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ABSTRACT 

A tissue engineering scaffold provides a proper environment to support physiological loads, and enhance cell 

migration and delivery for re-modeling of regenerating tissue. Hence, in the design of scaffolds, it is required to 

control the scaffold architecture with mechanical and mass transport properties simultaneously. In this paper, a 

level set-based topology optimization method will be developed to systematically generate three dimensional 

(3D) microstructures for tissue engineering scaffolds, with the prescribed properties for mechanical stiffness, 

fluid porosity and permeability. To create the internal architecture for scaffolds with desired properties, the 

numerical homogenization method will be used to evaluate the effective properties of the microstructure for 

building the periodic composite media, and a parametric level set method will be introduced to find the 

optimized shape and topology of the microstructure. Several numerical examples are used to demonstrate the 

effectiveness of the proposed method in achieving scaffolds with desired multifunctional properties, within the 

numerically estimated cross-property bounds between the effective bulk modulus and permeability under 

different porosities. 

 

Keywords: Tissue Scaffolds, Microstructure, Topology optimization, Level set method. 

 

1 INTRODUCTION 

In the early 1990s, tissue engineering was mainly developed to overcome the limitations of tissue graft and 

alloplastic repair [1]. The fundamental essence of tissue engineering is to adapt a porous degradable material 

called scaffold to transplant bio-factors like stem-cell and gene-therapy approaches, which is used to stimulate 

tissue repair. Hence, the design of porous biomaterials, such as the scaffold architecture, plays an important role 

in the tissue regeneration. A basic tissue engineering design hypothesis is that the scaffold should provide a 

biomimetic mechanical environment for initial function and sufficient porosity for cell migration and cell/gene 

delivery [2, 3]. To fulfill such multifunctional design requirements, there are several functional characteristics 

to be considered, such as the porosity, mechanical modulus and permeability/diffusivity. For example, bone 

tissue engineering scaffolds should be designed to have high diffusivity, permeability or porosity for better cell 

migration and biologics transport to meet the multi-criteria requirements [4]. Furthermore, the multifunctional 

characteristics often vary with the specific tissue. For instance, to maintain the health of bone tissues, taking the 

trabecular bone as an example, the elastic modulus has a wide range from 10 to 1500 MPa [5]. While, the 

aggregate modulus for articular cartilages is relatively smaller with a range from 0.5 to 3.0 MPa [6], comparing 
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to that of trabecular bones. Thus, the design challenge of bone tissue engineering scaffolds is actually to explore 

suitable internal architecture to satisfy their multifunctional properties. 

 

The multifunctional tissue scaffolds are attracting more and more attention in the field of bioengineering, and a 

number of different design methods [2, 3] have been developed to create scaffolds over the past. More recently, 

with the rapid development of computational design engineering, topology optimization technique has shown its 

potential as a powerful design tool for micro-structured scaffolds. Topology optimization [7] is a numerical 

process to iteratively redistribute a given amount of material to extremize a prescribed objective function under 

specific constraints, until the best material layout is achieved within a fixed reference domain. Several methods 

have been developed for topology optimization of structures, such as the homogenization method [8], the SIMP 

method [9-10], ESO [11] and the level set-based method (LSM) [12-15]. Topology optimization has been 

applied to design scaffolds to topologically achieve the optimized layout of the microstructure. For instance, Lin 

and et al. [16] applied the homogenization-based topology optimization method to design 3D internal scaffold 

architectures, to simultaneously meet the desired elastic properties and porosity for mass transport. Guest and 

Prevost [17] extended the projection method [18] to topological design of 3D scaffolds, to maximize the bulk 

modulus and isotropic permeability. Kruijf et al. [19] used topology optimization to generate optimized scaffold 

structures having maximized bulk modulus and thermal conductivity in two-dimensional (2D) structures based 

on the Pareto optimality. Challis and et al. [20] developed a level set method to design microstructures with 

isotropic materials to gain maximized bulk modulus and isotropic conductivity. Challis and et al. [21] also 

proposed a method for the generation of numerically estimated cross-property bounds for stiffness and fluid 

permeability porous materials with level sets. Kang [4] applied the homogenization topology optimization to 

create 3D scaffold architectures, so as to match the desired elastic properties and porosity simultaneously. It is 

noted that the most of the above topology optimization methods are based on material density distribution. 

 

Recently, the LSMs have been emerged as a new family of alternative approached for shape and topology 

optimization of structures. LSMs were originally developed for tracking, modelling and simulating shape 

variation of the moving boundary with topological changes by merging and breaking the boundary. LSMs have 

shown some unique characteristics as a result of the implicit free boundary representation, such as (1) smooth 

boundary and distinct interface in the process of the optimization, (2) shape fidelity and topological flexibility, 

and (3) topological changes during shape variations [13,14,22]. However, in conventional LSMs the solution of 

the Hamilton-Jacobi partial differential equations (H-J PDE) using the finite difference method involves several 

numerical issues to be carefully handled [23-25], such as the re-initialization of the level set function (LSF), the 

Courant-Friedrichs-Lewy (CFL) condition, as well as the extension of the normal velocity. Hence, to overcome 
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the unfavourable numerical features, several alternative LSMs have been developed more recently [22], e.g. the 

parametric level set method (PLSM) [15], which have been successfully applied to topological shape design of 

structures [26,27], mechanisms [28] and metamaterials [29]. In PLSM, the key concept is to interpolate the 

original LSF using a set of compactly supported radial basis function (CS-RBF) [30] to ensure a desirable 

smoothness and accuracy of the approximation. In this way, the original H-J PDE is changed into a system of 

equations, and the topological shape optimization is converted to a size optimization, in which the expansion 

coefficients of the interpolant, which are temporal only, are considered as the design variables. Thus, many 

more efficient gradient-based optimization algorithms can be directly applied to the optimization problem. 

