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Abstract: Bi-level decision addresses compromises between two interacting decision entities within a 

given hierarchical complex systems. Bi-level programming typically solves bi-level decision problems. 

However, formulation of objectives and constraints in mathematical functions is required, which are 

difficult, and sometimes impossible, in real-world situations due to various uncertainties. Our study 

develops a rule-set based bi-level decision approach, which models a bi-level decision problem by 

creating, transforming and reducing related rule sets. This study develops a new rule-sets based solution 

algorithm to obtain an optimal solution from the bi-level decision problem described by rule sets. A case 

study and a set of experiments illustrate both functions and the effectiveness of the developed algorithm in 

solving a bi-level decision problem. 
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I. INTRODUCTION 

Bi-level decision techniques aim to partition control over the decision variables of an optimization 

problem in a complex systems between the two levels of decision entities. The decision entity at the upper 

level, known as the leader, will influence or induce the behaviour of the decision entity at the lower level, 

called the follower, but not completely control its actions. In addition, the follower gains its objective 

within a given region. In a bi-level decision situation, the decision entity at each level has individual payoff 

functions, but the decision of the upper level is global. Therefore, the final solution of a bi-level decision 

problem reflects the leader’s goal and also considers the reaction of the follower.  

The field of bi-level decision problems has been extensively investigated and highly developed in both 

theories and applications since first introduced by Von Stackelberg [1], such as [2-7]. A number of bi-level 

programming models (both linear and nonlinear) and solution methods have been proposed, for example: 

the Kth-Best approach [8; 9] and the Kuhn-Tucker approach [4; 9; 10]; intelligent approaches for solving 

linear bi-level programming problems [11; 12]; the penalty function approach [13; 14]; the stability based 

approach [15]; and a globally convergent approach for solving non-linear bi-level programming problems 

[16]. Mathematicians, economists, engineers and other researchers and developers have delivered 

contributions to this field [17- 20].  

 However, we have found that this interest often stems from the inherent complexity and consequent 

uncertainty that exists in a bi-level decision problem. In general, there are two main types of uncertainties 

in modeling a bi-level decision problem. One is that the parameter values in the objective and constraint 

functions of the leader and the follower may be uncertain or inaccurate. Some research, such as Sakawa 

and Nishizaki [21], Sakawa and Yauchi [22], and Zhang and Lu [23] have developed several types of 

fuzzy optimization approaches to handle this issue. Another type of uncertainty involves the establishment 

of the objective and constraint functions. That is, how do we determine the relationships between proposed 

decision variables and formulate these functions for a real bi-level decision problem. The literature, and 

our experiences, show that some real world bi-level decision problems are difficult, or even impossible, to 
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be described by mathematical programming models [24, 25]. The challenge remains to be resolved by 

exploring new methods. 

This study considers the challenge of developing a rule-sets based bi-level decision approach to model 

and solve a bi-level decision problem when it cannot be modeled and solved by mathematical 

programming. We first proposed an initial rule-sets based modeling algorithm [26] and then a rule-sets 

based solution algorithm (transformation-based solution algorithm) [27]. This paper proposes a new 

solution algorithm to solve rule-sets based bi-level decision problems and this algorithm has more 

advantages in complexity and testing results.  

Following the Introduction, Section II introduces the concepts and notions of information tables, rule 

sets, rule trees and rule comparison. Based on these basic concepts and notions, Section III presents a 

rule-sets based bi-level decision modeling algorithm, including how to formulate objectives and 

constraints of a bi-level decision problem by rule sets, and how to apply rule generation and rule reduction 

algorithms, respectively, to finalize a rule-sets based bi-level decision model. In Section IV, a rule-sets 

based solution algorithm is given to solve a bi-level decision problem that is described by a set of rule sets. 

A case based example illustrates the effectiveness of the proposed rule-sets based bi-level decision 

approach. Experimental results about the effectiveness of the modeling algorithm and the solution 

algorithms are presented in Section V. Finally, conclusions and future work are outlined in Section VI. 

II. BASIC NOTIONS 

   For the description of the proposed rule-sets based bi-level decision approach, we first introduce some 

basic notions of information tables, formulas, rules, decision rule set functions and rule trees. We then 

provide some related definitions and theorems, which will be used in the following sections. 

A. Information tables and decision tables 

   In general, an information table is a knowledge expressing system which can be used to represent and 

process knowledge in machine learning, data mining and other related fields. It provides a convenient way 

to describe a finite set of objects called the universe by a finite set of attributes [28]. 

  Definition 2.1 [28] (Information table): An information table can be formulated as a tuple: 

S = (U, At, L, {Va | a∈At}, {Ia | a∈At}}), 

where U is a finite non-empty set of objects, At is a finite non-empty set of attributes, L is a language 

defined using attributes in At, Va is a non-empty set of values for a∈At, Ia: U→Va is an information 

function. Each information function Ia is a total function that maps an object of U to exactly one value in 

Va. 

