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 Abstract 32 

Species of Alexandrium produce potent neurotoxins termed paralytic shellfish toxins, and are 33 

expanding their ranges worldwide, concurrently with increases in sea surface temperature. 34 

The metabolism of molluscs is temperature-dependent, and increases in ocean temperature 35 

may influence both the abundance and distribution of Alexandrium and the dynamics of toxin 36 

uptake and depuration in shellfish. Here, we conducted a large-scale study of the effect of 37 

temperature on the uptake and depuration of paralytic shellfish toxins in three commercial 38 

oysters (Saccostrea glomerata and diploid and triploid Crassostrea gigas, n=252 per 39 

species/ploidy level). Oysters were acclimated to two constant temperatures, reflecting current 40 

and predicted climate scenarios (22 and 27 °C), and fed with the paralytic shellfish toxin-41 

producing species Alexandrium minutum. While the oysters fed on Alexandrium minutum in 42 

similar quantities, concentrations of the toxin analogue GTX1,4 were significantly lower in 43 

warm-acclimated S. glomerata and diploid C. gigas after 12 days. Following exposure to A. 44 

minutum, toxicity of triploid C. gigas was not affected by temperature. Generally, 45 

detoxification rates were reduced in warm-acclimated oysters. The routine metabolism of the 46 

oysters was not affected by the toxins, but a significant effect was found at a cellular level in 47 

diploid C. gigas. The increasing incidences of Alexandrium blooms worldwide are a challenge 48 

for shellfish food safety regulation. Our findings indicate that rising ocean temperatures may 49 

reduce paralytic shellfish toxin accumulation in two of the three oyster types, however, they 50 

may persist for longer periods in oyster tissue.  51 
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Introduction 52 

Increases in ocean temperature have widespread effects on the distribution, abundance, 53 

physiology and interactions of marine species (IPCC, 2013; Vermeer and Rahmstorf, 2009; 54 

Poloczanska et al., 2012; Fig 1a). In Australia, the increase in ocean temperature at mid-55 

latitudes of up to 2.0 °C over the past 100 years (Thompson et al. 2009; Ridgway et al. 2012) 56 

is significantly greater than the global mean, and is related to a southern range extension of 57 

the East Australian Current. The majority of animals within the world’s oceans are ectotherms 58 

that are influenced directly by increases in ambient temperature. Temperature increases lead 59 

to thermodynamic changes in physiological function, and the ability of organisms to cope 60 

with these changes will depend on the thermal sensitivity of thermal performance curves and 61 

their plasticity resulting from developmental and reversible acclimation, or genetic adaptation 62 

(Seebacher et al. 2010; Wilson et al., 2010; Hoffmann & Sgrò, 2011; Munday et al., 2012; 63 

Seebacher & Franklin, 2012). For sessile intertidal organisms, acclimation is the most feasible 64 

response to rapid ocean warming (Harley, 2011).  65 

 66 

Ocean temperature change can also indirectly impact marine invertebrates due to its effects on 67 

phytoplankton distribution and abundance (Hobday et al., 2006; Hallegraeff, 2010; Thomas et 68 

al., 2012), specifically, changes to the abundance and distribution of harmful algal bloom 69 

forming taxa (Glibert et al., 2014). The increase in temperature in the East Australian current 70 

region is likely to cause an earlier timing of peak production and an increase in the seasonal 71 

window of species of Alexandrium and Gymnodinium catenatum (Hallegraeff, 2010), which 72 

produce paralytic shellfish toxins (PSTs). PSTs produced by species of Alexandrium include 73 

more than 20 known analogues, of which saxitoxin (STX), neosaxitoxin (NEO) and the 74 

gonyautoxins (GTX1, GTX2, GTX3, GTX4) are the most potent (Llewellyn et al., 2006). 75 

PSTs have severe impacts on humans, and a broad range of marine organisms, including 76 
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mammals, birds, fish, molluscs and crustaceans, by selectively blocking voltage-gated Na+ 77 

channels in excitable cells, affecting neural impulse generation (Catterall, 1980).  In the 78 

context of human wellbeing, negative effects of climate change on valuable food species are 79 

of particular concern. Global annual mollusc food production is approximately 2.1 x 10
7
 t, of 80 

which oyster production comprises around 22% (FAO, 2014). Pacific oysters (Crassostrea 81 

gigas) are produced worldwide, and in Australia the indigenous Sydney rock oyster, 82 

Saccostrea glomerata, is one of the main species produced (Fig. 1c). Since 2005, there has 83 

been an increase in blooms of Alexandrium in south eastern Australian coastal waters (Farrell 84 

et al., 2013; Fig. 1b), which have resulted in over 50% of algal-related shellfish harvest area 85 

closures. 86 

 87 

The thermal dependence of bivalve physiological responses to Alexandrium, and the way in 88 

which this impacts the total PST concentrations in species, has never been assessed. This 89 

information is crucial given the current and predicted rates of ocean temperature increases. 90 

Based on experimental feeding studies, variation between bivalve species in the rate of and 91 

the total uptake and depuration of PSTs has been found (Bricelj et al., 1990; Sekiguchi et al. 92 

2001; Chen and Chou, 2002; Blanco et al., 2003; Lassus et al., 2005; Li et al., 2005; Kwong 93 

et al., 2006; Asakawa et al., 2006; Hégaret et al., 2007; Lassus et al., 2007; Galimany et al., 94 

2008; Murray et al., 2009; Haberkorn et al., 2011; Contreras et al., 2012; Fernandez-Reiriz et 95 

al., 2013; Bricelj et al., 2014; Haberkorn et al., 2014). This was hypothesized to be due to 96 

differences in the feeding level on Alexandrium among bivalve species (Hégaret et al., 2007; 97 