 

However, the current paper is the first time the original parametric level set method [15] has been extended to a 

family of more advanced topology optimization problems in a different area of application, namely, topological 

shape design of three-dimensional (3D) Scaffold microstructures in tissue engineering. In this method, the 

numerical homogenization method will be used to evaluate the effective property, while the PLSM will be 

applied to optimize shape and topology of the microstructure by satisfying the prescribed properties, such as 

mechanical stiffness, fluid porosity and permeability. Several numerical examples are applied to demonstrate 

the effectiveness of the proposed method in optimizing the 3D tissue engineering scaffolds. 

2 HOMOGENIZATION OF ELASTICITY AND PERMEABILITY 

In this study, we have the following assumptions: the composite only consists of arrays of periodically arranged 

microstructures or unit cells; the geometric size of the unit cell is much smaller than the macroscopic material to 

enable the scale-decomposition in the homogenization; the homogenized effective properties of the composite 

can be predicted by the mechanical behaviour of the microstructure. Based on the small parameter perturbation 

of the displacement, the effective properties of the micro-structured scaffold architecture can be computed by 

using the numerical homogenization method [31]. 

 

The effective elasticity tensor C
H
 relates the macroscopic stress tensor σ to the macroscopic strain tensor ε for 

the porous biomaterials as follows: 

 HCσ ε=   (1) 

where 
H

ijklC
 
is the effective stiffness tensor, given by 

 ( ) ( )H 0( ) *( ) 0( ) *( )1
dij ij kl kl

ijkl pq pq pqrs rs rs
Y

C C Y
Y

ε ε ε ε= − −∫   (1) 

and ε
0
 is the unit test strain field, |Y| is the volume of the cell, and ε

*
 is the strains tensor corresponding to the 

displacement field χkl 
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( )* 1

2

kl kl

kl p q

pq

q py y

χ χ
ε

 ∂ ∂
= +  ∂ ∂ 

  (2) 

Here χkl can be obtained by solving the following equation: Find ( )kl

periodU Yχ ∈  such that 

 ( )d d      

kl

p i i
ijpq ijpq period

Y Y
q j j

v v
C Y C Y v U Y

y y y

χ∂ ∂ ∂
= ∀ ∈

∂ ∂ ∂∫ ∫   (3) 

where ν is the virtual displacement field, Uperiod (Y) is the kinematically admissible displacement space with Y-

period. Since the 3D biomaterial with cubic elastic symmetry is considered in this study, this material has an 

effective stiffness matrix with three independent components of the form 

 

H H H

11 12 12

H H H

12 11 12

H H H

H 12 12 11

H

44

H

44

H

44

0 0 0

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

C C C

C C C

C C C

C

C

C

 
 
 
 

=  
 
 
 
  

C   (4) 

 

The bulk modulus is a commonly used stiffness measure in topology optimization to study the resistance of the 

material to a volumetric strain. The effective bulk modulus B
H
 for a material with cubic elastic symmetry is 

 H H H

11 12

1 2

3 3
B C C= +   (5) 

 

The permeability for slowly moving incompressible fluids within porous materials can be simulated using the 

homogenization of Stokes flows through a porous material with Darcy’s law on the macroscopic scale 

 H1
P

µ
= − ∇U K   (6) 

where U is the average fluid velocity, P∇  is the pressure gradient across a porous material, K
H
 is the effective 

fluid permeability tensor and µ is the viscosity of the fluid. In this study, the numerical homogenization method 

for the fluid follows the method given by Guest and Prévost [17]. By applying the stabilization technique [32] 

for the Stokes flow and Darcy flow, the effective permeability tensor can be computed as 

 
T1 ( ) ( )H H i j

ij dsK
Y

 = = K w K w   (7) 

where K
H
 is the effective fluid permeability, Kds is Darcy-Stokes viscosity matrix. w

(i)
is the velocity vector 

which can be solved numerically using the stabilized finite element to avoid the Babuska -Brezzi condition [17].  
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A material with the isotropic flow symmetry has an isotropic effective permeability matrix, which is: 

 

H

11

H H

11

H

11

0 0

0 0

0 0

K

K

K

 
 

=  
  

K   (8) 

The scalar permeability can be computed as follows: 

 
H H

1

1 d

ii

i

k K
d =

= ∑   (9) 

where d is the dimension and equals to 3 for 3D problems. 

3 PARAMETRIC LEVEL SET METHOD 

In level set method, the design boundary is implicitly represented as the zero level set of a higher-dimensional 

level set function (LSF) Φ(x) [23-25], which is defined over a reference domain ( 2 3 )   
dD R d o r⊂ = . Fig. 1 

shows a 2D design boundary represented by a 3D level set surface. The 2D boundary is embedded as follows: 

 

( ) 0   x \             (Solid region)

 ( ) 0   x    (Design boundary)

( ) 0   x \                (Void region)

x

x

x

D

D

Φ > ∀ ∈Ω ∂Ω

Φ = ∀ ∈∂Ω∩

 Φ < ∀ ∈ Ω

 (10) 

 

   

Figure 1 (Left) 3D level set function; (Right) Design domain at the zero level set 

 

To enable the dynamic motion, the pseudo-time t is introduced into the LSF Φ(x), which leads to the following 

first-order H-J PDE by differentiating Φ(x, t) = 0 on both sides with respect to t: 

