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We examine the problem of finding the minimum number of Pauli measurements needed to uniquely de-
termine an arbitrary n-qubit pure state among all quantum states. We show that only 11 Pauli measurements
are needed to determine an arbitrary two-qubit pure state compared to the full quantum state tomography with
16 measurements, and only 31 Pauli measurements are needed to determine an arbitrary three-qubit pure state
compared to the full quantum state tomography with 64 measurements. We demonstrate that our protocol is
robust under depolarizing error with simulated random pure states. We experimentally test the protocol on two-
and three-qubit systems with nuclear magnetic resonance techniques. We show that the pure state tomography
protocol saves us a number of measurements without considerable loss of fidelity. We compare our protocol
with same-size sets of randomly selected Pauli operators and find that our selected set of Pauli measurements
significantly outperforms those random sampling sets. As a direct application, our scheme can also be used to
reduce the number of settings needed for pure-state tomography in quantum optical systems.

PACS numbers: 03.65.Wj, 03.65.Ud, 03.67.Mn

I. INTRODUCTION

We consider a d-dimensional Hilbert spaceHd, and denote
D(Hd) the set of density operators acting onHd. Assume that
we measure a set of m linearly independent observables

A = (A0, A1, A2, . . . , Am−1), (1)

where each Ai is Hermitian. Without loss of generality, we
assumeA0 = I (i.e. the identity operator onHd), and trAi =
0 for i = 1, 2, . . . ,m− 1.

Then for any ρ ∈ D(Hd), the measurement returns a set of
outcomes

α = (tr ρ, tr(ρA1), tr(ρA2), . . . , tr(ρAm−1)). (2)

Theoretically, we always have tr ρ = 1, however we keep this
entry in α for the reason of experimental calibration [1–4].

For any ρ ∈ D(Hd), full quantum state tomography re-
quires d2 measurement outcomes to determine ρ [5]. However
for a pure state |ψ〉 ∈ Hd, in general only order d measure-
ments are needed to determine |ψ〉. There is a slight differ-
ence in interpreting the term ‘determine’, as clarified in [6]
and summarized in the following definition. The physical in-
terpretation in this case is clear: it is useful in quantum to-
mography to have some prior knowledge that the state to be
reconstructed is pure or nearly pure.

Definition 1. A pure state |ψ〉 is uniquely determined among
pure states (UDP) by measuring A if there does not exist any

other pure state which has the same measurement results as
those of |ψ〉 when measuring A. A pure state |ψ〉 is uniquely
determined among all states (UDA) by measuring A if there
does not exist any other state, pure or mixed, which has the
same measurement results as those of |ψ〉 when measuring A.

It is known that there exists a family of 4d − 4 observ-
ables such that any d-dimensional pure state is UDP [7], and
5d − 6 observables such that any d-dimensional pure state is
UDA [6]. Many other techniques for pure-state tomography
have been developed, and experiments have been performed
to demonstrate the reduction of the number of measurements
needed [8–13]. However, even if there are constructive proto-
cols for the measurement set A, in practice these sets may not
be easy to measure in an experiment.

One idea of the compressed sensing protocols as discussed
in [14, 15] considers measurements of Pauli operators for n-
qubit systems, with Hilbert space dimension d = 2n. Since
no joint measurements on multiple qubits are needed for Pauli
operators, these operators are relatively easy to measure in
practice. It is shown that order d log d random Pauli measure-
ments are sufficient to UDP almost all pure states. That is, all
pure states can be determined, up to a set of states with mea-
sure zero (i.e. ‘almost all’ pure states are determined). Ex-
periments also demonstrate the usefulness of this method in
pure-state tomography in practice [16]. However, it remains
open how many Pauli measurements are needed to determine
all pure states (UDP or UDA) of an n-qubit system.

In this work, we examine the problem of the minimum
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number of Pauli operators needed to UDA all n-qubit pure
states. For n = 1 the number is known to be 3, i.e. all three
Pauli operators X,Y, Z are needed. We solve the problem
for n = 2 and n = 3, where at least 11 Pauli operators are
needed for n = 2 and at least 31 Pauli operators are needed
for n = 3. We then demonstrate that our protocol is robust
under depolarizing error with simulated random pure states.
We further implement our protocol in our nuclear magnetic
resonance (NMR) system and compare our result with other
methods. As a direct application of this result, we show that
our scheme can also be used to reduce the number of settings
needed for pure-state tomography in quantum optical systems.

II. PURE-STATE TOMOGRAPHY USING PAULI
OPERATORS

We consider the real span of the operators in A, and de-
note it by S(A). Let S(A)⊥ be the (d2 − m)-dimensional
orthogonal complement subspace of S(A) inside Rd2

. It is
known that a sufficient condition for any pure state |φ〉 to be
UDA by measuring A is that any nonzero Hermitian opera-
tor H ∈ (S(A))⊥ have at least two positive and two neg-
ative eigenvalues [6]. In fact, this is also a necessary con-
dition. Otherwise, if the second-lowest eigenvalue of H is
non-negative, then the two states |ψ〉〈ψ| and H + |ψ〉〈ψ| are
indistinguishable by only measuring A where |ψ〉 is the eigen-
vector of H corresponds to the smallest eigenvalue. Note that
without loss of generality, we can always assume the small-
est eigenvalue of H is greater than −1 which will guarantee
H + |ψ〉〈ψ| ≥ 0. A similar argument holds if the second-
largest eigenvalue of H is non-negative. We will then look for
such sets A containing only Pauli operators, for two-qubit and
three-qubit pure state tomography.

A. Two-qubit system

We denote the single-qubit Pauli operators by σ1 =
X,σ2 = Y, σ3 = Z, and the identity operator σ0 = I . For
a single qubit, it is straightforward to check that measuring
only two of the three operators cannot determine an arbitrary
pure state. Therefore all three Pauli operators are needed in
the single-qubit case.

For the two-qubit system, there are a total of 16 Pauli op-
erators, including the identity. These are given by the set
{σi ⊗ σj} with i, j = 0, 1, 2, 3. For simplicity we omit the
tensor product symbol by writing, e.g. XY instead of X⊗Y .
Of these 16 Pauli operators, there exists a set of 11 Pauli op-
erators A such that A is UDA for any pure state, as given by
the following theorem.

Theorem 1. Any two-qubit pure state |φ〉 is UDA by measur-
ing the following set of Pauli operators.

A ={II, IX, IY, IZ,XI, Y X,
Y Y, Y Z,ZX,ZY, ZZ}, (3)

and no set with fewer than 11 Pauli operators can be UDA for
all two-qubit pure states.

This is to say, 11 is the minimum number of Pauli operators
needed to UDA any two-qubit pure state, and an example of
such a set with 11 Pauli operators is given in Eq. (3).