Contreras et al., 2012). Some studies have used relatively small samples sizes or pooled 98 

samples, which may not take into account the substantial differences found between bivalve 99 

individuals in PST toxin levels (Lassus et al., 2005; Kodama, 2010).   100 

 101 
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Our aim was to determine the temperature dependence of the dynamics of Alexandrium 102 

feeding, PST accumulation and depuration, and physiological and enzyme responses of 103 

oysters (S. glomerata and diploid and triploid C. gigas), using a large scale study, to take into 104 

account large individual variability. As the ploidy level in C. gigas has been shown to impact 105 

metabolic rate (Haberkorn et al. 2010, Guéguen et al. 2012), we tested both diploid and 106 

triploid C. gigas. We hypothesised that oysters held at a predicted higher temperature (27 °C) 107 

relative to their current range (22 °C), would not differ significantly in their rate of toxin 108 

accumulation, as they would acclimate their metabolic processes accordingly. To test these 109 

hypotheses, we temperature acclimated the oysters (n=252 per species/ploidy level) and fed 110 

them with cultures of toxic Alexandrium minutum over a period of 12 days. We examined 111 

toxin dynamics, routine metabolic rate and metabolic enzyme activity.  112 
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Materials and methods 113 

Study species and acclimation treatments 114 

Adult S. glomerata and diploid and triploid C. gigas were sourced from farms in Port 115 

Stephens, NSW, during September and October 2012, and all experiments were conducted at 116 

the NSW Dept. Primary Industries, Port Stephens Fisheries Institute. Sea surface temperatures 117 

at the time of collections were 18-19 °C. Shell size and body mass were measured before the 118 

experiment to ensure that the specimens were of marketable condition (see supplementary 119 

information Table S1). Oysters were cleaned to remove fouling and held in 400 L aerated 120 

tanks (ca. 100 individuals tank
-1

), containing 1 µm-filtered seawater from their estuary of 121 

origin (salinity ~ 35 g L
-1

). Over 5-7 days, tank water temperatures were gradually increased 122 

to either 22 or 27 °C (± 0.5 °C) and 100 oysters per genotype or species were held in each 123 

acclimation treatment. The oysters were held at the final constant acclimation temperatures 124 

for two weeks. Seawater changes took place every two days and no mortalities occurred 125 

during the acclimation period. 126 

 127 

Phytoplankton culture growth and maintenance 128 

All algal cultures were grown at 23 °C with a 12/12-h light:dark photoregime at 60 µm
2
 s

-1
. 129 

Non-toxic live feed comprising Isochrysis aff. galbana (CS-177), Pavlova lutheri (CS-182) 130 

and Chaetoceros muelleri (CS-176) were grown in f/2 medium (Guillard & Ryther, 1962). 131 

During the acclimation period (described above), the oysters were fed daily with a mixed 132 

algal diet of late exponential phase non-toxic feed (2 x 10
9
 cells oyster

-1
 day

-1
). Alexandrium 133 

minutum culture CS-324/16 was obtained from the CSIRO National Algae Culture Collection. 134 

This strain was originally isolated from Adelaide, South Australia. The toxin profile of the 135 

strain was characterized as containing primarily gonyautoxins GTX1,4 and low levels of 136 

GTX2,3 and STX (Negri et al., 2003). A. minutum cultures were grown in GSe medium and 137 
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harvested during late exponential phase. To confirm the presence of PSTs, two samples (200 138 

mL of ~200,000 cells mL
-1

, 400 mL of ~120,000 cells mL
-1

) of late exponential phase A. 139 

minutum were collected and centrifuged at 5,000 rpm. The supernatant was removed and the 140 

pellet was frozen at -80 °C for later quantification of toxins. 141 

 142 

Feeding experiments 143 

A. minutum feeding experiments were carried out in 200 L aquaria. For each species and 144 

temperature combination, 252 oysters were distributed randomly across 12 tanks (21 oysters 145 

tank
-1

), a total of 756 oysters. For 12 days, 6 tanks received a mixed non-toxic algal diet only. 146 

The remaining 6 tanks received the mixed algal diet, plus late exponential phase cultures of A. 147 

minutum (300 cells mL
-1

) were added three times daily. A. minutum cell concentrations in the 148 

tanks were checked twice daily. Salinity was ~35g L
-1

 and water temperatures were 149 

maintained at 22 °C and 27 °C ± 0.5 °C. Seawater changes took place every two days. Water 150 

samples were collected directly from each water tank, preserved with lugol’s iodine and 151 

examined, via light microscopy, in order to determine A. minutum clearance (feeding) rate by 152 

the oysters. A. minutum cells were added to maintain a minimum tank concentration of 300 153 

cells mL
-1

 to ensure maximum consumption (Bricelj et al, 1990, Murray et al., 2009). On day 154 

0, before introduction of the A. minutum, and on days 6 and 12, three oysters were collected 155 

from each tank. This was equivalent to 36 individuals per time point for each oyster 156 

species/ploidy level. Following the seawater change on day 12, the remaining oysters of all 157 

treatments were fed the mixed algal diet only to allow depuration of toxins. Depuration was 158 

carried out for 7 days and further sampling (3 oysters tank
-1

) was carried out on days 13 and 159 

19. At the time of sampling, body mass, shell length, breadth and height of each oyster were 160 

recorded. After euthanising, the shell and tissue wet mass were also recorded for each oyster, 161 

and tissue was retained at -80 °C for toxin analysis. 162 
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 163 

Toxin analysis 164 

The PST content was measured in 300 individual oysters (n = 9 oysters per toxic treatment 165 

and n=30 non-toxic control oysters), according to Lawrence et al. (2005) and Harwood et al. 166 

(2013). Briefly, homogenised (Omni Tissue Homogeniser, Omni International, USA) oyster 167 

tissue was vortexed with 3 mL of 1% acetic acid solution. The mixture was heated at 100 °C 168 

for 5 min, re-vortexed and then cooled and incubated at 4 °C for 5 min. Following 169 

centrifugation (10 min at 4,500 rpm), the supernatant was collected. The pellet was re-170 

suspended with a further 3 mL of 1% acetic acid and re-centrifuged (10 min at 4,500 rpm). 171 

The resulting supernatant was added to the original quantity and diluted with deionised water 172 

to 10 mL. The A. minutum cell pellet was extracted according to the same method with slight 173 

modifications. Initially, the cell pellets were freeze-thawed to ensure cell lysis. Also, after 174 

both supernatants were combined, the dilution step to gain a final volume of 10 mL was 175 

excluded to gain a higher toxin yield. Prior to analysis, a SPE C18 clean up (GracePure SPE 176 

