updating processes seem reasonable. For

λt = λ, 0 < λ < 1, the traders update with a constant gain by which the contribution of past

observations to the current parameter estimate decays exponentially.

The variables included in the vector xt can be adapted to the presumed rationality of

the market-based traders. Imposing c0t = 0 and c2t = c∗2(c1t), xt becomes a scalar, xt =

pt − φdt/(R− φ).

Allowing nt to evolve over time imposes on the traders a need to estimate other nt-dependent

variables as accommodation to the inability of the traders to derive the values analytically.

Traders need to estimate both πFt and πMt as inputs to the model adoption decision. Each

trader must also estimate the σ2kt, k ∈ {F,M}, appropriate for the model adopted as an input
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to demand. Consider the updating algorithms

σ̂2kt = σ̂2kt−1 + θt((pt + dt − E(pt + dt|Zkt−1))2 − σ̂2kt−1) (36)

π̂kt = π̂kt−1 + µt(π
k
t−1 − π̂kt−1), k = F,M (37)

Like λt, the parameters θt and µt regulate the learning process. Under least-squares learning,

with θt = µt = 1/t, σ̂2kt and π̂kt are simple sample averages of all past observations. A constant

gain biases weight towards the more recent observations.

2.5 Evolution without a Fixed Point

Imposing the constraints c0t = c∗0 = 0 and ĉ2t = c∗2(ĉ1t) of the REE(nt) solution, the system,

represented by equations (1), (10), (14), (34), (35) and (37), can be evaluated using phase space

dynamics in the (c1, n) plane. The phase space analysis is facilitated by imposing µt = µ = 1

in (37) so that the time t realization of πF (c1t, nt)− πM (c1t, nt) alone identifies nt+1. Though

not accessible to the traders, let σ̂2tk = σ∗k(nt)
2 of (25) and (26) for k ∈ {F,M} so that the

employed conditional variances are correct expressions reflecting the current nt rather than the

history-dependent estimate (36).

Market-based trader beliefs are unchanging if ĉ1t = c∗1(nt). At this REE(nt), the market-

based model correctly reflects the relationship between the observables pt and dt and the ex-

pected payoff of the following period, E(pt+1 + dt+1). The function c∗1(nt) is monotonically

increasing for 0 < nt ≤ 1 with c∗1(n)→ R for n→ 0 and c∗1(1) = R/β.

The population process is at a steady state if ∆(ĉ1t, nt) = 0. The coefficient c1t appears

twice in the numerator of ∆(ĉ1t, nt). Let c+1 (nt) and c−1 represent the two functions capturing

combinations of ĉ1t and nt consistent with ∆(ĉ1t, nt) = 0 in (32). For 0 < nt ≤ 1, the former is

monotonically increasing and everywhere above c∗1(nt),

c+1 (nt) = R

(
1 + (1− β)

nt
(1− nt)κ2

)
. (38)

The latter is a constant, c−1 = R, located below c∗1(nt). Expected profits are zero at ĉ1t = c+1 (nt)

because the resulting market clearing price is the efficient market price, p1t , at which expected

profits are zero regardless of the individual trader’s position taken in the market. Expected
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Figure 2: Phase space in nt and ĉ1t for the RD population process. c∗1(nt) is the REE(nt) value
of ĉ1t and the attractor to the learning process for a given nt. For c−1 < ĉ1t < c+1 (nt) the market-
based model is sufficiently accurate to earn profits at the expense of the fundamental strategy,
leading to a decline in nt. For ĉ1t < c−1 and for c+1 (nt) < ĉ1t < c̃1(nt) the fundamental strategy
dominates the market-based strategy so that from these regions nt is increasing. Above c̃1(nt),
the aggregate demand curve for the risky security is upward sloping and no positive price exists
to clear the market. The dashed lines reflect an alternate specification for which the current-
period implication of ĉ1t 6= c∗1(nt) is recognized when calculating the market-based model error.

The market is more tolerant of error, as reflected in c+
′

1 and c̃′1, when market-based trader are
increasingly uncertain in the face of large price deviations (developed in Section 2.6.2).

profits are zero at ĉ1t = c−1 (nt) because the market traders expect the risky asset to offer the

same return as the risk-free bond and thus there is no trading at the market clearing price.