Proof. In order for A to UDA all two-qubit pure states it is
known [6] that any Hermitian operator H ∈ (S(A))⊥ must
have at least two positive and two negative eigenvalues.

In this case (S(A))⊥ = S({XX,XY,XZ, Y I, ZI}).
Note that the 5 operators which are not measured all mutually
anti-commute with each other. It is easy to see that this prop-
erty is required for if two operators in (S(A))⊥ commuted,
then they would be simultaneously diagonalizable and a lin-
ear combination would exist which would have at least one
0-eigenvalue. Since two-qubit Pauli operators only have four
eigenvalues total, having a single 0 eigenvalue fails the UDA
condition.

Furthermore it is easy to show by exhaustive search that
there exists no set of more than 5 mutually anti-commuting
Pauli operators. So no fewer than 11 Paulis could be mea-
sured.

To show that this set of 11 Pauli operators is sufficient to be
UDA, we construct a parametrization of all H ∈ (S(A))⊥;

H = α1XX + α2XY + α3XZ + α4Y I + α5ZI (4)

and show that either H has two positive and two negative
eigenvalues or H = 0. Note that H then has the following
form:

α5 0 α3 + α4i α1 + α2i

0 α5 α1 − α2i −α3 + α4i

α3 − α4i α1 + α2i −α5 0

α1 − α2i −α3 − α4i 0 −α5

 .

The determinant of H can be calculated and the result is:

α4
5 + α2

5|α3 + α2i|2 + α2
5|α1 + α2i|2

+ |α3 − α4i|4 + |α3 − α4i|2|α1 + α2i|2 + |α3 − α2i|2α2
5

+|α1 − α2i|4 + |α1 − α2i|2|α3 − α4i|2 + |α1 − α2i|2α2
5.

This quantity, being the sum of non-negative terms, is
greater than or equal to 0. Equality is reached if and only if all
terms in the sum are 0, which only occurs when α1 = α2 =
α3 = α4 = α5 = 0. Since H is a 4-by-4 traceless Hermitian
matrix, it can only have positive determinant if and only if it
has exactly two positive and two negative eigenvalues.

The same logic follows for any set that is unitarily equiva-
lent to this set. A particular class of unitary operators which
maps the set of Pauli operators to itself is called the Clifford
group. Thus, the set A and any set which is Clifford equiva-
lent to it are our optimum sets of Pauli measurement operators
for two-qubit pure-state tomography.
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B. Three-qubit system

The situation for the 3-qubit case is much more compli-
cated. We start by noticing that

V = IIZ + IZI + ZII + ZZZ

= 4 (|000〉〈000| − |111〉〈111|) (5)

has one positive and one negative eigenvalue. Therefore, if the
set F1 = {IIZ, IZI, ZII, ZZZ} is a subset of S(A)⊥, the
set A cannot UDA all pure states. Similarly any set Fi which
is Clifford equivalent to F1 cannot be a subset of S(A)⊥. Sets
such as these we call failing sets.

Definition 2. A failing set F is a set of Pauli operators such
that there exists a nonzero real combination of elements cho-
sen from F such that it has only 1 positive eigenvalue or 1
negative eigenvalue.

Namely, for an arbitrary pure state |φ〉 to be UDA by mea-
suring operators in a set A, span(Fi) 6⊂ (span(A))⊥ holds for
every set Fi that is Clifford equivalent to F1. Thus, for all 945
sets of Fi, at least one element in each Fi should be included
in span(A).

Theorem 2. The following set of 31 Pauli operators are suf-
ficient to UDA any given three-qubit pure state |φ〉

A = {IIX, IIY, IIZ, IXI, IXX, IXY, IY I, IY X,
IY Y, IZI,XIZ,XXX,XXY,XY X,XY Y,

XZX,XZY, Y XX, Y XY, Y XZ, Y Y X, Y Y Y,

Y Y Z, Y ZI, ZII, ZXZ,ZY Z,ZZX,ZZY,

ZZZ, III}, (6)

and no set with less than 31 Pauli operators can be UDA for
all three-qubit pure states.

Similarly to the two-qubit case this set is obtained by find-
ing the largest set of Pauli operators which do not contain any
of the identified failing sets and taking the complement pro-
ducing the smallest set of measurement operators which could
UDA all pure states.

To show that this set A will be UDA for any pure state,
we look at the traceless Hermitian operatorH ∈ (span(A))⊥,
where

H = α1IXZ + α2IY Z + α3IZX + α4IZY + α5IZZ

+α6XII + α7XIX + α8XIY + α9XXI

+α10XXZ + α11XY I + α12XY Z + α13XZI

+α14XZZ + α15Y II + α16Y IX + α17Y IY

+α18Y IZ + α19Y XI + α20Y Y I + α21Y ZX

+α22Y ZY + α23Y ZZ + α24ZIX + α25ZIY

+α26ZIZ + α27ZXI + α28ZXX + α29ZXY

+α30ZY I + α31ZY X + α32ZY Y + α33ZZI.

It can be shown that H either has at least two positive and
two negative eigenvalues orH = 0 (see Appendix for details).
Therefore, set A and any set which is Clifford equivalent to it
are our optimum Pauli measurement sets for 3-qubit pure-state
tomography.

III. STABILITY OF THE PROTOCOL AGAINST
DEPOLARIZING NOISE

Before we test our protocol experimentally, we would like
to understand how robust it is given states that are not pure.
Due to noise in the implementation, we often end up with
some mixed state which is close to our ideal pure state. There-
fore, for the protocol to work in practice, one requires it to
return a density matrix with high fidelity with respect to our
input state when it has high purity. We generate a random
pure state |φ〉 from the Haar measure as our desired ideal state,
then run it through a depolarizing channel to get a noisy mixed
state ρ = η I

d+(1−η)|φ〉〈φ|. We could then generate all Pauli
measurement results {Tr(ρσk) =Mk}, where σk is Pauli ob-
servable of given dimension. Pick results determined by our
optimum Pauli measurement set, we run a maximum likeli-
hood estimation to get a density matrix reconstruction. Our
protocol is tested over a range of different η, and the results
are shown in Figure 1. We can see that for small noise η, the
simulated state is very close to pure, and the protocol returns
a high-fidelity density matrix reconstruction. As noise η in-
creases, the pure state assumption becomes less useful, and
our protocol yields a low fidelity estimation.

0.0 0.2 0.4 0.6 0.8 1.0
η0.75

0.80

0.85

0.90

0.95

1.00
Average Fidelity

Figure 1. The average fidelity of reconstructed density matrices com-
pared to the ideal state using an optimum Pauli measurement set for
3 qubits. The error bars are given by standard deviation of the said
fidelity over 100 instances. For small noise η, the state is very close
to pure, and the protocol returns a high fidelity density matrix recon-
struction. As noise η increases, the pure state assumption becomes
less useful, which yields a low fidelity estimation.