C18-Max 500 mg/3 mL, Alltech Associates (Australia) Pty Ltd) was carried out on 1 mL of 177 

each extract. The pH of the final 4 mL effluent was adjusted to 6.5 with 1 M NaOH. 178 

 179 

Quantification of toxins by ultra-performance liquid chromatography (UPLC) and 180 

fluorescence detection (FD) was carried out as per Harwood et al. (2013). Analytical certified 181 

reference standards were sourced from the National Research Council of Canada. The UPLC 182 

chromatogram of the extract from the A. minutum pellet had two peaks that corresponded to 183 

the analogues GTX1,4 and a third peak that fit the retention times of both GTX1,4 and 184 

GTX2,3 (refer supplementary information; Fig. S1b). The GTX1,4 concentration was 185 

determined from the second peak (Fig. S1b), while the concentration of GTX2,3 was verified 186 

by an additional peroxide oxidation (Harwood et al., 2013). Extracts from oysters that had not 187 
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been exposed to A. minutum were spiked with known quantities of GTX1,4 and GTX2,3, to 188 

estimate the method’s recovery factor. Recovery factors were incorporated into the final 189 

estimates of toxin levels.  190 

 191 

Routine metabolic rate  192 

On day 0 and day 12, the routine metabolic rate (RMR) of individual oysters (3 oysters tank
-1

) 193 

was measured using a closed respirometry system according to Parker et al. (2012). In total 194 

the measurement procedure was carried out on 216 individual oysters (n=9 oysters treatment
-1

 195 

sampling point
-1

). Measurements were carried out at either 22 °C or 27 °C, depending on the 196 

treatment temperature. During RMR measurements, one control (non-toxic diet) diploid C. 197 

gigas (27 °C) and one replicate (toxic diet) S. glomerata (27 °C) failed to respire during the 198 

analysis. RMR represents the level of metabolism for normal, unrestricted activity. In this 199 

case, the valve of the oysters was unhindered, and the shells could open freely. Digestion was 200 

ongoing, evidenced by the production of faecal pellets during the measurement process. This 201 

differed from measurements of standard or resting metabolic rate, where minimal activity, 202 

independent of digestion, is quantified (Willmer et al., 2009) A fiber-optic probe (PreSens 203 

dipping probe DP-PSt3, AS1 Ltd, Palmerston North, New Zealand) was fitted to an airtight 204 

500 mL chamber. Individual oysters (displacement volume < 50 mL) were submerged gently 205 

in seawater within the darkened chamber. Estimates of RMR were based on the time taken for 206 

the percentage oxygen saturation of seawater in the chamber to reduce from 100 to 80%, 207 

because of respiration by the oyster. The oxygen probe was calibrated based on a two-point 208 

calibration (0% and 100%). Values for RMR (mg O2 g
-1

 DTM h
-1

) were calculated as 209 

 210 

��� = 	
��	×	∆	
��

∆	×	���    
(1) 211 

 212 
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where Vr (L) is the volume of the chamber minus the displacement volume of the oyster 213 

∆CwO2 (mg O2 L
-1

) is the measured change in oxygen concentration over time ∆t (h), and 214 

values were normalized to 1g of dry tissue mass (DTM, g). 215 

 216 

Metabolic enzyme activities 217 

After RMR measurements, the 216 individual oysters (n=9 oysters treatment
-1

 sampling point
-

218 

1
) were euthanised and 50 mg of tissue from the adductor muscle and digestive gland were 219 

dissected, placed in 1.5 ml Eppendorf tubes and flash frozen with liquid nitrogen. All samples 220 

were stored at -80 °C until further enzyme analysis. The remaining oyster tissue was freeze-221 

dried for 48hrs (Alpha 2-4 LSC plus, Martin Christ Gefriertrocknungsanlagen GmbH, 222 

Germany) to determine dry tissue mass (DTM). 223 

 224 

Activities of citrate synthase (CS), cytochrome c oxidase (COX) and the combined activity of 225 

lactate, glycine and β-alanine dehydrogenase (LDH), were measured as indicators of 226 

tricarboxylic acid cycle, mitochondrial electron transfer, and anaerobic ATP production, 227 

respectively. All assays were conducted according to published protocols (Seebacher et al. 228 

2003; Sinclair et al. 2006). Briefly, digestive gland or adductor muscle tissue (0.05g) was 229 

homogenised in nine volumes of extraction buffer (50 mmol l
–1

 imidazole/HCl, 2 mmol l
–1

 230 

MgCl2, 5 mmol l
–1

 ethylene diamine tetra-acetic acid (EDTA), 1 mmol l
–1

 reduced glutathione 231 

and 1% Triton X-100). All samples were kept on ice during homogenisation. For COX and 232 

CS assays, homogenates from digestive gland tissue, were further diluted by a factor of 10. 233 

All assays were measured spectrophotometrically in an UV/visible spectrophotometer 234 

(Ultrospec2100 pro, Biochrom, UK) with a temperature controlled cuvette holder (Seebacher 235 

et al., 2003). Each assay was performed in duplicate at two temperatures, which coincided 236 

with acclimation temperatures (22 and 27 °C). 237 
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Statistical analyses 238 

Clearance rate (CR) of A. minutum was calculated according to 239 

�� =
���	����	�	×	�


   (2) 240 

where Co and C are the initial and final A. minutum cell concentrations, respectively, V is the 241 

volume of suspension (holding tank volume) and t is time (Coughlin, 1969).  242 

On selected days (n=5 oyster species/ploidy level
-1

 treatment
-1

), the final cell concentration 243 

for each replicated was estimated over 24 hour periods, following tank seawater changes. 244 

Clearance rates were normalised to 1 g oyster tissue wet weight based on the mean values in 245 

Table S1 (Bricelj et al., 1990). To determine any significant difference between oyster 246 

species/ploidy level and acclimation temperature on clearance rates, data were analysed by a 247 

two-way permutation analysis of variance (ANOVA). 248 

 249 

In order to determine the effect of temperature on the accumulation and depuration of PSTs 250 