A third relevant function included in the phase space is c̃1(nt). The expression ntR +

(1 − nt)(R − ĉ1t)κ2t appears in the denominator of the two pricing coefficients, b1(ĉ1t, nt) and

b2(ĉ1t, nt) as well as the denominator of ∆(ĉ1t, nt). The negative of the expression is the slope of

the risky asset’s aggregate demand function so that when it is zero the market demand function

is horizontal and different from zero, producing an infinite market clearing price (based on a

zero net supply). Let c̃1(nt) be the function

c̃1(nt) = R

(
1 +

nt
(1− nt)κ2

)
, (39)

producing ntR+ (1− nt)(R− c̃1(nt))κ2 = 0. For 0 < nt ≤ 1, c̃1(nt) is monotonically increasing

and everywhere above c+1 (nt). Combinations of c1t and nt approaching the function from below

or from the right generate pt(c1t, nt)→∞ and ∆(ĉ1t, nt)→∞.

Above c̃1(nt), the combination of nt and ĉ1t do not allow for a reasonable market clearing
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price. The precarious nature of the market in the vicinity of c̃1(nt) is the consequence of the

excessive influence of the market-based traders. As a group, they have an upward sloping

demand function in price. From the perspective of the market-based traders, an increase in

the price is interpreted as an indication of good news about the underlying dt+1, increasing

demand. At ĉ1t = c∗1(nt), the market-based model correctly accounts for the influence of the

market-based trader population on the price. As a consequence, the aggregate demand for the

risky asset remains downward sloping in pt. For ĉ1t > c∗1(nt), the market-based model projects

too large a deviation in dt+1 based on the observed pt. The market-based traders thus take too

large a position relative to the underlying reality. For ĉ1t > c̃1(nt), the position produces an

upward-sloping aggregate market demand function.9

The traders themselves cannot be relied upon to recognize dangerous market conditions

introduced by their own belief. Implicit in the trader’s use of ĉ1t is that it is a reasonable

approximation of c1(nt) for the current unobserved nt. For any ĉ1t ∈ (R,R/β] there exists

n1 and n2, 0 < n1 < n2 ≤ 1 for which ĉ1t = c̃1(n1) and ĉ1t = c∗1(n2). The market-based

traders’ belief that c1t = ĉ1t is reasonable if the unobserved nt is near n2 but disastrously

wrong, generating substantial mispricing, if nt is near n1. The greater distances between c∗1(nt)

and c+1 (nt) and between c+1 (nt) and c̃1(nt) as nt increases reflect a market more tolerant of

trader error.

Given nt, c
∗
1(nt) is an attractor for ĉ1t. For ĉ1t between c−1 (nt) and c+1 (nt), E(∆(ĉ1t, nt)) < 0

so that nt tends to decline. In this range, the market-based model, while not necessarily perfectly

correct for extracting information from the price, is more accurate than the average fundamental

trader relying on a noisy signal. Outside this range, with ĉ1t < c−1 or c+1 (nt) < ĉ1t < c̃1(nt),

the inaccuracy in the market-based model is large enough that the user of the fundamental

information expects to earn profits at the expense of the market-based traders and therefore nt

tends to increase in this region.

All four functions of the phase space radiate out from the point nt = 0 and ĉ1t = R but

because of the discontinuity at nt = 0, none take a value of R at nt = 0. Therefore, though the

four functions come arbitrarily close, they never intersect. The failure of c∗1(nt) to intersect with

either c−1 (nt) or c+1 (nt) graphically captures the absence of a fixed point to the RD dynamic

9As an alternate interpretation, for ĉ1t > c∗1(nt), the market-based model can be seen as underestimating the
influence of the market-based traders on the price since, for ĉ1t < R/β, there exists n > nt such that ĉ1t = c∗1(n).
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system.

2.6 Bounded Rationality

How closely the traders adhere to rationality strongly influences the near-term evolution and

asymptotic characteristics of the market. Constraints on the parameters reflect traders making

full use of the information and knowledge of price determination to impose rationality on beliefs

and behavior. Relax these conditions and the market is no longer constrained to exhibit features

of the rational expectations equilibrium. Features of the boundedly rational market are thus

self-fulfilling.

Considered analytically in this section and computationally in the following section are

model treatment variations based on (i) the consequence of allowing ĉ2t 6= c∗2(ĉ1t), both with and

without appropriate accommodation by the fundamental traders, (ii) the presence or absence

of a fixed point as determined by the population process, and (iii) memory length as captured

by λt, and µt.