 
( , )

( , ) 0
x

v x
t

t
t

∂Φ
+ ⋅ ∇Φ =

∂
  (11) 

where v=dx/dt is the velocity field at the design boundary. Only the normal velocity component vn 
contributes 

to the shape evolution of the boundary [13,14], which is expressed as follows: 
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x

v n vn

d
v

dt

 ∇Φ ∇Φ 
= ⋅ = ⋅ − = −    ∇Φ ∇Φ⋅∇Φ  

  (12) 

The PLSM [15] has a parameterized level set surface via the interpolation of a given set of CS-RBFs positioned 

at given knots in the design space, in which the LSF can be expressed as follows: 

 
1

( , ) ( ) ( ) ( ) ( )x x x
N

i i

i

t t tϕ α
=

= ∑Φ ϕ α =Φ ϕ α =Φ ϕ α =Φ ϕ α =   (13) 

where the vector of the shape functions (CS-RBF) is defined by 

 [ ]1 2( ) ( ), ( ), , ( )x x x x
N

Nϕ ϕ ϕ= ∈K �ϕϕϕϕ   (14) 

and the expansion coefficient vector is 

 [ ]T

1 2( ) ( ), ( ), , ( ) N

Nt t t t= α α α ∈K �αααα   (15) 

where N  is the total number of the knots in the design domain. 

 

It can be found that in the parametric level set method, the “parametric” denotes the sampling/interpolation of 

the original level set function, using the CS-RBF basis functions and the corresponding expansion coefficients 

at a set of scattered knots or points over the design domain. 

 

The CS-RBFs [30] possess desirable properties in interpolation, including positive definiteness and sparseness 

of the interpolation matrices under certain conditions, as well as the desired smoothness and continuity of the 

interpolant. In this work, we will use the following CS-RBF with C2 smoothness (Fig. 2). 

 { }4( ) max 0,  (1- ) (4 1)   ( 1, 2, , )   (Wendland C2)i r r r i Nϕ = + = … −   (16) 

 

The above interpolation leads to a separation scheme of the space and time, in which the shape functions are 

spatial only and the generalized expansion coefficients are time dependent only. The decoupling of the time and 

space terms of the H-J PDE results in 

 
n

( )
( ) v ( ) ( ) 0

t
t

t

∂
− ∇ =

∂
x x

αααα
ϕ ϕ αϕ ϕ αϕ ϕ αϕ ϕ α   (17) 

Thus the normal velocity vn is related to the time derivative of the expansion coefficients α(t) as follows: 

 n

( ) ( )
v

( ) ( )

t

t t

∂
=
∇ ∂

x

x

ϕ αϕ αϕ αϕ α
ϕ αϕ αϕ αϕ α

  (18) 

 

We can find that all the terms involved in vn are actually evaluated at all the knots in the design domain, and vn 

is actually extended to the whole design domain. In this way, the H-J PDE has been parameterized into a system 
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of equations only with a set of unknowns α(t), which act as the design variables. The propagation of the LSF is 

just a matter of finding α(t) with an appropriate optimization algorithm. It is noted that there are normally two 

sets of meshes are involved in level-set based topology optimization methods. The first is to calculate the field 

quantities (e.g. displacements and strains), and the second is used for propagation of the level set surface. 

 

With the parameterization, the original H-J PDE actually becomes a system of ODEs in which the expansion 

coefficients are temporal only. However, in the practical numerical implementation, the design variables will be 

updated sequentially and iteratively using an appropriate optimization algorithm. In this case, from the point of 

view of iterative optimization, the topological shape optimization problem is essentially changed into a 

generalized “size” optimization. Here, the “size” refers to the expansion coefficients to be updated under a 

convergence criterion. In this case, we may say that the “size” optimization problem is similar to SIMP, as the 

update of the expansion coefficients over the knots is similar to the update of elemental densities in the SIMP. 

4 MULTI-OBJECTIVE OPTIMIZATION PROBLEM 

Tissue engineering scaffolds are a family of porous biomaterials designed to mainly both bear mechanical 

loading and enable mass transport. The design of such multifunctional composite materials is actually the multi-

objective topology optimization problem. 

(1) Material description model using level sets 

At an arbitrary point x, the elasticity tensor of the practical material can be given by 

 ( ) basex ( (x))H Φ=C C   (19) 

where Cbase is the elasticity tensor of the solid material, and H is the Heaviside function, often given as follows: 

 
3

3

x

3(1 ) (x) (x) 1
( (x)) ( ) x

4 3 2

1 x

H

θ

θ θΦ Φ
Φ

< −∆


− +
= − + −∆ ≤ < ∆

∆ ∆
≥ ∆

  (21) 

where θ is a small positive number (e.g. 1e-4) to ensure the non-singularity of element stiffness matrix, and ∆ is 

the width for the numerical approximation of the Heaviside function. In the numerical implementation, the 

Heaviside function is usually smoothed to facilitate the calculation of the first-order derivatives. 

 

For the permeability, the interpolation of the Darcy-Stokes viscosity matrix Kds is given by 

 ( ) [ ]ds d sx ( (x)) 1 ( (x))H HΦ Φ= + −K K K   (20) 

Page 8 of 25Structural and Multidisciplinary Optimization

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

9 

 

where Kd is Darcy stiffness tensor and Ks is Stokes stiffness tensor. The above equation denotes that the flow 

through the solid phase is governed by Darcy’s law, while the fluid phase is treated as Stokes flow. Assuming 

that the design domain with volume |Y|, the porosity of material can be calculated as  

 
1

1 ( (x))dV
Y

H Y
Y

Φ= − ∫   (21) 

(2) Formulation of the optimization problem using PLSM 

In order to achieve the prescribed material properties, the optimization problem is defined as a weighted multi-

objective formulation to minimize the error between the prescribed values and the effective values of the bulk 

modulus and permeability simultaneously, subject to constraints on porosity and symmetric conditions. 