(GTX1,4 and GTX2,3) in oysters, we examined toxicity on day 12, the period of maximum 251 

exposure to A. minutum, and day 13, following 24 hours of the oysters receiving a non-toxic 252 

diet only (depuration). Analysis of PSTs in each oyster species/ploidy level was by two-way 253 

permutation ANOVA with exposure treatment (days 12 and 13, as above) and acclimation 254 

temperature as factors. 255 

 256 

Also on day 12, RMR data for each oyster species/ploidy level (n = 9 oysters treatment
-1

) 257 

were analysed by a two-way permutation ANOVA with diet (toxic or non-toxic) and 258 

acclimation temperature as factors. Enzyme activities were analysed (n = 9 oysters treatment
-

259 

1
) with a three-way permutation ANOVA with acclimation temperature and diet as factors and 260 

test temperature as a repeated measure. 261 

 262 
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All analyses were carried out in R (R.app GUI 1.63, 2012). Permutation analysis were carried 263 

out using the lmPerm package (Wheeler, 2014), Results are expressed as mean ± standard 264 

error mean (SEM). For all statistical analyses, the significance level was set at the p ≤ 0.05 265 

alpha-level. For each multifactorial analysis, the highest significant interaction was examined. 266 

Significant main effects were only examined when no significant interactions were reported. 267 

Post hoc analysis of means was by Tukey’s Honest Significant Difference (HSD). For 268 

analyses where nominal variables had only two levels, no post hoc analysis was carried out. 269 
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Results 270 

Uptake of A. minutum 271 

Temperature did not affect the rate at which the different oyster species/ploidy levels fed on 272 

toxic A. minutum (Fig. 2, Table 1, S2).  273 

 274 

Toxicity of A minutum and oysters 275 

The PST analogues GTX 1,4 (1,112 ± 208 ng mL
-1

) and GTX 2,3 (22.21 ± 4.01 ng mL
-1

) 276 

were found in the culture of A. minutum. These concentrations corresponded to 0.59 ± 0.08 pg 277 

GTX1,4 cell
-1

 and 0.012 ± 0.003 pg GTX2,3 cell
-1

. All oysters that were exposed to a toxic 278 

diet of A. minutum accumulated both GTX1,4 and GTX2,3 during the 12-day treatment (Fig. 279 

3). PSTs were not found in the control (non-toxic diet) or day 0 samples (data not shown). 280 

 281 

GTX1,4 concentrations were lower (exposure treatment × acclimation temperature; Tables 1 282 

and 2) in warm-acclimated diploid C. gigas (Fig. 3a) and S. glomerata (Fig. 3c) following 12 283 

days of exposure to A. minutum. Following 24 hours of receiving a non-toxic algal diet only, 284 

warm-acclimated diploid C. gigas (Fig. 3a) and S. glomerata (Fig. 3c) had slower 285 

detoxification of GTX1,4 (exposure treatment × acclimation temperature, Tables 1 and 2). 286 

GTX2,3 concentrations after the 12-day exposure treatment and 24-hour depuration process 287 

were unaffected by temperature for both of these species (Tables 1 and 2, Fig. 3b,d). 288 

 289 

GTX1,4 concentrations after the 12-day exposure treatment and 24-hour depuration process 290 

were unaffected by temperature for triploid C. gigas (Tables 1 and 2, Fig. 3e). Similarly, 291 

temperature did not influence concentrations of GTX2,3 in triploid C. gigas at the end of the 292 

12-day exposure to a toxic diet. However, following the 24-hour depuration treatment, 293 
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detoxification was reduced in warm-acclimated triploid C. gigas (exposure treatment × 294 

acclimation temperature interaction; Tables 1 and 2, Fig. 3f).  295 

 296 

Routine metabolic rate and metabolic enzyme activities 297 

Diet and acclimation temperature did not have a significant influence on RMR in diploid and 298 

triploid C. gigas (Tables 1 and 3, diploid C. gigas: Fig. 4a,b; triploid C. gigas: Fig. 4e,f). 299 

RMR was higher in warm-acclimated S. glomerata, independent of diet (Table 3, Fig. 4c,d). 300 

 301 

LDH activity was elevated in digestive gland tissue from warm-acclimated diploid C. gigas 302 

(Tables 1 and 4, Fig. S2). Lower LDH activity was observed in adductor muscle of diploid C. 303 

gigas exposed to a toxic diet (Table 5, Figure S3). 304 

 305 

CS activity was reduced in digestive gland tissues from warm-acclimated S. glomerata 306 

(Tables 1 and 4, Fig. S4). The acclimation temperature × diet × test temperature interaction 307 

was significant for LDH activity in adductor muscle samples from S. glomerata (Table 5, Fig. 308 

S5). The interpretation of this interaction was unclear based on very little discernable 309 

differences in the graphed results. However, samples from warm-acclimated oysters had 310 

greater LDH activity (Tables 1 and 5, Fig S5).  311 

 312 

Triploid C. gigas digestive gland samples had a reduced response for LDH and CS activities 313 

in warm-acclimated oysters (Tables 1 and 4, Fig. S6). Triploid C. gigas adductor muscle 314 

tissue had elevated LDH activity in warm-acclimated oysters at the 27 °C test temp 315 

(acclimation temperature × test temperature interaction) (Tables 1 and 5, Fig. S7), whereas CS 316 

and COX activities were reduced in the adductor muscle of warm-acclimated triploid C. gigas 317 

(Table 5, Fig. S7). 318 
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 319 

Where test temperature produced a significant main effect (Tables 4 and 5), the majority of 320 

increased responses were at 27 °C (LDH: diploid C. gigas adductor muscle (Fig. S3); CS: all 321 

oyster species/ploidy level digestive gland (Figs. S2, S4, S6), S. glomerata and triploid C. 322 

gigas adductor muscle (Figs. S5, S7); COX: S. glomerata and triploid C. gigas adductor 323 

muscle (Figs. S5, S7). LDH activity for triploid C. gigas digestive gland was elevated at the 324 

22 °C test temperature (Table 4, Fig. S6).  325 
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Discussion 326 