2.6.1 Knowing fundamental traders

The fundamental traders hold beliefs consistent with the market so long as the market produces

b1t + φb2t = φ/(R− φ). The condition is violated when ĉ2t 6= c∗2(ĉ1t). The disruption to pricing

is profound when the fundamental traders try to incorporate the deviation from proper pricing

into their beliefs.

As previously asserted, traders aware of the market and its structure can deduce that c0 = 0

regardless of the unobservable nt. They may also incorporate a feature of the REE(nt) by

imposing ĉ2t = c∗2(ĉ1t) according to (23). Let b2(nt, ĉ1t) represent the market clearing value of

b2 with ĉ1t set freely but ĉ2t = c∗2(ĉ1t). This REE(nt) constrained b2(nt, ĉ1t) has up to three roots

of which only one is real at any particular value of nt ∈ (0, 1]. Naturally, b1t = φ/(R−φ)−φb2t

completes the pricing equation.

For R < ĉ1t < R/β, Figure 3 includes an example of the b2(nt, ĉ1t) solution. Let ñ represent

the value of nt such that ĉ1t = c̃1(nt) so that ñ(ĉ1t) = c̃−11 (ĉ1t). For nt ∈ (ñ, 1], b2(nt, ĉ1t) is

increasing as nt declines with b2(nt, ĉ1t) → +∞ as nt → ñ(c1). For the invalid price region

n ∈ (0, ñ), b2(nt, ĉ1t) is negative.
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(a) b(nt, ĉ1t) (b) b2(nt, ĉ1t, ĉ2t) evaluated at ĉ2t = c∗2(ĉ1t)

(c) b2(nt, ĉ1t, ĉ2t) evaluated with ĉ2t > c∗2(ĉ1t) (d) b2(nt, ĉ1t, ĉ2t) evaluated with ĉ2t < c∗2(ĉ1t)

Figure 3: Real roots of b2(nt, ĉ1t) and b2(nt, ĉ1t, ĉ2t) in the presence of fundamental traders able
to account for the deviation from b1t + φb2t = φ/(R − φ). R = 1.02, φ = 0.5, and σε = σe = 1.
With c1 = 1.1 then ñ(1.1) = 0.034. The b2(nt, ĉ1t) solution is included in each frame (dashed
line). For ĉ2t = c∗2(ĉ1t), for all values of nt, one of the roots of b2(nt, ĉ1t, ĉ2t) is equal to the root
of b2(nt, ĉ1t). For ĉ2t > c∗2(ĉ1t), the point of tangency that ensures continuity in the roots of
b2(nt, ĉ1t, ĉ2t) that match the root of b2(nt, ĉ1t) is lost. For ĉ2t < c∗2(ĉ1t), a gap opens between
the two points of intersection in two of the roots tracing b2(nt, ĉ1t).
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Market-based traders unaware or uninterested in imposing ĉ2t = c∗2(ĉ1t) introduce deviations

from b1t + φb2t = φ/(R − φ). Consider a sophisticated fundamental trader able to account for

these deviations.10 Let b2(nt, ĉ1t, ĉ2t) represent the market clearing value of b2 with both ĉ1t and

ĉ2t set freely. The unconstrained b2(nt, ĉ1t, ĉ2t) has five roots. For nt > nr, where nr ∈ (ñ, 1),

only one of the roots is real. For nt ≤ nr, up to three of the roots are real, producing three

possible market clearing prices.

Figure 3 highlights the challenges in identifying market clearing price produced by this sce-

nario. Rather than imposing market discipline, the sophisticated fundamental traders exploiting

market-based trader error increase intractability with possible multiple market clearing prices

depending on the state.

As seen in frame 3b, evaluated at ĉ2t = c∗2(ĉ1t), one of the three real roots of b2(nt, ĉ1t, ĉ2t)

coincides with the real root of b2(nt, ĉ1t). The other two other roots are real for values of

nt ∈ (0.034, 0.22) starting at a single point at nt = 0.22 and bifurcating with one branch

increasing as nt declines and the other decreasing. The denominator of b2(nt, ĉ1t) is linear in

nt, crossing zero once at ñt. The denominator b2(nt, ĉ1t, ĉ2t) is a binomial in nt and crosses zero

twice. This explains the additional root converging to +∞ as nt → 0.065 from above.