A decision table is a special case of an information table. It is commonly viewed as a functional 

description, which maps inputs (conditions) to outputs (actions) without necessarily specifying the manner 

in which the mapping is to be implemented [29; 30].  

  Definition 2.2 [28] (Decision table): A decision table is an information table for which the attributes in 

A are further classified into disjoint sets of condition attributes C and decision attributes D, i.e. At=C D, 

C D= . 

A decision table can be seen as a special and important knowledge expression system. It shows that, 

when some conditions are satisfied, decisions, actions, operations, or controls can be made. Decision 

attributes in a decision table may, or may not be unique. For the latter, the decision table can be converted 

to one with unique decision attributes [31]. Therefore, in this paper, we assume that there is only one 

decision attribute in a decision table. 

B. Formulas and rules 

Usually, the knowledge implicated in information tables is expressed by rules. As formulas are the 

components of rules we first introduce the definition of formulas. 
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   Definition 2.3 [32] (Formulas): In the language L of an information table, an atomic formula is given by 

(a, v), where a∈At and v∈Va. If   and   are formulas, then so as  ,   , and   . 

Here, “(a, v)” is a term where a is an attribute and v one of its values. The term covers objects of the 

information table when the attribute a in At has value v. The semantics of the language L can be defined in 

the Tarski’s style [33] through the notions of a model and satisfactoriness. The model is an information 

table S, which provides interpretation for symbols and formulas of L. 

   Definition 2.4 [32] (Satisfactoriness of formulas): The satisfactoriness of a formula   by an object x, 

written x╞S  or in short x╞  if S is defined by the following conditions: 

(1) x╞(a, v) iff Ia(x)=v, 

(2) x╞   iff not x╞ , 

(3) x╞   iff x╞  and x╞ , 

(4) x╞   iff x╞  or x╞ . 

If   is a formula, the set   

mS( )={x∈U | x╞ } 

is called the meaning of the formula   in S. If S is understood, we simply write m( ). 

The meaning of a formula   is therefore the set of all objects having the property expressed by the 

formula . In other words,   can be viewed as the description of the set of objects m( ). A connection 

between the formulas of L and sub-sets of U is established. 

To illustrate this idea, we consider an information table given by Table 2.1 [34]. The following 

expressions are some of the formulas of the language L: 

(height, tall),   (hair, dark),  

(height, tall)∧(hair, dark), 

(height, tall)∨(hair, dark). 

The meanings of the formulas are given by: 

m((height, tall))={o3, o4, o5, o6, o7}, 

m((hair, dark))={o4, o5, o7}, 

m((height, tall) ∧(hair, dark))={ o4, o5, o7}, 

m((height, tall) ∨(hair, dark))={ o3, o4, o5, o6, o7}. 

A rule is a statement of the form: “if an object satisfies a formula, then the object must satisfy another 

formula”. The expression of rules can be formulated as follows [28; 32]. A highly related work is due to 

Apolloni, et al. [35]. 

   Definition 2.5 (Rules): Let S= (U, At, L, {Va | a∈At}, {Ia | a∈At}}) be an information table, then a rule 

r is a formula with the form 

   , 

where   and   are formulas of information table S for any x∈U, 

x╞    iff x╞    . 

   Definition 2.6 (Decision Rules): Let S=(U, C D, L, {Va | aAt}, {Ia | aC D}}) be a decision table, 

where C is the set of condition attributes and D is the set of decision attributes. A decision rule dr is a rule 

with the form    , where  ,   are both a conjunction of atomic formulas, for any atomic formula (c, v) 

in  , cC, and for any atomic formula (d, v) in  , dD. 

It is obvious that each object in a decision table can be expressed by a decision rule. The relationship 

between objects and rules can be defined by the following definition. 
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  Definition 2.7 (Object which is consistent with, or conflicts with, a rule): An object x is said to be 

consistent with a decision rule dr:    , iff  x╞  and x╞ ; x is said to conflict with dr, if x╞  and 

x╞  .  

C. Decision rule set functions 

  We introduced the concept of decision rules in Section II (B). We will now explore how to make 

decisions based on decision rules. We first describe decision rule set,s and then define decision rule set 

functions.  

 Given a decision table S=(U, At, L, {Va | a∈At}, {Ia | a∈At}}), where  At =C∪D and D={d}, suppose x 

and y are two variables, where x∈X and X=Va1…Vam, y ∈Y and Y=Vd. Vai is the set of attribute ai’s 

values and ai ∈C, i=1 to m, and m is the number of condition attributes. RS is a decision rule set generated 

from S. 

  Definition 2.8 (Decision rule set function): A decision rule set function rs from X to Y is a sub-set of the 

Cartesian product X × Y, so that, for each x in X, there is a unique y in Y generated with RS, so that the 

ordered pair (x, y) is in rs. Here, RS is called a decision rule set, x is called a condition variable, y is called 

a decision variable, X is the definitional domain, and Y is the value domain.  