 

H * 2 H * 2

*

H H

Find          

minimize ( ( ) ) ( ( ) )

subject to   ( )

( ( ), ( )) 0

( ) 0

   

V V

                  C

                  h

B kJ B B k kω ω




= − + −


=
 ≤
 =

g K

αααα

α αα αα αα α

αααα

α αα αα αα α
αααα

  (22) 

Here α is the vector of design variables, B
* 

and k
* 

correspond to the prescribed bulk modulus and permeability 

of the microstructure, V
* 

is the required porosity of the material, and V(α) is the practical porosity of the 

material. In the numerical implementation, the equality constraint of the porosity can be achieved with a 

tolerance of 1%. The equality constraint h(α)=0 represent the equilibrium equations. The inequalities g(B
H
(α), 

k
H
(α)) ≤ 0 represent the constraints on the effective constitutive tensors, including symmetry constraints. We 

will consider cubic symmetry for the elastic properties and isotropic symmetry for the flow in the study. ωB 
and 

ωk 
are weighting factors used to indicate the relative importance of the two objectives in the design. 

 

In PLSM, the Hamilton-Jacobi PDE driven topological optimization problem has been transformed into a 

standard parametric optimization problem with a set of generalized “sizes” as the design variables. Actually, the 

“size” refer to the set of expansion coefficients related to the CS-RBF interpolation. In this case, we do not need 

to explicitly calculate the normal velocity field vn on the level-set boundary and extend the normal velocity field 

from the boundary to the design domain. However, we still need the expression of the normal velocity field vn 

after the parameterization, because this normal velocity field vn will be subsequently used to help derive the 

design sensitivity together with the shape derivative analysis method and the chain rule. 

 

The derivatives of the 
HCijkl  with respect to t is expressed as 
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 ( )( ) ( )( )
H

0( ) * 0( ) *1
( ) d     

ijkl ij ij kl kl

pq pq pqrs rs rs n
Y

dC
C v Y

dt Y
ε ε χ ε ε χ δ Φ= − − ∇Φ∫   (23) 

where δ(Φ) is the Dirac function, which is the first-order derivative of the Heaviside function H(Φ). 

 

Subjecting vn expressed by Eq. (19) to Eq. (25) leads to 

 ( )( ) ( )( )
H

0( ) * 0( ) * ( )1
( ) ( )d    x

ijkl ij ij kl kl i
pq pq pqrs rs rs i

Y

dC t
C Y

dt Y t

α
ε ε χ ε ε χ δ ϕΦ

  ∂
= − −   ∂ 

∫   (26) 

At the same time, the derivative of 
H

ijklC with respect to t can be given as follows by using the chain rule 

 

H H
( )

( )

ijkl ijkl i

i

dC C α t

dt α t t

∂ ∂
=
∂ ∂

  (24) 

 

Comparing the corresponding terms of Eq. (26) and Eq. (27), we can find the sensitivities of 
H

ijklC  with respect 

to the design variables αi by 

 ( )( ) ( )( )
H

0( ) * 0( ) *1
( ) ( )d     ( )x

ijkl ij ij kl kl

pq pq pqrs rs rs i
Y

i

dC
C Y i = 1, 2, ...N

d Y
ε ε χ ε ε χ δ ϕ

α
Φ= − −∫   (25) 

Similarly, the sensitivity of 
H

klK with respect to the design variables αi is 

 ( )
H

( )T ( )

d s

1
( ) ( ) ( )d    ( )x

i jkl
i

Y
i

dK
Y i = 1, 2, ...N

d Y
δ δ ϕ

α
= Φ − Φ∫ w K K w   (26) 

The sensitivity of the volume constraint (porosity) is given as 

 
1

( ) ( )d      ( )
V

xi
Y

i

d
Y i = 1, 2, ...N

d Y
δ ϕ

α
Φ= − ∫   (27) 

 

Once the sensitivity information has been obtained, many more efficient optimization algorithms like MMA [33] 

can be applied to update the design variables (expansion coefficients of the CS-RBF interpolation) iteratively. 

Then, the interpolant of the level set function will be updated correspondingly, which will lead to the motion of 

the level set boundary as well as the evolution of the shape and topology of the structure. 

 (3) Numerical implementation of the topology optimization problem 

In the numerical implementation, the “artificial” material model will be used for the solid phase and the periodic 

boundary condition will be applied to the design domain of the unit cell (microstructure). Geometrical 

symmetries of the unit cell are considered to achieve cubic elastic symmetric material phase and isotropic flow 
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phase. The standard finite element method (FEM) is employed to discretize the unit cell in order to obtain the 

displacement field. In this study, the eight-node isoparametric elements will be used to discretize the design 

domain. 

In the conventional SIMP approach, element-wise density variables are usually regarded as the design variables. 

In order to overcome the typical numerical difficulties (e.g. checkerboards), many attempts have been made to 

formulate the topology optimization problems based on point-wise design variables to evaluate material 

properties at nodes or meshless points, e.g. [18, 26, 34, 35]. In this study, the material properties are also 

evaluated at nodes as nodal values. Thus, the LSF is sampled and determined by the interpolation using the CS-

RBFs at these nodal positions for the simplicity, as given in Eq. (14). It should be noted that the CS-RBFs knots 

are not necessarily required to be at the same positions as the element nodes. 