For ĉ2t 6= c∗2(ĉ1t), the three real roots do not always coincide with the constrained solution

for a range of nt. As depicted in frame 3c, for ĉ2t > c∗2(ĉ1t), since the roots do not intersect, to

maintain b2(nt, ĉ1t) over the range of nt requires jumping from one root to another. For ĉ2t <

c∗2(ĉ1t) seen in frame 3d, there is a range over which the two roots most closely approximating

b2(nt, ĉ1t) become imaginary. The only remaining real root produces a b2 that declines as nt

declines.

2.6.2 Concurrent conditional variance

Another challenge for the traders is how to evaluate the error associated with forecasting the

payoff, a component of submitted demand. The error variance can be derived analytically

for each forecast strategy only with knowledge of the true nt-dependent pricing relationship.

Equations (25) and (26) capture the REE(nt) values while (36) is driven by the data. The

ratio σ∗F (n)2/σ∗M (n)2 is monotonically increasing in n. At the default simulation parameter

10Here, the fundamental traders exploit deviations from b1t + φb2t = φ/(R− φ). To do so, they need to know
the correct α∗(nt), a level of knowledge not granted to them outside of this subsection.
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values considered in Section 3, the ratio ranges from 1.52 to 3.08 for increasing n ∈ (0, 1]. In

simulation, whether the traders employ (25) and (26) or (36) to compute conditional variance

has negligible effect since both estimates track closely to the REE(nt) values.

The inconsequence follows from the fact that in both computations, the conditional variance

is determined independent of the current market realization. By (36), κ̂t is determined by events

up to t−1 while (25) and (26) presume a price consistent with REE(nt). Both formulas prevent

the traders from using the current market realization as an input into the uncertainty. With κt

in the denominator of both c+1 and c̃1, an increase in relative uncertainty among the employers

of the market-based strategy decreases the market-based traders’ price impact by decreasing

the size of their position.

To incorporate this uncertainty, allow the traders to incorporate the uncertainty produced

from their own error. For ĉ2t = c∗2(ĉ1t), but ĉ1t 6= c∗1(nt), the conditional variances of (25) and

(26) become

σ2F (nt, ĉ1t) =

(
(1− β)

(
R

R− φ

)2

+ b22(nt, ĉ1t)

)
σ2ε (40)

σ2M (nt, ĉ1t) =

((
R

R− φ
− ĉ1tb2(nt, ĉ1t)

)2

+ b22(nt, ĉ1t)

)
σ2ε , (41)

reflecting the dependence of the market-based strategy on the accuracy of the employed fore-

cast model parameters. Larger estimates of c1t feed greater market-based trader uncertainty,

attenuating market-based trader demand. The dashed lines designated c+
′

1 and c̃
′
1 in Figure 2

reflect the greater stability in the market as each is everywhere above the respective c+1 and c̃1.

There is a value n̄
′

such that for nt > n̄
′

the invalid price region does not exist. Thus, regardless

of how large is ĉ1t > R, there exists a positive market clearing price. Similarly, there is a value

of n+
′

such that for nt > n+
′

the market-based strategy is always profitable.

3 Simulations

Computational analysis reveals properties of the market model not accessible using analytical

tools. Simulations facilitate analysis of the impact of different implementations of bounded

rationality.

Let p1t , the strong-form efficient market price, be the standard against which the market
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Table 1: Simulation parameter settings

Simulation Figures nt process δ or ρ λ µ ĉ2t σ̂kt
1 4 & 5 DCD 10 1/t 1/t c∗2(ĉ1t) exp

2 6 RD 0.01 1/t 1/t c∗2(ĉ1t) exp

3 7 RD 1 1/t 1/t c∗2(ĉ1t) exp

4 8 RD 0.05 1/t 1 c∗2(ĉ1t) σ∗(nt)

5 9 RD 0.01 0.01 1/t c∗2(ĉ1t) exp

6 10 RD 0.01 1/t 1/t estimate exp

Shared Parameters: R = 1.02, φ = 0.5, σε = σe = 1⇒ β = 1/2

price is evaluated. Let |pt − p1t | be the measure of market inefficiency. In general

pt − p1t = (b1t + φb2t − φ/(R− φ))dt + (b2t − 1/(R− φ))εt+1. (42)

Equation (42) reveals two sources of deviation from efficiency. The condition b1t + φb2t =

φ/(R − φ), producing zero for the first term, requires only ĉ2t = c∗2(ĉ1t) without constraint

on ĉ1t. To generate b∗2(nt) → 1/(R − φ) in the second term additionally requires ĉ1t = c∗1(nt)

and nt → 0. A non-zero value in the first term indicates market-based trader error induced

mispricing of public and private information. Non-zero values in the second term reflects a failure

by the market to set price to fully reflect dt+1, allowing dt to enter into price determination. As

reference, consider a market populated by only fundament traders. In this case,

pFt − p1t = −
(

1− β
R− φ

)
εt+1

All simulations share a starting value, n0 = 0.75 and the parameter values R = 1.02,

φ = 0.5, and σε = σe = 1 so that β = 1/2. Pre-simulation learning on the market-based

model takes place on 200 observations generated using a fixed nt = n0. At these parameters,

Stdev(pFt − p1t ) = 0.96.