IV. EXPERIMENTS IN NMR SYSTEMS

A nuclear magnetic resonance (NMR) system is an ideal
testbed for our protocol. However, the creation of a pure state
in NMR requires unrealistic experimental conditions such as
extremely low temperatures or high magnetic fields, which
makes it impractical for a liquid sample. To overcome this
problem, one can prepare a pseudo-pure state (PPS) alterna-
tively

ρPPS =
1− ε
2N

I+ ε|φ〉〈φ|, (7)
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where I is the identity matrix and ε ∼ 10−5 represents the
polarization. For a traceless Pauli observable σ, only the pure
state portion ε|φ〉〈φ| contributes to the measurement result.
Therefore, the behavior of a system in the PPS is exactly the
same as it would be in the pure state.

To test our protocol, we carried out the experiments in 2-
and 3-qubit NMR quantum systems, respectively. The qubits
in the 2-qubit system are denoted by the 13C and 1H spins
of 13C-labeled Chloroform diluted in acetone-d6 on a Bruker
DRX-500 MHz spectrometer, and in the 3-qubit system by the
13C, 1H and 19F spins in Diethyl-fluoromalonate dissolved in
d-chloroform on a Bruker DRX-400 MHz spectrometer. The
molecular structures and relevant parameters are shown in Fig.
2, and the corresponding natural Hamiltonian for each system
can be described as

Hint =
∑
i=1

πνiσ
i
z +

∑
i<j,=1

πJij
2
σi
zσ

j
z, (8)

where νi is the resonance frequency of spin i and Jij are the
scalar coupling constants between spins i and j. All parame-
ters are listed in the right table of Fig. 2. Note that in experi-
ment we set νi = 0 in the multi-rotating frame for simplicity.

In experiment, the entire tomography process for a PPS be-
comes: given measurements Tr(ρσk) = εTr(ρtσk) = Mk,
find a density matrix ρrec to best fit the data Mk. In order
to evaluate the performance of our protocol, two comparisons
will be made. First, we compare the reconstructed state using
the optimum number of Pauli measurements with the one ob-
tained with full tomography. It gives us an idea how good the
reconstruction is, and whether the protocol works. Second, we
compare our result with the state reconstructed by randomly
choosing Pauli measurements. This tells us how different the
performance is between selecting the optimum set and a ran-
dom set of Pauli measurements.

A. Pure state tomography for a 2-qubit state

1H 13C 19F T1 (s) T2 (s)
1H 400M 2.8 1.2
13C 160.7 100M 2.9 1.1
19F 47.6 ‐194.4 376M 3.1 1.3

1H 13C T1 (s) T2 (s)
1H 500M 4.8 3.3
13C 214.6 125M 17.2 0.35

(a)

(b)

Figure 2. Molecular structure of (a) 2-qubit sample 13 C-labeled
Chloroform and (b) 3-qubit sample Diethyl-fluoromalonate. The cor-
responding tables on the right side summarize the relevant NMR pa-
rameters at room temperature, including the Larmor frequencies (di-
agonal, in Hertz), the J-coupling constant (off-diagonal, in Hertz) and
the relaxation time scales T1 and T2.

For the 2-qubit protocol, the system is firstly initialized to

the PPS

ρ00 =
1− ε
4

I+ ε|00〉〈00| (9)

via spatial average technique [17, 18], and the NMR signal
of this PPS is used as references for further comparisons with
the tomographic results. We then turn on the transversal field
with the strength ωx (in terms of radius), so in double-rotating
frame the Hamiltonian becomes

H =
ωx

2

(
σ1
x + σ2

x

)
+ π

J12
2
σ1
zσ

2
z (10)

By ignoring the identity in ρ00, the system should evolve to a
time-dependent pure state

|φ〉 = α(t)|00〉+ β(t)(|01〉+ |10〉)/
√
2 + γ(t)|11〉. (11)

We measured in total 16 different states at a few different
time steps and the corresponding Pauli observables for each
state. The reconstructed density matrices for the first and six-
teenth experiments are shown in Figs. 3 and 4, respectively.
Note that as the time progresses, the relaxation becomes more
prominent, where the purity of state Tr(ρ2) drops. Since our
protocol is designed for pure-state tomography, the perfor-
mance of our protocol is expected to drop along with the de-
crease of purity in a quantum state.

In order to further demonstrate the advantages of our proto-
col, we compare it to a quantum state tomography with Pauli
measurements. Using the same number of random Pauli mea-
surements, one could also perform the maximum likelihood
method to get a reconstruction of the density matrix. Note
that the optimum set of 11 Pauli measurements may be ran-
domly hit in this case, which means the best performance of
random Pauli measurement algorithm is the same compared
with our protocol. However, in a realistic setting, only one
set of random Pauli measurements will be chosen. To show
the advantage of our protocol, we only have to outperform the
average case of this random algorithm.

We randomly generated 11 distinct 2-qubit Pauli measure-
ments (including identity), and used the maximum likelihood
method to get an estimate of our density matrix. If the den-
sity matrix given by this set of measurements is not unique,
the maximum likelihood method runs multiple times to get an
average estimation. For each experiment, 100 sets of random
Pauli measurements were chosen. The result is shown in Fig.
4. We can see that for high purity, our method significantly
outperforms the random Pauli algorithm. The advantage de-
creases as purity decreases, which indicates our method is
more efficient for a state that is close to pure.

B. Pure state tomography for a 3-qubit state

For 3-qubit system, we are interested in the GHZ state
|GHZ〉 = (|000〉+|111〉)/

√
2. Here, we measured all 64 Pauli

measurements, and only use 31 of them described in Eq. 6 for
our protocol. As shown in Fig. 5, only using less than half of
the desired measurements, we reconstructed density matrices



5

Figure 3. The reconstruction of density matrix for state number one.
The upper two figures are real and imaginary part of density matrix
of state reconstruction using all 16 Pauli measurements. The bot-
tom two figures are real and imaginary part of density matrix of state
reconstruction using 11 optimum Pauli measurements described ear-
lier. The fidelity between the two density matrices is 0.992.
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Figure 4. Performance of 2-qubit protocol using selected Pauli mea-
surements against randomly Pauli measurements.The blue diamond
dots are the fidelity between density matrix reconstructed from all 16
Pauli measurements with density matrix reconstructed from random
11 Pauli measurements. The red line represents fidelity of recon-
struction using our protocol, and the green dashed line shows the
purity of density matrix reconstructed from all Pauli measurements.

for the GHZ state with 0.96 fidelity. We then compare it to
a quantum state tomography algorithm implementing 31 ran-
dom Pauli measurements (including identity). Since the num-
ber of unused Pauli measurements are much more compared
to the 2-qubit case, we are less likely to hit the optimum set in
this random algorithm. By implementing a similar maximum
likelihood reconstruction, we found the average fidelity of this
random algorithm to be 0.87 with standard deviation of 0.16.
The detailed result is shown in Fig. 6, which shows clearly
that our protocol has a decent advantage over the average case
in the randomized algorithm.