Filter-feeding bivalves face a combination of stressors from climate change, because the 327 

metabolic and physiological responses of these ectotherms are modulated by water 328 

temperature (Hawkins, 1995, Angilletta et al., 2002, Peck et al., 2004, Clarke and Fraser, 329 

2004), and also because the distribution and abundance of toxin producing dinoflagellate 330 

species are likely to change (Hallegraeff, 2010, Glibert et al., 2014). South-eastern Australia 331 

in particular is considered a climate change “hotspot” due to decadal increases in temperature 332 

of ~0.2 °C since the 1940s, accompanied by a southern range expansion of the Eastern 333 

Australian Current (Ridgway, 2007, Ridgway & Hill, 2012; Wu et al. 2012), and has a 334 

substantial bivalve shellfish aquaculture industry.  335 

 336 

We conducted the first large-scale experiment examining toxin uptake and depuration 337 

dynamics in three oyster species/ploidy levels to determine the combined impact of PSTs and 338 

temperature. While differences in the feeding efficiency on A. minutum by the different oyster 339 

types were not apparent (Table 1), significant differences in the concentration of PST 340 

analogues were observed between oyster types and acclimation temperatures after the 12-day 341 

exposure treatment (Table 1). In particular, diploid C. gigas and S. glomerata contained less 342 

GTX1,4, the more potent of the two PST congeners present, at warmer temperatures (Table 343 

1). There was no apparent influence of temperature in the accumulation of GTX1,4 by triploid 344 

C. gigas or GTX2,3 by any of the three oyster types, at the end of the 12 day exposure 345 

treatment. PST analogues, identical to that in the Alexandrium minutum, were detected in all 346 

individual oysters after 12 days of exposure to a toxic diet (Fig. S1). Biotransformation of 347 

PST analogues, in which the toxin analogues or their proportions in bivalves differs from that 348 

of the Alexandrium culture, commonly occurs in clams, scallops, and mussels (Kwong et al, 349 

2006; Sagou et al., 2005; Bricelj & Shumway 1998; Bricelj et al 2014), but appears to be less 350 
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commonly reported in oysters (Bricelj & Shumway 1998; Murray et al., 2009), in line with 351 

our findings. 352 

 353 

In our study, triploid C. gigas and S. glomerata were found to be approximately 50% less 354 

toxic than diploid C. gigas at the end of the period of exposure to a toxic diet. Experimental 355 

feeding studies using PST-producing dinoflagellates have been conducted on mussels (Bricelj 356 

et al., 1990, Blanco et al., 2003, Li et al., 2005, Kwong et al., 2006, Galimany et al., 2008), 357 

scallops, cockles and clams (Bricelj et al., 1990; Sekiguchi et al., 2001; Chen and Chou, 2001, 358 

2002; Kodama, 2010; Higman and Turner, 2010; Contreras et al., 2012;) and oysters (Lassus 359 

et al., 2005, 2007; Murray et al., 2009; Haberkorn et al., 2010, 2011, 2014). Most studies 360 

analysed a single bivalve species or strain, but for those studies that compared total toxicity 361 

among species or ploidy levels, given the same experimental conditions, significant 362 

differences were generally found (Haberkorn et al. 2011, Contreras et al., 2012). This was 363 

attributed to differences in feeding levels amongst bivalve species (Hegaret et al., 2007; 364 

Higman and Turner, 2010, Contreras et al., 2012) or ploidy levels (Haberkorn et al., 2010). In 365 

our study, differences in total PST toxicity were found among species (Table 1) and at certain 366 

temperature treatments despite the fact that feeding levels on Alexandrium were not 367 

significantly different. This indicates that differences in PST metabolism rates may be instead 368 

contributing to these differences. 369 

 370 

Both diploid and triploid C. gigas acclimated their RMR to their respective treatment 371 

temperatures independently of diet, which indicated that the exposure to Alexandrium 372 

minutum did not incur a metabolic cost. However, the reduced response in LDH activity 373 

suggested an increase in potential for aerobic metabolism in diploid C. gigas that were fed 374 

with A. minutum. Aerobic metabolism in oysters is associated with increased circulation and 375 
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filtration of seawater (Lucas, 2012). This finding may explain how, overall, the greatest 376 

toxicity was observed in diploid C. gigas, at both temperatures. Previously, faster 377 

accumulation of PSTs has been found in triploid C. gigas compared to diploid strains, and 378 

was considered to be correlated to their faster metabolic rates (Haberkorn et al., 2010), 379 

depending on sexual maturity (Guéguen et al., 2012). 380 

 381 

We had anticipated that oysters would adjust their metabolic processes with increasing 382 

temperatures. This was not the case for S. glomerata on day 12, as the elevated RMR, 383 

independent of diet, implied a higher metabolic maintenance cost associated with warmer 384 

conditions. Temperature-dependent responses of some metabolic enzyme activities (CS and 385 

LDH) promoted the potential for anaerobic metabolic pathways in warm-acclimated S. 386 

glomerata. While all three oyster species/ploidy levels experienced some effects of higher 387 

temperature acclimation on metabolic enzyme activity, a greater number of responses were 388 

noted in triploid C. gigas. The majority of these suggested a greater potential for anaerobic 389 

metabolic scope (Table 1). Multiple stressors (temperature and cadmium or temperature and 390 

elevated CO2) have been found to have inhibitive effects on the aerobic scope of C. gigas and 391 

Crassostrea virginica (Lannig et al. 2006; 2010). Our findings on S. glomerata and diploid C. 392 

gigas were similar, although the responses were fewer than in triploid C. gigas.  393 

 394 

In both diploid C. gigas and S. glomerata, warm-acclimated oysters had a slower depuration 395 

of GTX1,4, following the dietary change from A. minutum  to a diet of non-toxic algae only, 396 

while there was no effect of temperature on the detoxification of GTX2,3 for either of these 397 

species. For triploid C. gigas, the detoxification rate of GTX1,4 was unaffected by 398 

temperature, however, warm-acclimated triploid C. gigas experienced slower reduction of 399 