Figures 4 through 10 display examples of the evolution of endogenous parameters typical of

the treatment. To aid direct comparison, each figure is based on the same underlying randomly

generated {dt} series.
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3.1 Level population dynamics

The local stability of the fixed point under the DCD implementation of a LPD is assured if the

traders employ µt = 1/t in their performance updating. Figure 4 shows the early convergence

of the system towards the fixed point values of the respective parameter. Figure 5 shows the

asymptotic properties of the convergence. The early evolution includes periods of high volatility

in the pricing error each time ĉ1t > c+1 (nt). Asymptotically, the variance of the pricing error

appears uniform as ĉ1t → c∗1(n
fp).

Increasing ρ has two effects on the asymptotic position of the market. Increasing ρ decreases

nfp. This moves the point of attraction deeper into a region, increasing the price impact of

market-based model error, as reflected by the narrowing of the distance between c∗1(nt) and

c̃1(nt) in Figure 2. Also, the greater sensitivity to differences in performance increases the

magnitude of the swings in nt around nfp as a consequence simply of the random dividend

process. The combination increases the time it takes for the market to converge on the fixed

point.

Similar to increasing ρ, shortening memory of past performance also generates large swings

in nt. The difference is that the swings do not decrease with the accumulation of experience. In

order to obtain convergence to the fixed point with µt = 1 requires dampening the population’s

response to observed performance differentials, accomplished here with ρ < 0.5. Otherwise,

without the tempering of response that comes with the accumulation of knowledge, the traders

are incapable of preventing the low realizations of nt that put the market in the invalid price

region.

3.2 Innovation population dynamics

The RD process offers a point of attraction at nt = 0 and ĉ1t = R but not a fixed point. If the

system were able to travel along c∗1(nt) as nt → 0, then the market would produce increasing

price efficiency with pt → p1t .

3.2.1 Baseline

The baseline setting imposes the REE(nt) solution parameter constraints, ĉ0t = 0 and ĉ2t =

c∗2(ĉ1t) on market-based trader behavior. The baseline also employs the long memory of least-
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Figure 4: DCD produces convergence towards a REE(nfp) fixed point with nfp = 0.357. Top
left plots c1t (green), c∗1(nt) (red), and c+1t(nt) (cyan). Top right plots φb2t with a solid line at
φb2t = φ/(R − φ). Lower left plots nt. Lower right plots pt − p1t . In all frames, dashed lines
indicate fixed point values, c∗1(n

fp), b∗2(n
fp), and nfp as appropriate.
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Figure 5: DCD asymptotic behavior around a REE(nfp) fixed point with nfp = 0.357. Top left
plots ĉ1t (green) and c∗1(nt) (red). Top right plots φb2t with a solid line at φb2t = φ/(R − φ).
Lower left plots nt. Lower right plots pt − p1t . In all frames, dashed lines indicate fixed point
values, c∗1(n

fp), b∗2(n
fp), and nfp as appropriate.
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squares learning with λt, µt, and θt all set to 1/t. Additionally, a low δ produces a slow

evolution in the population towards the higher performing strategy. These features make the

baseline setting conducive to asymptotic convergence towards the point of attraction. Observed

in Figure 6, the system adheres closely to c∗1(nt) as nt → 0. The estimated ĉ1t remains well

below c̃1(nt), also included in the plot. Despite this apparent success in convergence, the system

fails to produce pt → p1t . The system instead generates clustered volatility in the pricing error

with no indication of increased accuracy over time. The magnitude of the pricing errors coincide

with the magnitude of deviation in φb2t from φ/(R−φ). The b2t deviations, driven by deviations

in ĉ1t from c∗1(nt), are not independent across time but instead produce a time-series with a

highly persistent estimated AR(1) coefficient of 0.998.