 

In the level set-based methods, when the boundary crosses an element, it is usually difficult to accurately 

calculate strain and stiffness of the element. To resolve this problem, there have been several methods available, 

such as, the widely used “ersatz” model [14]. In this study, an alternative scheme numerically more accurate is 

applied to evaluate the strain field, based on the computational points (3×3×3 Gauss points) of the element. It is 

a FEM-based alternative scheme, which fully takes advantage of the concept of compactly supported influence 

domain, e.g. [34, 35]. The material property for each Gaussian point is evaluated by using the interpolation of 

CS-RBFs and material properties at those nodes located within a compact support domain. The Gaussian points 

are used as computational points to approximate strain and stiffness of those 3D finite elements cut by the 

boundary. 

 

Then, in the numerical process, the material properties of the Gauss points are determined by the values of the 

smoothed Heaviside function H(Φ), which are subsequently applied to assemble the stiffness and Darcy-Stokes 

viscosity matrices by Eqs. (20) and (22). Namely, the material is assigned to be void/fluid when H(Φ) takes a 

small value θ = 1e-4 (the elasticity tensor C is close to zero, and the Darcy-Stokes viscosity matrix Kds equals to 

Stokes stiffness tensor Ks), and solid when H(Φ) equals to 1. When H(Φ) is between 1e-4 and 1, properties C 

and Kds can be determined according to the interpolation scheme, given in Eqs (20) and (22), respectively.  

 

The equilibrium equations for the homogenization problem are solved using the FEM to calculate the effective 

material properties. In the PLSM, the propagation of the LSF is driven by updating the design variables using 

the Method of Moving Asymptotes (MMA) [33]. To use the gradient-based MMA optimizer, it is necessary to 

calculate the design sensitivity. The design is iteratively optimized until the change of two successive objective 
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function values is less than 0.001, or a maximum of 200 iterations is reached in terms of numerical experience. 

Compared with the conventional LSMs, in PLSM no re-initialization is required. Moreover, this method is free 

from the CFL condition, as the topological shape changes is driven by updating the design variables with the 

MMA, rather than by numerically solving the Hamilton-Jacobi PDE. 

5 NUMERICAL EXAMPLES 

In this section, several numerical examples are used to demonstrate the effectiveness of the proposed approach 

in designing the scaffold architecture with the prescribed stiffness and mass transport properties. The artificial 

material is supposed to have Young’s modulus E=1 and Poisson’s ratio ν=0.3. The goal of the design is to 

achieve target design points with specified effective bulk modulus and permeability within the numerically 

estimated cross-property upper bounds [21]. The radius of CS-RBF is set to be 2.5 times of the average CS-RBF 

knots distance (set to be 1) in this study. Different finite element meshes and different porosities will be used to 

investigate the effectiveness of the proposed optimization method. 

(1) Design with different meshes 

In this section, the microstructure, with the porosity 50%, the prescribed bulk modulus 0.22 and permeability 

0.0005, is optimized under different meshes, e.g. 15×15×15=3375, 20×20×20=8000 and 25×25×25=15625. The 

optimization parameters and the properties of the microstructure are given in Table 1, and the final results are 

shown in Figure 2, where the “Finite Element Plots” are actually elemental stiffness plots. More details about 

this case can be found in Case (f) given in Section (3). The effective element stiffness can be computed based 

on the properties evaluated at the Gauss points of the element. Elements are plotted when the value of stiffness 

is larger than a given threshold value (e.g. 0.5*Cbase). It is straightforward to plot the element stiffness. From the 

finite element plots of the design, it can be found that the optimized topologies are almost the same under the 

different meshes. Furthermore, with the increase of the number of finite elements, the effective properties of the 

topologically optimized microstructures change slightly, but more iterations and longer computational time are 

required for the design to converge.  

 

Based on the final topology at the zero level set, we can find that the boundary of the material phase is smooth 

and the material interface is distinct. For most numerical approximation methods a finer mesh may be more 

suitable for a better description of the boundary condition and a better approximation of the field quantities. 

Hence, a higher meshing resolution may benefit the topological shape description and numerical accuracy, but 

the computational cost will increase. Here, the mesh size is determined based on our numerical experience. 
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To save the computational time, the mesh for this numerical case includes 15×15×15=3375 elements. The 

problem is to design the microstructure under porosity 70% with target effective bulk modulus 0.072 and 

permeability 0.0028. The convergences of the objective function over iterations are shown in Figure 3. It can be 

found that the level set method [12-15, 22] has unique features which make the designs including intermediate 

designs have explicitly trackable smooth boundaries and geometrically distinct interface. Furthermore, we can 

see that the proposed approach is able to integrate shape optimization and topology optimization as a procedure 

of topological shape optimization. It is easy to find that the evolution of the topology is completed within the 

first 40 iterations, and the rest 100 iterations are mainly used to complete the shape variations. Compared with 

the conventional LSMs (e.g. [14]), the proposed method has been proven to be more efficient and it can find the 

optimized design normally within 150 iterations. 