GTX2,3. Detoxification rates have been found previously to vary between species (Mons et 400 
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al., 1998, Kwong et al., 2006). While exposure to a toxic diet had a significant effect at a 401 

cellular level in diploid C. gigas, the temperature-dependent responses of metabolic enzyme 402 

activities to warmer conditions suggested that predicted changes to ocean temperatures will 403 

influence toxin accumulation and depuration dynamics in all three oyster types. 404 

 405 

By simulating an Alexandrium bloom under two temperature scenarios, using a large scale 406 

study, we have shown differential toxin uptake and depuration in three oyster species/two 407 

ploidy levels. Our findings indicate that both S. glomerata and diploid C. gigas may have 408 

lower GTX1,4 concentrations in warmer waters given the same density of A. minutum bloom, 409 

while detoxification will be slower. However, the current trend of increasing abundance and 410 

distribution of PST producing species of Alexandrium (Anderson et al., 2012) will add a layer 411 

of complexity to determining future risk of PSTs in commercial bivalves. 412 

 413 

  414 
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Supporting information legends 601 

Fig. S1 Example chromatographs showing the toxin peaks for the extracts from the A. 602 

minutum pellet (a) and the corresponding peaks observed in extracts from oyster tissue (b and 603 

c). 604 

 605 

Fig. S2 Activities (µmol g
-1

 min
-1

) of lactate, glycine and β-alanine dehydrogenase (LDH; a-606 

b), citrate synthase (CS; c-d), cytochrome c oxidase (COX; e-f) from diploid C. gigas 607 

digestive gland. Data for oysters exposed to either a toxic or non-toxic diet are shown 608 

separately. Each panel shows results from oysters acclimated at current mean summer water 609 

temperature (22 °C; white bars) and predicted warmer conditions (27 °C; black bars), and test 610 

temperature is shown on the x-axis; n = 9; bars = SEM. There were no significant interaction 611 

terms. 612 

 613 

Fig. S3 Activities (µmol g
-1

 min
-1

) of lactate, glycine and β-alanine dehydrogenase (LDH; a-614 

b), citrate synthase (CS; c-d), cytochrome c oxidase (COX; e-f) from diploid C. gigas 615 

adductor muscle. Data for oysters exposed to either a toxic or non-toxic diet are shown 616 

separately. Each panel shows results from oysters acclimated at current mean summer water 617 

temperature (22 °C; white bars) and predicted warmer conditions (27 °C; black bars), and test 618 

temperature is shown on the x-axis; n = 9; bars = SEM. 619 

 620 

Fig. S4 Activities (µmol g
-1

 min
-1

) of lactate, glycine and β-alanine dehydrogenase (LDH; a-621 

b), citrate synthase (CS; c-d), cytochrome c oxidase (COX; e-f) from S. glomerata digestive 622 

gland. Data for oysters exposed to either a toxic or non-toxic diet are shown separately. Each 623 

panel shows results from oysters acclimated at current mean summer water temperature (22 624 
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°C; white bars) and predicted warmer conditions (27 °C; black bars), and test temperature is 625 

shown on the x-axis; n = 9; bars = SEM. There were no significant interaction terms. 626 

 627 

Fig. S5 Activities (µmol g
-1

 min
-1

) of lactate, glycine and β-alanine dehydrogenase (LDH; a-628 

b), citrate synthase (CS; c-d), cytochrome c oxidase (COX; e-f) from S. glomerata adductor 629 

muscle. Data for oysters exposed to either a toxic or non-toxic diet are shown separately. 630 

Each panel shows results from oysters acclimated at current mean summer water temperature 631 

(22 °C; white bars) and predicted warmer conditions (27 °C; black bars), and test temperature 632 

is shown on the x-axis; n = 9; bars = SEM. 633 

 634 

Fig. S6 Activities (µmol g
-1

 min
-1

) of lactate, glycine and β-alanine dehydrogenase (LDH; a-635 

b), citrate synthase (CS; c-d), cytochrome c oxidase (COX; e-f) from triploid C. gigas 636 

digestive gland. Data for oysters exposed to either a toxic or non-toxic diet are shown 637 

separately. Each panel shows results from oysters acclimated at current mean summer water 638 

temperature (22 °C; white bars) and predicted warmer conditions (27 °C; black bars), and test 639 

temperature is shown on the x-axis; n = 9; bars = SEM. There were no significant interaction 640 

terms. 641 

 642 

Fig. S7 Activities (µmol g
-1

 min
-1

) of lactate, glycine and β-alanine dehydrogenase (LDH; a-643 

b), citrate synthase (CS; c-d), cytochrome c oxidase (COX; e-f) from triploid C. gigas 644 

adductor muscle. Data for oysters exposed to either a toxic or non-toxic diet are shown 645 

separately. Each panel shows results from oysters acclimated at current mean summer water 646 

temperature (22 °C; white bars) and predicted warmer conditions (27 °C; black bars), and test 647 

temperature is shown on the x-axis; n = 9; bars = SEM. 648 

 649 
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Table S1 Summary of oyster species/ploidy level and weight ranges used for the controlled 650 

feeding experiment. 651 

 652 

Table S2 Analysis of clearance rate of A. minutum by each oyster species/ploidy level 653 

(diploid and triploid C. gigas and S. glomerata) at each acclimation temperature across the 654 

12-day exposure period. This was a two-way permutation ANOVA based on estimates of A. 655 

minutum clearance rate for 24 hours after each tank seawater change (n=5 species/ploidy 656 

level
-1

 temp
-1

) with oyster species/ploidy level and acclimation temperature as factors. 657 
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Tables 658 

Table 1 Summary of significant (interaction or main effect) responses by warm (27 °C) 659 

acclimated oysters (diploid and triploid C. gigas and S. glomerata) to experimental measures 660 

of A. minutum clearance rate, paralytic shellfish toxin (PST) concentrations after 12-days of 661 

exposure to toxic diet and 24 hour depuration, routine metabolic rate and metabolic enzyme 662 

activity (lactate, glycine and β-alanine dehydrogenase (LDH), citrate synthase (CS), 663 

cytochrome c oxidase (COX)). 664 

    
Oyster species/ploidy level          

(27 °C treatment)   