3.2.2 Responsiveness

Increasing δ generates fairly regular oscillations in nt while preserving an underlying process of

convergence towards the point of attraction. Figure 7 captures this phenomenon. In contrast

to the baseline, the swings in c∗1(nt) are larger than the variance in c1t. The highly responsive

population produces exaggerated changes in the relative popularity of the two strategies. These

changes outpace the slow improvement in ĉ1t as t becomes large.

Major price disruptions occur when there is a mis-match between ĉ1t and nt. The swings

produced by a large δ would seem to invite such outcomes but instances fail to materialize.

Convergence continues without major price disruptions because the system self-regulates the

rate of decline in nt so that it does not outpace the rate of adjustment in ĉ1t. Also, the incre-

mental changes in nt within the cycles are relatively small, so that the system delivers feedback

of an inconsistency between believes and nt through the profits awarded to the fundamental

traders without nt ever getting too far out of line with beliefs.

3.2.3 Memory in performance

The simulation presented in Figure 8 substitutes µt = 1 for the long memory of µt = 1/t.

With this change, the treatment closely resembles the model analyzed using the phase space

presented in Figure 2.11 Short memory halts the convergence of nt towards zero, with nt instead

11To make the comparison complete, and with no discernible impact on the simulations, the traders measure
conditional variance using (25) and (26) rather than the experience-driven (36).
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Figure 6: Baseline RD produces smooth convergence nt → 0 with ĉ1t → c∗1(nt). Top left
plots ĉ1t (green), c∗1(nt) (red), and c̃1t(nt) (blue). Top right plots φb2t with a solid line at
φb2t = φ/(R− φ). Lower left plots nt. Lower right plots pt − p1t .
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Figure 7: RD with high sensitivity to performance, with δ = 1, produces oscillations in nt
overlaying its general decreasing trend. Top left plots ĉ1t (green), c∗1(nt) (red), and c̃1t(nt)
(blue). Top right plots φb2t with a solid line at φb2t = φ/(R − φ). Lower left plots nt. Lower
right plots pt − p1t .
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hovering around 0.39. At time t, the dt+2 component of pt+1 remains unpredicted by the market.

Payoffs are thus not perfectly forecastable. With a short memory, profit realizations from the

unpredictable component of pt+1 generate large incremental movement in nt. This movement

undermine the learning of ĉ1t and ultimately the convergence of nt. With large jumps in nt,

incompatibility between nt and ĉ1t arise without prior performance feedback that could prevent

the over-use of the market-based model.

While both increasing δ and shortening memory for performance tend to increase swings in

nt, each acts differently on the system. As observed, increasing δ generates cycles in nt that

impact pricing but do not threaten large pricing errors, asymptotically. Short memory produces

sudden jumps in nt rather than smooth swings. Substantial price errors occur when a suddenly

low nt is incompatible with the concurrent ĉ1t. With short memory a permanent feature of

the population, these instances of pricing error do not decline with accumulated experience and

thus are a permanent hinderance to convergence.

The stabilization of the system around a fixed n gives the system the appearance of pos-

sessing a fixed point in the underlying dynamic system, similar to that produced by a LPD

process.

3.2.4 Memory in model

A constant gain in the updating of the market-based model parameters ensures persistence of

error in the market-based model. With λt = 0.01, Figure 9 reveals that after a period of learning,

ĉ1t settles into a stable distribution relative to c∗1(nt), moving over time to track the slow

evolution in c∗1(nt). For sufficiently large nt, the narrow distribution in ĉ1t favors the market-

based model. The constant gain becomes a liability as nt converges towards zero, the distribution

in ĉ1t is at some point too wide to remain between c−1 and c+1 . The resulting mispricing rewards

the fundamental model, reversing the progress in nt. The measured π̂F−π̂M remains positive for

some time after the return to near-fundamental pricing until the accumulation of small profits

earned by the market-based strategy outweighs the substantial fundamental trader profit earned

during the period of mispricing.
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Figure 8: RD with µt = 1 stabilizes n at a value above zero. The estimate ĉ1t is stable over
time while c∗1(nt) fluctuates rapidly with the fluctuations in nt. Top left plots ĉ1t (green), c∗1(nt)
(red), and c+1t(nt) (cyan). Top right plots φb2t with a solid line at φb2t = φ/(R− φ). Lower left
plots nt. Lower right plots pt − p1t .
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Figure 9: RD with λt = 0.01 generating small but consistent model error that produces long
periods of near efficient pricing with inevitable bursts of mispricing. Top left plots ĉ1t (green),
c∗1(nt) (red), c+1t(nt) (cyan), and c̃1t(nt) (blue). Top right plots φb2t with a solid line at φb2t =
φ/(R− φ). Lower left plots nt. Lower right plots pt − p1t .
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3.2.5 REE(nt) conditions