 

Case (1) Case (2) Case (3) 

   

Finite Element Plots 

   

Level set plots at the zero level set for solid phase 
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Level set plots at the zero level set for fluid phase 

Figure 2 Optimization results for porosity 50% under different mesh level 

 

Table 1 Optimization parameters and properties of designed microstructures 

Case Meshes Elements Computational 

points 

Iterations Achieved 

porosity 

Achieved 

bulk modulus 

Achieved 

permeability 

(1) 15×15×15 3,375 91,125 136 50.7545% 0.2167 0.000505 

(2) 20×20×20 8,000 216,000 199 50.7275% 0.2168 0.000506 

(3) 25×25×25 15,625 421,875 195 50% 0.2168 0.000505 

 (2) Convergence of the design 

The convergence history given in Figure 4 shows a case with the same initial design as that of Cases (a) and (h) 

in next Section. However, the objective of this design is to achieve an effective bulk modulus 0.2 and 

permeability 2E-5 under the porosity 50%. After 105 iterations, this optimization process converges at a high 

effective bulk modulus 0.1981 and a very low permeability 1.8E-5. Although the nucleation mechanism of new 

holes in 2D design problem is important, but in 3D designs such mechanism is less important because new 

holes can be developed by pinching two boundaries (occur without destroying the connectivity of the structure). 

 

Here it is noted that the iteration numbers for a level set-based topology optimization actually depend on the 

applied formulation: (1) If the standard level set method [13,14] is used, the iteration for the convergence may 

be over 1000 iterations or even more, due to the time step limitation of the CFL condition; (2) When the 

discrete level set method, e.g. [36], is used, the iteration for a general convergence criterion will be from 100-

200 iterations; (3) For the parametric level set method [15], 200-300 iterations will be normally required for 

convergence, due to the removal of the time-step limitation of the CFL condition.  

 

Actually, we can flexibly select initial designs for topology optimization problems of structures. It is well 

known that the same initial structures may lead to different designs if they have been given different objective 

functions and constraints. Alternatively, different initial structures may generate the same designs for the same 

optimization problem. In this study, we can find that in some situations the same initial designs can produce the 

different designs, and sometimes the different designs can lead to different optimized designs, which is further 

showcase the flexibility on the selection of initial designs for the optimization. Having regard to the design of 

microstructures, in terms of our numerical experience, we should address that the initial design domain had 

better involve inhomogeneity of material, so as to facilitate the numerical homogenization method more 

effectively in estimating the effective properties of the microstructure. It is noted that the locations, shapes and 

numbers of holes may all have the influence for the approximation of the numerical homogenization method, 

and as a result effect the optimized designs. 
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Meanwhile, if an initial design is happened to satisfy the volume constraint, it may enhance the stability of the 

optimization process and reduce the total numbers of iterations for convergence. It can be found that the 

different initial microstructures can give different microstructural architecture designs, although the effective 

properties of the designs may be similar [39]. This phenomenon should be because of multiple local solutions 

due to non-convexity of the topology optimization problem with the homogenized composite material. Another 

reason is that for the macro structure consisting of arrays of periodic micro unit cells, each unit cell has periodic 

boundary condition. The microstructural pattern for repeatedly assembling the macro structure is not unique, 

depending on how to identify and extract the unit cell from the periodic material, which is found in [16] as well.  

 

 

Figure 4. Convergence of the objective function 

(3) Designs with different porosities 

In this section, we will design microstructures to have a range of effective bulk moduli and permeability values 

with different porosities. The optimized microstructures with 40%, 50%, and 70% porosities are designed to 

satisfy the prescribed, numerically estimated cross-property parameters. The optimized material microstructures 

presented in Table 2-4 are similar to the microstructures given in [17, 37-39]. The parameters for different cases 

are given in Table 5. The results show how scaffold architecture affects tissue regeneration, since scaffolds can 

be fabricated to have different stiffness and permeability values for the same porosity. 

 

It should also be noted that for the 3D microstructural design sometimes the final topologies will be similar at 

the first sight, but their detailed geometric features and fine shapes will be different. This indicates that the final 
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properties of the optimized scaffold are determined not only by the topology but also by local geometrical shape 

and features of the internal surface, particularly for the design involving the boundary dependent conditions. 

 

As illustrated in Table 2-4, different architectures of scaffold microstructures will give rise to different effective 

stiffness and permeability even under the same porosities. The porosity plays an important role in determining 

macroscopic properties of the scaffold as well. The range of stiffness able to be achieved is constrained by the 

bounds on the effective stiffness derived by Hashin and Shtrikman [40]. Furthermore, from the computational 

results, it can be seen that the arrangement of holes will effect on the effective permeability. Hollister [2] noted 

that for a specified scaffold design the effective permeability will decrease with the increase of material, and the 

effective permeability is only determined by the arrangement of holes. In addition, based on Eq. (8), the value 

of the effective permeability is dependent on the fluid velocities in the unit cell. 

 

In the topology optimization design, we can also find that higher ratio of porosity for a microstructure indicates 

the removal of more base material, in order to facilitate a design with more internal pore connections to satisfy 

the tailored material properties. Under the no-slip condition, the length scales and the total areas of the flow 

channels have a large effect on the fluid velocities. This explains the phenomenon that Cases (d) and (h), and 

Cases (f) and (g) have similar topologies but different properties. 

 

Since we have achieved a range of effective bulk moduli, the upper Hashin-Shtrikman bound [40] for the bulk 

modulus will be used to validate the designed scaffold microstructure by using the proposed method. From 

Figure 5, it can be seen that the bulk modulus of the optimized design are within the upper Hashin-Shtrikman 

bound. Sigmund [41] also noted that the requirement to maintain mass transport might restrict the optimized 

microstructure from reaching the upper stiffness bounds. The optimization of stiffness only will lead to a closed 

unit cell architecture which may approach the upper Hashin-Shtrikman bound [40]. This also explains why the 

microstructure that is optimized with a fluid conductance constraint cannot reach the upper bounds. Guest [17] 

investigated the effect of a weighted combination of competing stiffness and flow terms in the objective 

function, and the numerical results [17] provided a reference for determining the weights in such multi-

objective formulation. According to the specific requirements of scaffold design in our study, we found that the 

stiffness term takes priority in the optimized design. 