Figure 5. The reconstruction of density matrix for GHZ state. The
upper two figures are real and imaginary part of density matrix of
state reconstruction using all 64 Pauli measurements. The bottom
two figures are real and imaginary part of density matrix of state
reconstruction using 31 optimum Pauli measurements described in
Eq. 6. The fidelity between the two density matrices is 0.960.

0.0 0.5 1.0 1.5 2.0
GHZ0.0

0.2

0.4

0.6

0.8

1.0

fidelity

Figure 6. Performance of 3-qubit protocol using selected Pauli mea-
surements against randomly Pauli measurements. Blue dots rep-
resents fidelity between density matrix reconstructed from all 64
Pauli measurements and density matrix reconstructed from random
31 Pauli measurements. The red squre represents fidelity of recon-
struction using our protocol.

V. APPLICATION TO TOMOGRAPHY IN OPTICAL
SYSTEMS

Figure 7 depicts a typical scheme for measuring a
polarization-encoded n-photon state [19–24]. Quarter- and
half-waveplates in each photon’s path are rotated to choose a
separable polarization basis. We call the set of angles specify-
ing each waveplate’s position the setting of the measurement.
The n-photon state is projected onto the basis set by the wave-
plate angles with n polarizing beamsplitters. A single-photon
detector is present in each of the 2n output ports of the beam-
splitters, and n-fold coincident detections among the n paths
are counted. There are 2n combinations of n-fold coincident
detection events that correspond to a state with one photon
entering each of the n beamsplitters before being detected in
one of the two output ports. Summing the total number of n-
fold coincidences over these 2n combinations gives the total
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Figure 7. Measurement scheme for a polarization-encoded n-photon
state. The n-qubit state is encoded in the polarizations of the n pho-
tons. Each photon is measured using a quarter-waveplate (QWP),
half-waveplate (HWP) and a polarizing beamplitter (PBS) with a
single-photon counting detector (SPD) at each of its output ports.
The quarter- and half-waveplates are rotated to choose the measure-
ment basis for each photon. Separable projective measurements are
performed by counting coincident detection events between all n
photons.

number of copies of the state detected by the measurement.
A minimum of 3n measurement settings are required for

general state tomography using separable projective measure-
ments [2]. We note that, if one performs nonseparable mea-
surements, then general state tomography can be performed
with 2n + 1 measurement settings [25]. However, these types
of measurements are difficult to perform in practice, so we
restrict the discussion here to separable ones.

One can think of each setting as a projective measurement
that produces results for multiple Pauli operators simultane-
ously. For example, consider measuring a 2-photon state
with the waveplates set such that a photon in the positive
eigenstate of the Pauli X or Y operator will be determin-
istically transmitted at the first or second beamsplitter, re-
spectively. For simplicity we will call this the XY setting.
There are four relevant two-fold coincident detection events,
which we denote Ntt, Ntr, Nrt, and Nrr, and where the
first and second subscripts represent which output port (i.e.
transmitted or reflected) the first or second photon was de-
tected, respectively. These counts can be summed in spe-
cific ways to find expectation values of different Pauli oper-
ators. For example the expectation value of 〈XY 〉 is given by
〈XY 〉 = (Ntt−Ntr−Nrt+Nrr)/N , where the total number
of copiesN is given byN = Ntt+Ntr+Nrt+Nrr. Similarly,
〈XI〉 can be found with 〈XI〉 = (Ntt+Ntr−Nrt−Nrr)/N .
In total, the XY setting measures the following four Pauli op-
erators:

XY,XI, IY, II.

Based on this observation, we can use the results of The-
orem 1 and Theorem 2 to reduce the number of settings to
UDA pure states. For the two-qubit case, recall that the 11

Pauli operators to UDA any pure states are

A = {II, IX, IY, IZ,XI, Y X, Y Y, Y Z,ZX,ZY, ZZ}.

Notice that any of the 6 Paulis with no I component (the
two-qubit correlations) only appear in the setting which mea-
sures it. However, looking at the remaining 5 Paulis, II is
included in every setting, IX is included in the Y X setting,
IY in Y Y , IZ in Y Z. The only operator which does not
appear in the settings of the two-qubit correlations is XI , so
for the two qubit case, 6 + 1 = 7 settings are required to be
sufficient for UDA.

And similar analysis can be done for the three qubit case,
with the aid of computer search. We summarize these results
as the corollary below.

Corollary 1. Only 7 settings

{XI, Y X, Y Y, Y Z,ZX,ZY,ZZ}.

are needed to UDA any two-qubit pure states, compared with
9 settings needed for general two-qubit state tomography. And
only 19 settings

{XXZ,XY Z,XZX,XZY,XZZ, Y XX,
Y XY, Y Y X, Y Y Y, Y ZX, Y ZY, Y ZZ,

ZXX,ZXY,ZXZ,ZY X,ZY Y, ZY Z,ZZX} (12)

are needed to UDA any three-qubit pure states, compared with
27 settings needed for general three-qubit state tomography.

We remark that Corollary 1 is a direct application of Theo-
rem 1 and Theorem 2. It is possible for even better results to
be obtained by including knowledge of settings in the first op-
timization. However, proving sufficiency becomes more diffi-
cult in these cases.

VI. CONCLUSION

In this work, we find the most compact Pauli measurement
sets for pure-state tomography on two- and three-qubit sys-
tems. The experiments on two-qubit and three-qubit NMR
systems demonstrated the advantages of using such protocol.
We reduced the required number of measurements by 5 and 33
for two- and three-qubit systems, respectively, without signif-
icant drop in fidelity. As a direct application of this result, we
also showed that our scheme can be used to reduce the num-
ber of settings needed for pure-state tomography in quantum
optics systems.

A few questions need to be answered before we scale the
test to larger systems. We are able to find the optimum sets
for two and three qubits. However, the method we used to
find those sets can not be easily generalized to larger systems.
It remains open whether one can find a general algorithm to
decide the smallest sets of Pauli operators to UDA any pure
state for a system of n qubits. If such an algorithm exists, we
would hope that the number of measurements required grows
linearly with the Hilbert space dimension of the system.
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Appendix A: Proof of Theorem 2

In order to prove Theorem 2, it suffices to prove the follow-
ing result.

Theorem 3. Any Hermitian operator perpendicular to

{IIX, IIY, IIZ, IXI, IXX, IXY, IY I, IY X, IY Y, IZI,
XIZ,XXX,XXY,XY X,XY Y,XZX,XZY, Y XX,

Y XY, Y XZ, Y Y X, Y Y Y, Y Y Z, Y ZI, ZII, ZXZ,ZY Z,

ZZX,ZZY,ZZZ}

must have at least two positive and two negative eigenvalues.