Experiment 

diploid 

C. gigas 

S. 

glomerata 

triploid 

C. gigas Ref. 

Clearance rate of                    

toxic A. mintutum 
- - - 

Fig. 2, 

Table S2 

   
PSTs after 12-day exposure 

   
GTX1,4 � � - Table 2, 

Fig. 3 GTX2,3 - - - 

   
PSTs after 24hr depuration 

   
GTX1,4 � � - Table 2, 

Fig. 3 GTX2,3 - - � 

   
Routine metabolic rate 

 (irrespective of diet) 
- � - 

Table 3 

Fig. 4, 

 Metabolic enzymes 

Digestive gland LDH � - � 
Table 4, 

Figs S2, S4, S6 
CS - � � 
COX - - - 

   
Muscle LDH - � � 

Table 5,  

Figs S3, S5, S7 
CS - - � 

  COX - - � 

Key: ↑ increased response; ↓ reduced response; - no significant response 
 665 

  666 
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Table 2 Summary of two-way permutation ANOVA for accumulation of paralytic shellfish 667 

toxins (GTX1,4 and GTX2,3) in each oyster species/ploidy level, with exposure treatment 668 

(maximum exposure to A. minutum, and 24 hours of depuration) and acclimation temperature 669 

as factors. 670 

      

diploid 

C. gigas 

triploid 

C. gigas 

S. 

glomerata 

PST 

analogue Source of Variation df F p F p F p 

GTX 1,4 

Exposure 1 63.99 <0.001 1.93 0.318 21.48 <0.001 

Temperature 1 15.03 <0.002 0.00 0.902 9.02 0.002 

Exposure*Temperature 1 5.96 0.014 0.00 1.000 4.19 0.035 

Error 32 

GTX 2,3 

Exposure 1 9.94 0.004 0.75 0.400 10.22 0.000 

Temperature 1 0.02 0.922 12.30 0.001 0.88 0.390 

Exposure*Temperature 1 0.39 0.554 5.88 0.016 1.79 0.121 

Error 32             

 671 

  672 
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Table 3 Summary of two-way permutation ANOVA for routine metabolic rate, RMR (mg 02 673 

g
-1

 DTM h
-1

± SEM), for each oyster species/ploidy level on day 12, the maximum period of 674 

exposure to A. minutum. Acclimation temperature and diet (toxic or non-toxic) were factors 675 

for each analysis. 676 

  

diploid 

C. gigas 

triploid 

C. gigas 

S. 

glomerata 

Source of Variation df F p df F p df F p 

Diet 1 1.49 0.115 1 0.01 0.922 1 0.15 0.804 

Temperature 1 1.58 0.322 1 0.03 0.863 1 4.78 0.024 

Diet*Temperature 1 1.96 0.171 1 0.66 0.548 1 1.46 0.413 

Error 31     32     31     

  677 
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Table 4 Summary of three-way permutation ANOVA for lactate, glycine and β-alanine 678 

dehydrogenase (LDH), citrate synthase (CS), cytochrome c oxidase (COX) from diploid and 679 

triploid C. gigas and S. glomerata digestive gland. Acclimation temperature (Acc), diet (toxic 680 

vs. non-toxic) and test temperature (Test; repeated measure) were factors for analysis. 681 

      
diploid S. triploid  

C. gigas  glomerata C. gigas 

Assay Source of Variation df F p F p F p 

LDH 

Between subject effects 

Acc 1 5.58 0.012 1.25 0.200 3.19 0.030 

Diet 1 0.03 0.980 0.03 0.902 0.15 0.745 

Acc *Diet 1 0.04 0.784 0.12 0.726 0.60 0.391 

Error 32 

Within subject effects 

       Test 1 6.22 0.161 1.27 0.222 28.96 0.040 

Acc*Test 1 1.82 0.162 0.06 0.667 0.20 0.961 

Diet*Test 1 0.84 0.473 0.05 0.824 0.00 0.863 

Acc*Diet*Test 1 0.05 0.961 0.82 0.273 0.30 0.527 

Error 32 

         

CS 

Between subject effects 

Acc 1 0.12 0.941 7.36 0.002 3.74 0.050 

Diet 1 1.06 0.267 0.36 0.452 1.40 0.236 

Acc *Diet 1 1.48 0.216 0.36 0.824 0.12 0.980 

Error 32 

Within subject effects 

       Test 1 55.10 <0.001 132.88 <0.001 208.70 <0.001 

Acc*Test 1 0.09 0.922 0.08 0.824 0.16 0.745 

Diet*Test 1 2.55 0.765 0.19 0.594 0.80 0.686 

Acc*Diet*Test 1 0.01 0.922 0.09 1.000 0.32 0.882 

Error 32 

   
      

COX 

Between subject effects 

Acc 1 1.13 0.220 1.40 0.414 2.42 0.191 

Diet 1 0.03 0.686 2.01 0.201 3.38 0.058 

Acc *Diet 1 0.55 0.385 0.47 0.478 1.39 0.667 

Error 32 

Within subject effects 

Test 1 10.01 0.452 10.34 0.065 0.60 0.070 

Acc*Test 1 0.00 0.686 1.58 0.324 0.06 0.643 

Diet*Test 1 0.01 1.000 3.64 0.065 0.23 0.444 

Acc*Diet*Test 1 0.20 0.863 0.78 0.706 0.00 1.000 

Error 32             
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Table 5 Summary of three-way permutation ANOVA for lactate, glycine and β-alanine 682 

dehydrogenase (LDH), citrate synthase (CS), cytochrome c oxidase (COX) from diploid and 683 

triploid C. gigas and S. glomerata adductor muscle. Acclimation temperature (Acc), diet 684 