 

The aim of this study is not to achieve maximum effective elastic properties or permeability with a constraint on 

porosity, but it is to generate new topologically optimized microstructures with desired properties for scaffolds 

whose properties can match those of natural bone tissue. There are potential applications for topologically 
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optimized scaffolds with bio material in clinical research. The scaffolds to be used for different positions such 

as the trabecular bone and cartilage, they should have different properties (e.g. porosity and strength, stiffness, 

permeability). The optimized microstructure with 40% and 50% porosities and high stiffness can be used for 

fracture fixation and fusion [16]. For the spinal cage, it requires a scaffold with sufficient load bearing and 

limited displacement to ensure bone healing [42]. The microstructures like Case (a) and Case (f), which almost 

reach the upper bound of the effective stiffness, can be considered in this application.  

 

The microstructures with high porosity 70% will be suitable for human trabecular bone such as distal femoral 

and iliac crest [5]. Scaffold with low stiffness and low permeability are needed for cartilage tissue engineering 

applications [43]. Such microstructures located within the interior of the cross property bounds and away from 

the upper limits, such as Case (g) and Case (i), can satisfy the requirements. Since the base material used in this 

study is artificial, it is difficult to compare the materials properties with those for real-world human tissues. 

Nevertheless, the topologically optimized microstructures with a range of cross properties can still provide a 

useful reference on how to design the scaffold architectures with controlled material properties. 

 

Furthermore, to validate the numerical results, the properties of the optimized microstructure are compared with 

the properties of bi-optimal porous materials under cubic elastic and isotropic flow symmetries by Challis and et 

al [21]. In [21], the bi-optimal porous material design was obtained by setting equal weighting factors in the 

objective function (ωB = ωk =0.5). To clarify the comparison, the computational results from [21] (the properties 

of porous material under different porosities, e.g. 10%, 25%, 50%, 75% and 90%) were plotted as a trend line, 

shown in Fig. 6. Comparing with the cases in [21], in this work the settings of weights for the objective function 

and the target properties are different. However, the results in [21] provided the computationally generated 

cross-property bounds, which can be regarded as references to the achieved effective properties in this work. 

 

In Fig. 6, it can be seen that the properties obtained by the proposed method are reasonably around the bi-

optimal cross-property lines. The designed microstructure under the given porosity 50%, namely Case (d), 

shows a close value of the numerically estimated cross-property and a similar topology as given in [21]. It is 

noted that the initial structures selected in these two studies are different. Due to the dependency of 

topologically optimized designs to the initial designs, the topologies of the final structures in these two works 

are different. Based on the resolutions in this study, it is not surprising to see that the topology optimization 

design problem under the same porosity may result in fluctuation in material properties. The variance of the 

effective stiffness can be caused by the different layouts of solid material, while the effective permeability are 

influenced by the size and shape of the 3D pores and pore connectivity. To meet the multifunctional needs of 
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scaffold design, the goal of this study is to achieve a range of cross-properties by distributing a given amount of 

material with different layouts. 

 

From the point of view of scaffold design in tissue engineering [38], tissue growth consideration is an important 

and challenging problem. In this paper, since the major concern is to develop a systematic design method for the 

creation of micro-structured mechanical architecture with prescribed material properties to assist scaffold design, 

we haven’t considered the time-dependence of the tissue growth effect in the design of the scaffold. However, 

in our near future research, we will endeavor to develop a simplified method for design sensitivity analysis 

involving the time-dependent effect of tissue growth, so as to enable more practical bio engineering applications. 

 

Table 2 Optimized designs of scaffold architecture with the porosity 40% 

Case (a) 

Initial guess (Solid phase) Solid phase Fluid phase 2×2×2 array 

    

Parameters 

of material 

properties 

H H

0.6311 0.2099 0.2099 0 0 0

0.2099 0.6311 0.2099 0 0 0
0.0035 0 0

0.2099 0.2099 0.6311 0 0 0
 ;   0 0.0035 0    

0 0 0 0.1698 0 0
0 0 0.0035

0 0 0 0 0.1698 0

0 0 0 0 0 0.1698

 
 
   
   = =   
     
 
 

C K  

Case (b) 

Initial guess (Solid phase) Solid phase Fluid phase 2×2×2 array 
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Parameters 

of material 

properties 

3

H H 3

3

0.5412 0.1621 0.1621 0 0 0

0.1621 0.5412 0.1621 0 0 0
0.3808 10 0 0

0.1621 0.1621 0.5412 0 0 0
 ;  0 0.3808 10 0

0 0 0 0.1513 0 0
0 0 0.3808 10

0 0 0 0 0.1513 0

0 0 0 0 0 0.1513

−

−

−

 
 
   ×
   

= = ×   
   ×  
 
 

C K

 

Case (c) 

Initial guess (Solid phase) Solid phase Fluid phase 2×2×2  array 

    

Parameters 

of material 

properties 

H H

0.4924 0.1715 0.1715 0 0 0

0.1715 0.4924 0.1715 0 0 0
0.0024 0 0

0.1715 0.1715 0.4924 0 0 0
 ;   0 0.0024 0

0 0 0 0.1721 0 0
0 0 0.0024

0 0 0 0 0.1721 0

0 0 0 0 0 0.1721

 
 
   
   = =   
     
 
 