Proof. The proof proceeds as follows. First construct an 8-
by-8 traceless Hermitian matrix H which is perpendicular to
all the above Pauli operators. This will be a real linear com-
bination of every Pauli operator that is not being measured.
This H is then a general description of any Hermitian matrix
in the complement of the span of all measured operators. We
will show through a case by case analysis that if we assumeH
only has one positive eigenvalue, then it follows that H must
be the zero matrix. A similar argument holds for having only
one negative eigenvalue therefore H must have at least two
positive and two negative eigenvalues.

Let us begin by constructing H which is a real linear com-
bination of the 33 Pauli operators not being measured (exclud-
ing the identity). H is then:

H = x1IXZ + x2IY Z + x3IZX + x4IZY

+x5IZZ + x6XII + x7XIX + x8XIY

+x9XXI + x10XXZ + x11XY I + x12XY Z

+x13XZI + x14XZZ + x15Y II + x16Y IX

+x17Y IY + x18Y IZ + x19Y XI + x20Y Y I

+x21Y ZX + x22Y ZY + x23Y ZZ + x24ZIX

+x25ZIY + x26ZIZ + x27ZXI + x28ZXX

+x29ZXY + x30ZY I + x31ZY X + x32ZY Y

+x33ZZI.
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Writing H in matrix form will give the form:



c11 c12 c13 c14 c15 c16 c17 0

c∗12 c22 c23 c24 c25 c26 0 c28

c∗13 c∗23 c33 c34 c35 0 c37 c38

c∗14 c∗24 c∗34 c44 0 c46 c47 c48

c∗15 c∗25 c∗35 0 c55 c56 c57 c58

c∗16 c∗26 0 c∗46 c∗56 c66 c67 c68

c∗17 0 c∗37 c∗47 c∗57 c∗67 c77 c78

0 c∗28 c∗38 c∗48 c∗58 c∗68 c∗78 c88



(A1)

where

c11 = x5 + x26 + x33;

c22 = −x5 − x26 + x33;

c33 = −x5 + x26 − x33;
c44 = x5 − x26 − x33;
c55 = x5 − x26 − x33 = c44;

c66 = −x5 + x26 − x33 = c33;

c77 = −x5 − x26 + x33 = c22;

c88 = x5 + x26 + x33 = c11;

c12 = x3 + x24 − i(x4 + x25);

c34 = −x3 + x24 + i(x4 − x25);
c56 = x3 − x24 − i(x4 − x25) = −c34;
c78 = −x3 − x24 + i(x4 + x25) = −c12;
c13 = x1 + x27 − i(x2 + x30);

c24 = −x1 + x27 + i(x2 − x30);
c57 = x1 − x27 − i(x2 − x30) = −c24;
c68 = −x1 − x27 + i(x2 + x30) = −c13;
c14 = x28 − x32 − i(x29 + x31);

c23 = x28 + x32 + i(x29 − x31);
c58 = −x28 + x32 + i(x29 + x31) = −c14;
c67 = −x28 − x32 − i(x29 − x31) = −c23;
c15 = x6 + x13 + x14 − i(x15 + x18 + x23);

c26 = x6 + x13 − x14 − i(x15 − x18 − x23);
c37 = x6 − x13 − x14 − i(x15 + x18 − x23);
c48 = x6 − x13 + x14 − i(x15 − x18 + x23)

= c15 − c∗26 + c∗37;

c16 = x7 − x17 − x22 − i(x8 + x16 + x21);

c25 = x7 + x17 + x22 + i(x8 − x16 − x21);
c38 = x7 − x17 + x22 − i(x8 + x16 − x21);
c47 = x7 + x17 − x22 + i(x8 − x16 + x21)

= c∗16 + c25 − c∗38;

c17 = x9 + x10 − x20 − i(x11 + x12 + x19);

c28 = x9 − x10 − x20 − i(x11 − x12 + x19);

c35 = x9 + x10 + x20 + i(x11 + x12 − x19);
c46 = x9 − x10 + x20 + i(x11 − x12 − x19)

= c∗28 + c35 − c∗17;

Note that the main anti-diagonal is all zeros. This was by
design, since any set of Pauli operators Clifford equivalent to
the result from the hyper-graph dualization program is also
a solution, we had the freedom to choose a set which would
make the proof simpler. Choosing the set of operators which
contained all Pauli operators constructed by tensoring only X
operators and Y operators meant H would have zero main
anti-diagonal. The only reason for choosing this set is it makes
this proof a little simpler.

Here we assume H is a Hermitian matrix with only one
positive eigenvalue. We first show all diagonal entries of H
must be zero. Observe that c55 = c44, c66 = c33, c77 = c22,
c88 = c11. In order for the traceless condition on H to
hold, it is then clear that c11 + c22 + c33 + c44 = 0. If
H has some nonzero diagonal entry, then at least one of
c11, c22, c33 and c44 will be positive. Without loss of general-
ity, let c11 > 0, then the submatrix of H formed by the rows
(1, 8) and columns (1, 8), which will be of the form c11 ∗ I ,
will have two positive eigenvalues.

Lemma 1. Cauchy’s Interlacing Theorem states[26]:
Let:

A =

B C

C† D


be an n-by-n Hermitian matrix, where B has size m-by-m
(m<n). If the eigenvalues of A and B are α1 ≤ . . . ≤ αn

and β1 ≤ . . . ≤ βm respectfully. Then:

αk ≤ βk ≤ αk+n−m, k = 1, . . . ,m.

It follows from Cauchy’s interlacing property that if a prin-
ciple submatrix of H has 2 positive eigenvalues then H also
has at least two positive eigenvalues.

Hence, H must be in the following form:

H =



0 c12 c13 c14 c15 c16 c17 0

c∗12 0 c23 c24 c25 c26 0 c28

c∗13 c∗23 0 c34 c35 0 c37 c38

c∗14 c∗24 c∗34 0 0 c∗28 + c35 − c∗17 c∗16 + c25 − c∗38 c15 − c∗26 + c∗37

c∗15 c∗25 c∗35 0 0 −c34 −c24 −c14
c∗16 c∗26 0 c28 + c∗35 − c17 −c∗34 0 −c23 −c13
c∗17 0 c∗37 c16 + c∗25 − c38 −c∗24 −c∗23 0 −c12
0 c∗28 c∗38 c∗15 − c26 + c37 −c∗14 −c∗13 −c∗12 0



.