Relax the rationality of the trader by decoupling ĉ2t from c∗2(ĉ1t) so that the market-based strat-

egy estimates both c1t and c2t through the learning process of (34) and (35). The consequences

are twofold. Possible inconsistency in trader estimation such that c2t 6= c∗2(c1t) is a source of

error to the market-based model, resulting in a nonzero coefficient on dt in (18), that feeds back

into the price such that b1t + φb2t 6= φ/(R − φ). The result is a non-zero coefficient on the

first term of the price deviation equation, (42). That b1t + φb2t 6= φ/(R − φ) also undermines

the fundamental traders’ understanding of price formation as they rely on this feature of price

in forming expectations. The consequence of b1t + φb2t 6= φ/(R − φ) is also reflected in the

conditional forecast error in (17) producing non-zero coefficient on φdt.

Figure 10 includes frames for ĉ2t on the left and of b1t + φb2t on the right. The setting

preserves the steady decline in nt, suggesting continued improved accuracy in the market-based

model despite the need to estimate two parameters with only minimal hindrance. Relative to

the base simulation, price deviations from the efficient price show greater volatility with greater

clustering that coincides with deviations from bt1 + φb2t = φ/(R− φ) and φb2t = φ/(R− φ).

4 Conclusion

The developed market model contains a tension between a strategy of relying on imperfect

fundamental information and that of seeking to optimally exploit the information content of

market phenomena. Unique to this model, the market-based alternative to the fundamental

information is capable of earning a profit while improving market efficiency. The finding is that

the market cannot support exclusive use of a single information source in equilibrium. Em-

ploying both fundamental and market information is supported, either as equilibrium behavior

that tolerates unequal return performance or in a perpetual state of disequilibrium produced by

profit-chasing behavior. The latter is found to be capable of producing substantial pricing error,

depending on the behavior of the market participants. Data overcomes deficiencies in trader

knowledge when traders rely on increasingly long histories to inform their decisions, producing

a well-behaved, though not necessarily efficient, market. Regimes in which traders place greater

emphasis on more recent outcomes undermine market efficiency and allow other deficiencies to

affect the price. Responding to recent performance differentials also masks the differences in
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Figure 10: RD with ĉ2t allowed to differ from c∗2(ĉ1t) producing error in the pricing of observable
and unobservable components of price. Top left plots ĉ1t (green) and c∗1(nt) (red). Top right
plots φb2t with a solid line at φb2t = φ/(R − φ). Middle left plots ĉ2t (green) and c∗2(nt) (red).
Middle right plots b1 + φb2t. Lower left plots nt. Lower right plots pt − p1t .
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the underlying process driving popularity as the system seems to settle around a fixed mix of

fundamental and market-based traders independent of the process.

How closely agents adhere to the constraints imposed by rationality alters the behavior of the

market. Greater rationality among the market-based traders improves their ability to extract

information from the price and improves market performance. Limits on learning may improve

near-term performance in a given state but leads to evolution in the state that prevents the

market from achieving anything approaching asymptotic efficiency. Greater rationality among

the fundamental traders has the potential to undermine market performance to the extent that

it builds on inconsistencies already present in the market-based trader behavior.
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A Appendix: Proof of Proposition 3

Proof. Under the regularity conditions (see Marcet and Sargent (1989b), p342-343), the stability

of the learning process with λt = 1/t can be established from the stability of T (c) − c where

T (c) maps c into the projection coefficients. From (22) and (23),

c1 =
R

R− φ
1

b2

and

c2 =
φ

R− φ
(R− c1)

so that, according to (13),

T (c1) =
nR+ (1− n)(R− c1)κ2

nβ

and

T (c2) = − φ

R− φ

(
nR(1− β) + (1− n)(R− c1)κ2

nβ

)
The eigenvalues of the Jacobian matrix, ∂[T (c)−c]∂c , are

{
−1, −1− 1−n

n
1
βκ

2
}

, which are both

less than zero. The learning process is thus locally stable so that Pr(|ct − c∗| > ψ)
a−→ 0 for

ψ > 0.
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