(toxic vs. non-toxic) and test temperature (Test; repeated measure) were factors for analysis. 685 

      
diploid S. triploid  

C. gigas  glomerata C. gigas 

Assay Source of Variation df F p F p F p 

LDH 

Between subject effects 

Acc 1 0.02 0.941 15.32 <0.001 4.74 0.038 

Diet 1 7.81 0.014 0.27 0.500 1.09 0.236 

Acc *Diet 1 0.41 0.373 0.27 0.592 0.53 0.638 

Error 32 

Within subject effects 

       Test 1 25.68 0.007 145.06 <0.001 89.96 <0.001 

Acc*Test 1 0.56 0.686 7.55 0.006 5.85 0.022 

Diet*Test 1 1.35 0.193 0.38 0.444 0.05 0.922 

Acc*Diet*Test 1 0.82 0.660 4.58 0.044 3.48 0.059 

Error 32 

         

CS 

Between subject effects 

Acc 1 1.13 0.295 0.44 0.368 19.19 <0.001 

Diet 1 0.01 1.000 0.97 0.258 0.47 0.411 

Acc *Diet 1 0.23 0.686 2.55 0.165 0.70 0.667 

Error 32 

Within subject effects 

       Test 1 22.88 0.061 69.99 0.000 164.47 <0.001 

Acc*Test 1 2.54 0.082 1.15 0.396 0.32 0.633 

Diet*Test 1 0.64 0.583 0.21 0.660 1.11 0.304 

Acc*Diet*Test 1 3.67 0.069 0.01 1.000 0.12 1.000 

Error 32 

   
      

COX 

Between subject effects 

Acc 1 0.06 0.784 0.88 0.394 3.22 0.042 

Diet 1 0.17 0.554 0.24 0.583 0.65 0.288 

Acc *Diet 1 0.97 0.346 0.88 0.371 0.32 0.554 

Error 32 

Within subject effects 

Test 1 2.26 0.571 65.36 0.006 8.51 0.615 

Acc*Test 1 0.57 0.765 1.22 0.321 3.35 0.170 

Diet*Test 1 1.94 0.147 0.10 0.726 0.85 0.302 

Acc*Diet*Test 1 1.29 0.396 0.10 0.980 1.52 0.231 

Error  32             
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Figure Legends 686 

Fig. 1 (a) Estimated annual mean surface temperature change between 1986−2005 and 687 

2081−2100 for two climatic model scenarios (RCP2.6: low forcing and RCP8.5: high 688 

emission levels) (adapted from IPCC, 2013). (b) Total number of months each year where 689 

positive Alexandrium-related PSTs were reported along the NSW coastline between February 690 

2005 and December 2014 (NSW Food Authority, 2014). (c) Global distribution of production 691 

of C. gigas (FAO, 2014) and S. glomerata (NSW DPI, 2014) overlain on reported incidence 692 

of PSTs worldwide 1970 (Hallegraeff, 2003) and current (Hallegraeff, 2014). 693 

 694 

Fig. 2 Average daily clearance rate (mL min
-1

 g
-1

 wet tissue) of A. minutum for each oyster 695 

type and temperature treatment across the feeding trial. Results are shown from oysters 696 

acclimated at current mean summer water temperature (22 °C; white bars) and predicted 697 

warmer conditions (27 °C; black bars), and oyster species/ploidy level is shown on the x-axis; 698 

n = 5; bars = SEM. 699 

 700 

Fig. 3 Paralytic shellfish toxin content in oysters after the maximum period of exposure (day 701 

12) to A. minutum and 24 hours after feeding with toxic cells had ceased (day 13). 702 

Concentrations (µg 100g tissue
-1

) of the analogues GTX1,4 (a, c, e) and GTX2,3 (b, d, f) are 703 

shown for each oyster species/ploidy level: diploid C. gigas (a, b), triploid S. glomerata (c, d), 704 

C. gigas (e, f). Each panel shows results from oysters acclimated at current mean summer 705 

water temperature (22 °C; white bars) and predicted warmer conditions (27 °C; black bars), 706 

and A. minutum exposure treatment is shown on the x-axis; n = 9; bars = SEM. For GTX1,4, 707 

there were significant interactions between exposure treatment and acclimation temperature 708 

for diploid C. gigas (a) and S. glomerata (c). For GTX2,3, there was a significant interaction 709 

between exposure treatment and acclimation temperature for triploid C. gigas (f). 710 
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Fig. 4 Routine metabolic rate, RMR, (mg 02 g
-1

 DTM h
-1

± SEM) on day 12, the maximum 711 

period of exposure in oysters that received A. minutum (a, c, e) and those that were fed a non-712 

toxic diet only (b, d, f) are shown for each oyster species/ploidy level: diploid C. gigas (a, b), 713 

triploid C. gigas (c, d), S. glomerata (e, f). Each panel shows results from oysters acclimated 714 

at current mean summer water temperature (22 °C; white bars) and predicted warmer 715 

conditions (27 °C; black bars), and test temperature, which corresponded to the acclimation 716 

temperatures, is shown on the x-axis; n = 9, with the exception of non-toxic diploid C. gigas 717 

and toxic S. glomerata at 27 °C, where n=8 (see text); bars = SEM. There was a significant 718 

main effect of temperature for S. glomerata (e, f).  719 

Page 41 of 52 Global Change Biology



For Review
 O

nly

 

 40

Supporting Information 720 

Table S1 Summary of oyster species/ploidy level and weight ranges used for the controlled 721 

feeding experiment. 722 

Oyster species/ploidy level 

(n=216) 

Total Weight (g) 

(mean ± SD) 

Total Tissue (g) 

(mean ± SD) 

Diploid C. gigas 33.29±7.52 4.89±1.47 

Triploid C. gigas 66.59±13.34 10.01±2.79 

S. glomerata 29.49±4.95 4.64±1.02 

 723 

Table S2 Analysis of clearance rate of A. minutum by each oyster species/ploidy level 724 

(diploid and triploid C. gigas and S. glomerata) at each acclimation temperature across the 725 

12-day exposure period. This was a two-way permutation ANOVA based on estimates of A. 726 

minutum clearance rate for 24 hours after each tank seawater change (n=5 species/ploidy 727 

level
-1

 temp
-1

) with oyster species/ploidy level and acclimation temperature as factors. 728 

 729 

Source of Variation df F p 

Temperature 1 0.26 0.478 

Oyster 2 0.10 0.961 

Oyster*Temperature 2 0.42 0.737 

Error 24 

   730 
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