In fact, under the assumption that H has only 1 positive
eigenvalue, it follows from Cauchy’s interlacing theorem that
any principle submatrix of H cannot have more than one pos-
itive eigenvalue. Otherwise, we will have a contradiction.
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Let us look at the submatrix formed by rows 1, 2, 4, 5 and
the same columns. It is a traceless Hermitian matrix with de-
terminant |c14c25−c15c24|2. Again, if the submatrix has posi-
tive determinant, then it must have exactly two positive eigen-
values. Once again by applying Cauchy’s interlacing property,
H will have at least two positive eigenvalues. This immedi-
ately contradictions our assumption. The above argument im-
plies that, under our assumption H has only 1 positive eigen-
value, we have |c14c25− c15c24|2 ≤ 0. It is not surprising that
the inequality holds if and only if the equality holds. Then we
have c14c25 − c15c24 = 0.

Similarly, by considering other 4-by-4 submatrices con-
structed from the rows and columns a, b, 4, 5 where a, b are
any two of the remain six rows, we can show that:

c14c35 − c15c34 = 0;

−c14c∗34 − c15(c28 + c∗35 − c17) = 0;

−c14c∗24 − c15(c16 + c∗25 − c38) = 0;

−c14c∗14 − c15(c∗15 − c26 + c37) = 0;

c24c35 − c25c34 = 0;

−c24c∗34 − c25(c28 + c∗35 − c17) = 0;

−c24c∗24 − c25(c16 + c∗25 − c38) = 0;

−c24c∗14 − c25(c∗15 − c26 + c37) = 0;

−c34c∗34 − c35(c28 + c∗35 − c17) = 0;

−c34c∗24 − c35(c16 + c∗25 − c38) = 0;

−c34c∗14 − c35(c∗15 − c26 + c37) = 0;

−c∗24(c28 + c∗35 − c17) + c∗34(c16 + c∗25 − c38) = 0;

−c∗14(c28 + c∗35 − c17) + c∗34(c
∗
15 − c26 + c37) = 0;

−c∗14(c16 + c∗25 − c38) + c∗24(c
∗
15 − c26 + c37) = 0.

The above equations will imply that the 8-by-2 submatrix
formed by the 4-th and 5-th columns has rank at most 1.

The same argument can be used to prove that the 8-by-2
submatrices formed by columns (1, 8), (2, 7) or (3, 6) also
have rank at most 1.

As a straightforward consequence,H has rank no more than
4.

In other words, the k-th column and the (9 − k)-th col-
umn are linearly dependant. This means that there exist
λ1, λ2, λ3, λ4 such that the following equations hold:

λ1
−→
C1 + (1− λ1)

−→
C8 = λ2

−→
C2 + (1− λ2)

−→
C7 = 0 (A2)

λ3
−→
C3 + (1− λ3)

−→
C6 = λ4

−→
C4 + (1− λ4)

−→
C5 = 0 (A3)

Here we have used
−→
Ck to represent the k-th column of the

matrix (A2).
Let us start with a special case. Let λ1 = 0. Then c12 =

c13 = c14 = c28 = c38 = 0 and c15 = c∗26 − c∗37. H can be
simplified as the following:

H =



0 0 0 0 c∗26 − c∗37 c16 c17 0

0 0 c23 c24 c25 c26 0 0

0 c∗23 0 c34 c35 0 c37 0

0 c∗24 c∗34 0 0 c35 − c∗17 c∗16 + c25 0

c26 − c37 c∗25 c∗35 0 0 −c34 −c24 0

c∗16 c∗26 0 c∗35 − c17 −c∗34 0 −c23 0

c∗17 0 c∗37 c16 + c∗25 −c∗24 −c∗23 0 0

0 0 0 0 0 0 0 0



.

If we set c23 = c24 = c34 = 0, then the top-left 4-by-4
submatrix is zero. In this case, the characteristic polynomial
of H contains only even powers. Thus H has only one pos-
itive eigenvalue implies H has only one negative eigenvalue
too. As a consequence, the top-right 4-by-4 submatrix of H
has rank exactly 1.

As a result, any 2-by-2 submatrix of the top-right submatrix
must have determinant zero. From suitable choices of subma-
trices we can obtain the following equations:

c26c37 = 0; (A4)
c26(c

∗
26 − c∗37) = c16c25; (A5)

c37(c
∗
26 − c∗37) = c17c35; (A6)

c16(c
∗
16 + c25) + c17(c

∗
17 − c35) = 0. (A7)

Using the above equations we can obtain:

0 = c16(c
∗
16 + c25) + c17(c

∗
17 − c35)

= c16c25 − c17c35 + |c17|2 + |c16|2

= c26(c
∗
26 − c∗37)− c37(c∗26 − c∗37) + |c17|2 + |c16|2

= |c26 − c37|2 + |c17|2 + |c16|2 (A8)

This implies c16 = c17 = 0 and c26 = c37. Also since
c26c37 = 0 we know that c26 = c37 = 0. Furthermore
c25(c

∗
16 + c25) = 0 and c35(c35 − c∗17) = 0 will guarantee

c25 = c35 = 0. Therefore H is once again the zero matrix.
We must then assume at least one of c23, c24, c34 must be

nonzero. If c23 6= 0, then by considering submatrices formed
by rows/columns (1, 2, 3, k) (5 ≤ k ≤ 8), we have c16 =
c17 = 0 and c26 = c37. For the case that c24 = 0 or c34 = 0,
we will also have c16 = c17 = 0 and c26 = c37 by considering
appropriately chosen submatrices.

We are then left with H in the form:

H =



0 0 0 0 0 0 0 0

0 0 c23 c24 c25 c26 0 0

0 c∗23 0 c34 c35 0 c26 0

0 c∗24 c∗34 0 0 c35 c25 0

0 c∗25 c∗35 0 0 −c34 −c24 0

0 c∗26 0 c∗35 −c∗34 0 −c23 0

0 0 c∗26 c∗25 −c∗24 −c∗23 0 0

0 0 0 0 0 0 0 0



.
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Now, recall the fact that the submatrices formed by the k-th
and the (9−k)-th columns will always have rank 1. From this
it can be shown we will have H is a zero matrix.

Take the submatrix formed by the second and seventh
columns for example. Since they are linearly dependant, the
determinant of any 2-by-2 submatrix must be zero. From this
we can get that |c23|2 + |c26|2 = 0. Therefore c23 = c26 = 0.
By similar arguments on various submatrices,H can be shown
to be the zero matrix.

Thus, under our assumption thatH has exactly one positive
eigenvalue, λ1 6= 0. Similarly, we can also prove that λ1 6=
1, λ2, λ3, λ4 6= 0, 1. We can then assume from now on that H
has no zero columns or rows.

Hence, there exists certain λ1, λ2, λ3 and λ4 6= 0, 1 which
satisfies equation A2.

Let us use < and = to denote the real part and imaginary
part of a complex number. Then the above equations can be
rewritten as linear equations of real numbers.

Let us use M(λ1, λ2, λ3, λ4) to denote the 48-by-30 co-
efficient matrix. If we can prove that the coefficient matrix
always has rank 30 for any λ1, λ2, λ3 and λ4, then it will im-
ply that all cij’s are zeros which will immediately contradict
our assumption.