C K  

 

Table 3 Optimized designs of scaffold architecture under the porosity 50% 

Case (d) 

Initial guess (Solid phase) Solid phase Fluid phase 2×2×2  array 

   

Parameters 

of material 

properties 

H H

0.3645 0.0847 0.0847 0 0 0

0.0847 0.3645 0.0847 0 0 0
0.007 0 0

0.0847 0.0847 0.3645 0 0 0
 ;   0 0.007 0    

0 0 0 0.0936 0 0
0 0 0.007

0 0 0 0 0.0936 0

0 0 0 0 0 0.0936

 
 
   
   = =   
     
 
 

C K  

Case (e) Initial guess (Solid phase) Solid phase Fluid phase 2×2×2  array 
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Parameters 

of material 

properties 

H H

0.1524 0.0164 0.0164 0 0 0

0.0164 0.1524 0.0164 0 0 0
0.008 0 0

0.0164 0.0164 0.1524 0 0 0
 ;  0 0.008 0

0 0 0 0.0392 0 0
0 0 0.008

0 0 0 0 0.0392 0

0 0 0 0 0 0.0392

 
 
   
   = =   
     
 
 

C K  

Case (f) 

Initial guess (Solid phase) Solid phase Fluid phase 2×2×2  array 

    

Parameters 

of material 

properties 

H H

0.3701 0.1387 0.1387 0 0 0

0.1387 0.3701 0.1387 0 0 0
0.0011 0 0

0.1387 0.1387 0.3701 0 0 0
 ;  0 0.0011 0

0 0 0 0.1421 0 0
0 0 0.0011

0 0 0 0 0.1421 0

0 0 0 0 0 0.1421

 
 
   
   = =   
     
 
 

C K

 

 

Table 4 Optimized designs of scaffold architecture under the porosity 70% 

Case (g) 

Initial guess (Solid phase) Solid phase Fluid phase 2×2×2  array 
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Parameters 

of material 

properties 

4

H H 4

4

0.0979 0.0416 0.0416 0 0 0

0.0416 0.0979 0.0416 0 0 0
4.422 10 0 0

0.0416 0.0416 0.0979 0 0 0
 ;  0 4.422 10 0

0 0 0 0.0534 0 0
0 0 4.422 10

0 0 0 0 0.0534 0

0 0 0 0 0 0.0534

−

−

−

 
 
   ×
   

= = ×   
   ×  
 
 

C K

 

Case (h) 

Initial guess (Solid phase) Solid phase Fluid phase 2×2×2  array 

    

Parameters 

of material 

properties 

H H

0.1650 0.0208 0.0208 0 0 0

0.0208 0.1650 0.0208 0 0 0
0.0029 0 0

0.0208 0.0208 0.1650 0 0 0
 ;  0 0.0029 0

0 0 0 0.0321 0 0
0 0 0.0029

0 0 0 0 0.0321 0

0 0 0 0 0 0.0321

 
 
   
   = =   
     
 
 

C K

 

Case (i) 

Initial guess (Solid phase) Solid phase Fluid phase 2×2×2  array 

    

Parameters 

of material 

properties 

4

H H 4

4

0.1960 0.0298 0.0298 0 0 0

0.0298 0.1960 0.0298 0 0 0
2.269 10 0 0

0.0298 0.0298 0.1960 0 0 0
 ;  0 2.269 10 0

0 0 0 0.0379 0 0
0 0 2.269 10

0 0 0 0 0.0379 0

0 0 0 0 0 0.0379

−

−

−

 
 
   ×
   

= = ×   
   ×  
 
 

C K  

 

Table 5 Initial parameters and corresponding optimized results 

Case (ωB, ωk) B
*
 k

*
 B

H
 k

H
 

(a) (1.00, 0.2) 0.2 0.005 0.3369 0.0035 

(b) (1.00, 0.1) 0.28 0.001 0.2849 0.0003808 
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(c) (1.00, 0.2) 0.26 0.005 0.2786 0.0024 

(d) (1.00, 0.5) 0.18 0.005 0.18 0.007 

(e) (1.00, 0.5) 0.1 0.01 0.0693 0.008 

(f) (1.00, 0.02) 0.22 0.002 0.2167 0.0011 

(g) (1.00, 0.02) 0.06 0.001 0.0643 0.0004422 

(h) (1.00, 0.02) 0.07 0.005 0.0726 0.0029 

(i) (1.00, 0.02) 0.085 0.0005 0.0879 0.0002669 

 

 

 

Figure 5 Comparison of the achieved properties with the upper Hashin-Shtrikman bound [37] 

 

 

Figure 6 Comparison of the achieved properties with the results of Challis (2012) [21] 
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6 CONCLUSIONS 

This paper has developed a systematic computational design method to generate micro-structured architectures 

using a multiphase level set method for 3D scaffolds in tissue engineering to achieve multifunctionality, e.g. 

mechanical stiffness, fluid porosity and permeability. The numerical homogenization method is integrated into 

the PLSM to optimize shape and topology of the microstructure. Several numerical examples have been applied 

to demonstrate the effectiveness of the proposed method. Moreover, the final microstructure is geometrically 

characterized with smooth boundaries and distinct material interfaces, which may greatly facilitate fabrication 

of the topologically optimized scaffolds which normally have complex geometries and shapes. From the results, 

we can see that the proposed method can be used to generate a range of different scaffold architectures with 

various stiffness, porosity and permeability, to satisfy the multifunctionality of tissue engineering scaffolds. It is 

noted that the proposed method can be extended to more advanced design problems for scaffolds. 
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