Unfortunately, we are not that lucky. M(λ1, λ2, λ3, λ4)
will be degenerate under certain assignment
of variables (λ1, λ2, λ3, λ4). For example,
rank(M( 1+i

2 , 1+i
2 , 1+i

2 , 1+i
2 )) = 27 < 30. However,

we can still show that M(λ1, λ2, λ3, λ4) will have rank 30
except for some degenerate cases which will be dealt with
separately . The top-left 2-by-2 submatrix has rank 2 if and
only if λ1 6= 0

At least one of the following situations must happen:

1.

−C1 A1

B2 C2

 has full rank. This implies c12 = c17 = 0.

2.

 A1 C1

−D2 A2

 has full rank. This implies c12 = c28 = 0.

3.

 B3 C3

−C1 A1

 has full rank. This implies c13 = c16 = 0.

4.

 A1 C1

−D3 A3

 has full rank. This implies c13 = c38 = 0.

5.

−C1 A1

B4 C4

 has full rank. This implies c14 = c15 = 0.

6.

−C2 A2

B3 C3

 has full rank. This implies c23 = c26 = 0.

7.

 A2 C2

−D3 A3

 has full rank. This implies c23 = c37 = 0.

8.

−C2 A2

B4 C4

 has full rank. This implies c24 = c25 = 0.

9.

−C3 A3

B4 C4

 has full rank. This implies c34 = c35 = 0.

10.

det

−C1 A1

B2 C2

 = det

 A1 C1

−D2 A2


= det

 B3 C3

−C1 A1

 = det

 A1 C1

−D3 A3


= det

−C1 A1

B4 C4

 = det

−C2 A2

B3 C3


= det

 A2 C2

−D3 A3

 = det

−C2 A2

B4 C4


= det

−C3 A3

B4 C4

 = 0.

With assistance of symbolic computation package like
Mathematica, we find that the only solution to the above
equations is <λ1 = <λ2 = <λ3 = <λ4 = 1

2 .

Here we will prove that there is no Hermitian matrix in the
form ( A2) with only one positive eigenvalue for every situa-
tions:

1. c12 = c17 = 0. Any H with only one positive eigen-
value must be in the following form:

H =



0 0 c13 c14 c15 c16 0 0

0 0 c23 c24 c25 c26 0 c28

c∗13 c∗23 0 c34 c35 0 c37 c38

c∗14 c∗24 c∗34 0 0 c∗28 + c35 c∗16 + c25 − c∗38 c15 − c∗26 + c∗37

c∗15 c∗25 c∗35 0 0 −c34 −c24 −c14
c∗16 c∗26 0 c28 + c∗35 −c∗34 0 −c23 −c13
0 0 c∗37 c16 + c∗25 − c38 −c∗24 −c∗23 0 0

0 c∗28 c∗38 c∗15 − c26 + c37 −c∗14 −c∗13 0 0



.

By considering submatrices formed by row/columns
(1, 2, p, q) where 3 ≤ p < q ≤ 8, we have that the first
two rows are linearly dependent. Under our assumption
that there is no row of H containg only zero entries, we
have c28 = 0.

Recall that the 4-th and 5-th rows are linearly depen-
dent, thus c34(−c∗34) = c35(c28 + c∗35) which now can
be simplified as |c34|2+ |c35|2 = 0. Hence c34 = c35 =
0. Then



11

H =



0 0 c13 c14 c15 c16 0 0

0 0 c23 c24 c25 c26 0 0

c∗13 c∗23 0 0 0 0 c37 c38

c∗14 c∗24 0 0 0 0 c∗16 + c25 − c∗38 c15 − c∗26 + c∗37

c∗15 c∗25 0 0 0 0 −c24 −c14
c∗16 c∗26 0 0 0 0 −c23 −c13
0 0 c∗37 c16 + c∗25 − c38 −c∗24 −c∗23 0 0

0 0 c∗38 c∗15 − c26 + c37 −c∗14 −c∗13 0 0



.

Again, by applying our submatrix argument, we have
the submatrix formed by (3, 4, 5, 6) columns must has
rank 1.

If there is a zero element in the submatrix formed
by rows (1, 2, 7, 8) and columns (3, 4, 5, 6), then there
must be a row or a column containing only zero ele-
ments in H . So, here we assume the submatrix formed
by rows (1, 2, 7, 8) and columns (3, 4, 5, 6) does not
contain any zero element.

Then c15
c25

= c13
c23

= c38
c37

which implies c38c25 = c37c15.

Follows from the rank 1 condition, we have

c15(c
∗
15 − c26 + c37) = −|c14|2,

c25(c16 + c∗25 − c38) = −|c24|2.

By substituting c38c25 = c37c15 and c15c26 = c25c16
into the above two equations, we have

|c15|2 + |c14|2 = c15c26 − c15c37
= c25c16 − c25c38
= −|c24|2 − |c25|2

which implies c15 = c14 = c24 = c25 = 0. However,
it contradicts our assumption that there is no zero ele-
ment in the submatrix formed by (1, 2, 7, 8) rows and
(3, 4, 5, 6) columns.

Similarly, we can also prove that there is no Hermtian
matrix in the form A2 with only one positive eigenvalue
if any of the following conditions apply.

2. c12 = c28 = 0.

3. c13 = c16 = 0.

4. c13 = c38 = 0.

5. c14 = c15 = 0.

6. c23 = c26 = 0.

7. c23 = c37 = 0.

8. c24 = c25 = 0.

9. c34 = c35 = 0.

Now, the only case we left is the following:

10. <λ1 = <λ2 = <λ3 = <λ4 = 1
2 . In

this case, rank(

−C1 A1

B2 C2

) = 3. Hence

(<c12,=c12,<c17,=c17) lies in the nullspace of

−C1 A1

B2 C2

 =


− 1

2 −b1
1
2 b1

b1 − 1
2 b1 − 1

2

1
2 −b2 1

2 b2

b2
1
2 −b2 1

2

. Thus

[c12 : c17]

= [2(b2 − b1) + (1 + 4b1b2)i : 2(b1 + b2) + (4b1b2 − 1)i].

Similarly, we will have

[c12 : c17 : c28]

= [2(b2 − b1) + (1 + 4b1b2)i :
2(b1 + b2) + (4b1b2 − 1)i : −2(b1 + b2)− (4b1b2 − 1)i];
[c13 : c16 : c38]

= [2(b1 − b3)− (1 + 4b1b3)i :
−2(b1 + b3)− (4b1b3 − 1)i : 2(b1 + b3) + (4b1b3 − 1)i];
[c23 : c26 : c37]

= [2(b3 − b2) + (4b2b3 + 1)i :
2(b2 + b3) + (4b2b3 − 1)i : −2(b2 + b3)− (4b2b3 − 1)i];
[c14 : c15]

= [2(b4 − b1)− (4b1b4 + 1)i :
2(b1 + b4) + (4b1b4 − 1)i];
[c24 : c25]

= [2(b4 − b2) + (4b2b4 + 1)i :
2(b2 + b4) + (4b2b4 − 1)i];
[c34 : c35]

= [2(b4 − b3) + (4b3b4 + 1)i :
2(b3 + b4) + (4b3b4 − 1)i].

Here [ q1 : q2 : · · · : qm] = [r1 + s1i : r2 + s2i : · · · :
rm + smi] means there exists some µ ∈ R such that
qi = µ(ri + sii) for any 1 ≤ i ≤ m.

Observe that c28 = −c17, c38 = −c16, c37 = −c26, we
thus simplify the matrix form of H as the following:

H =



0 c12 c13 c14 c15 c16 c17 0

c∗12 0 c23 c24 c25 c26 0 −c17
c∗13 c∗23 0 c34 c35 0 −c26 −c16
c∗14 c∗24 c∗34 0 0 c35 − 2c∗17 c25 + 2c∗16 c15 − 2c∗26

c∗15 c∗25 c∗35 0 0 −c34 −c24 −c14
c∗16 c∗26 0 c∗35 − 2c17 −c∗34 0 −c23 −c13
c∗17 0 −c∗26 c∗25 + 2c16 −c∗24 −c∗23 0 −c12
0 −c∗17 −c∗16 c∗15 − 2c26 −c∗14 −c∗13 −c∗12 0



.
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It follows from the fact that the submatrix formed by
4-th and 5-th columns has rank exactly 1, we have
c14(−c∗14) = c15(c

∗
15 − 2c26). Thus at least one of the

following cases must happen:

(10.1) c14 = c15 = 0. We can still assume there is
no column containing only zero elements as this
is the case that we have already discussed. Thus
c26 = 0 which would also lead to c23 = 0.

(10.2) c26 = c∗15.

Similarly, at least one of the following conditions:

(10.I) c24 = c25 = c16 = c13 = 0; or

(10.II) c16 = −c∗25

and one of the following conditions:

(10.A) c34 = c35 = c17 = c12 = 0; or

(10.B) c17 = c∗35

must apply.

We have already discussed the cases that c12 = c17 = 0,
c13 = c16 = 0 or c23 = c26 = 0 previously. Hence the
only remaining case is c26 = c∗15, c16 = −c∗25, c17 =
c∗35. Thus

H =



0 c12 c13 c14 c15 −c∗25 c∗35 0

c∗12 0 c23 c24 c25 c∗15 0 −c∗35
c∗13 c∗23 0 c34 c35 0 −c∗15 c∗25

c∗14 c∗24 c∗34 0 0 −c35 −c25 −c15
c∗15 c∗25 c∗35 0 0 −c34 −c24 −c14
−c25 c15 0 −c∗35 −c∗34 0 −c23 −c13
c35 0 −c15 −c∗25 −c∗24 −c∗23 0 −c12
0 −c35 c25 −c∗15 −c∗14 −c∗13 −c∗12 0



.

According to c26 = c∗15, we have 2(b2 + b3)(1 −
4b1b4) = (4b2b3 − 1)(2b1 + 2b4) which implies
4(b1b2b3+b1b2b4+b1b3b4+b2b3b4) = b1+b2+b3+b4.

1. 4b1b2 + 4b1b3 + 4b2b3 = 1. Thus b1 + b2 + b3 =
4b1b2b3. However, one can easy to verify that
there do not exist three real numbers b1, b2, b3 sat-
isfying these two equations.

2. 4b1b2 + 4b1b3 + 4b2b3 6= 1. Hence b4 =
b1+b2+b3−4b1b2b3

4b1b2+4b1b3+4b2b3−1 . By substituting the assign-

ment of b4 into Equation A9, we have

c14 = p ·
(
2(1− 4b21)(b2 + b3) + 4b1(1− 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
−8b1(b2 + b3) + (1− 4b21)(1− 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i
)
;

c15 = p ·
(

2(1 + 4b21)(b2 + b3)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
(1 + 4b21)(1− 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i
)
;

c23 = p ·
(

2(1 + 4b21)(b3 − b2)
4b1b2 + 4b1b3 + 4b2b3 − 1

+
(1 + 4b21)(1 + 4b2b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i
)
;

c24 = q ·
(
2(1− 4b22)(b1 + b3) + 4b2(1− 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
8b2(b1 + b3)− (1− 4b22)(1− 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i
)
;

c25 = q ·
(

2(1 + 4b22)(b1 + b3)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
(1 + 4b22)(1− 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i
)
;

c13 = q ·
(

2(1 + 4b22)(b1 − b3)
4b1b2 + 4b1b3 + 4b2b3 − 1

− (1 + 4b22)(1 + 4b1b3)

4b1b2 + 4b1b3 + 4b2b3 − 1
i
)
;

c34 = r ·
(
2(1− 4b23)(b1 + b2) + 4b3(1− 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
8b3(b1 + b2)− (1− 4b23)(1− 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
i
)
;

c35 = r ·
(

2(1 + 4b23)(b1 + b2)

4b1b2 + 4b1b3 + 4b2b3 − 1

+
(1 + 4b23)(1− 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
i
)
;

c12 = r ·
(

2(1 + 4b23)(b2 − b1)
4b1b2 + 4b1b3 + 4b2b3 − 1

+
(1 + 4b23)(1 + 4b1b2)

4b1b2 + 4b1b3 + 4b2b3 − 1
i
)
.

Again, with assistance of symbolic computation
package like Mathematica, we can verify that the
characteristic polynomial ofH contains only even
powers. This implies H has nonzero eigenvalue λ
if and only if it also has eigenvalue−λ. Therefore,
under our assumption that H has only 1 positive
eigenvalue,H also has only 1 negative eigenvalue.
However, let us consider the 3-by-3 submatrix
of H formed by (5, 7, 8)-th rows and (1, 2, 3)-
th columns . Its determinant is (−i + 2b1)(i +
2b1)

2(1+2ib2)(i+2b2)
2(i−2b3)2(i+2b3)

2r((1+
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4b21)p
2 + (1+ 4b22)q

2 + (1+ 4b23)r
2). It is always

nonzero unless p = q = r or r = 0. If r = 0 this
implies that c12 = c34 = c35 = 0. This case has
already been covered, Thus H has rank at least
3 which contradicts our previous conclusion that
H has only one positive eigenvalue and only one

negative eigenvalue.

To summarize, under our assumption that H has only one
positive eigenvalue, a contradiction always exist in every situ-
ation we studied. Hence, H must has at least 2 positive eigen-
values and at least 2 negative eigenvalues. This completes our
proof.
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