Calculating the value of a decision rule set function is to make decisions for objects with their decision 

rule sets. In order to present the method for calculating the value of a decision rule set function, we 

introduce the definition for matching objects to decision rules below. 

  Definition 2.9 (Matching an object to a decision rule): An object o is said to match a decision rule 

   , if o╞ .  

Given a decision rule set RS, all decision rules in RS that are matched by object o are denoted as o

RS
MR . 

This definition provides a brief method for calculating the result of a decision rule set function as 

follows: 

Step 1:  Calculate o

RS
MR ; 

Step 2:  Select a decision rule dr from o

RSMR , where  

dr :∧{(a, va)} (d, vd); 

Step 3:  Set a decision value of o to be vd, i.e. rs(o)=vd. 

Note that the selection of a decision rule from o

RSMR in Step 2 is the key to this process and will impact on 

the results of Step 3. For example, there is a decision rule set RS: 

1) (a, 1)∧(b, 2)⇒(d, 2), 

2) (a, 2 )∧(b, 3)⇒(d, 1), 

3) (b, 4)⇒(d, 2), 

4) (b, 3)∧(c, 2)⇒(d, 3), 

and an undecided object: 

o = (a, 2)∧(b, 3)∧(c, 2). 

With Step 1, o

RSMR ={(a, 2 )∧(b, 3) ⇒(d, 1),  

                                  (b, 3)∧(c, 2)⇒(d, 3)}; 

With Step 2, if we select the final rule as  

(a, 2)∧(b, 3) ⇒(d, 1), 

Then, at Step 3, rs(o)=1;  

if we select the final rule as  

(b, 3)∧(c, 2)⇒(d, 3), 
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Then, at Step 3, rs(o)=3. 

This example shows that there may be more than one rule in o

RS
MR . In such cases, when there are multiple 

decision values of these rules, the result could be controlled according to the above selection method, 

which is the uncertainty of a decision rule set function. The method for  selecting the final rule from o

RS
MR  

is therefore very important, and is called the uncertainty solution method. In this paper, we use the 

AID-based rule tree (Def. 2.11) to deal with this issue, and more details about the method will be discussed 

in Section II (D) and II (E) below. 

D. Rule trees 

   A rule tree is a compact and efficient structure for expressing a rule set. We use it in this paper as the 

expression form of rule sets for a bi-level decision model.  

Definition 2.10 [36] (Rule tree): 

(1) A rule tree is composed of one root node, some leaf nodes and some middle nodes; 

(2) The root node represents the whole rule set; 

(3) Each path from the root node to a leaf node represents a rule; 

(4) Each middle node represents an attribute test. Each possible value of an attribute in a rule set is 

represented by a branch. Each branch generates a new child node. If an attribute is reduced in some rules, 

then a special branch is needed to represent it and the value of the attribute in this rule is considered as “*”, 

which is different to any possible values of the attribute. 

When two nodes are connected with a branch, we call the upper node a start node, and the other, an end 

node. 

Fig. 2.1 gives an example of a rule tree, where “Age”, “Educational level (Edulevel)”, “Seniority”, and 

“Health” are its conditional attributes, and “Grade” is its decision attribute. The values of these attributes 

are noted beside branches. 

We define the number of nodes between a branch and the root node as the level of the branch (including 

the root node) in the path. For each rule tree, there are two assumptions: 

   Assumption 2.1: The branches at the same level represent the possible values of the same attribute. 

Here, an attribute is expressed by the level of a rule tree. 

   Assumption 2.2: If a rule tree expresses a decision rule set, the branches at the bottom level represent 

the possible values of the decision attribute. 

Based on Def. 2.10 and the two assumptions, we can improve the rule tree structure by considering the 

two constraints described in Def. 2.11. 

  Definition 2.11 (Attribute importance degree (AID) based rule tree): An AID-based rule tree is a rule 

tree that satisfies the following two additional conditions: 

(1) The conditional attribute expressed at the upper level is more important than that expressed at any 

lower level; 

(2) Among the branches with the same start node, the value represented by the left branch is more 

important (or better) than that represented by any right branch. Each possible value is more important 

(or better) than the value “*”. 

In the rule tree illustrated in Fig. 2.1, if we suppose  

 ID(a) is the importance degree of attribute a, and 

ID(Age)>ID(Edulevel)>ID(Seniority)>ID(Health); 

 (Age, Young) is better than (Age, Middle), and (Age, 

Middle) is better than (Age, Old);  

 (Seniority, Long) is better than (Seniority, Short), and (Health, Good) is better than (Health, Poor), 
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then the rule tree illustrated by Fig. 2.1 is an AID-based rule tree.   

E. Rules comparison 

   From Section II (C), we know there are some uncertainties when making a decision with decision rule 

sets. The uncertainty can be eliminated by a process of rule selection. We select a rule correctly only when 

related information is known. In other words, we are said to be informed only when we can select rules 

correctly and definitely. This paper presents a rule-tree based model to deal with these kinds of 

uncertainties. After the ordering of importance degrees and attributes’ possible values, a rule tree (Def. 

2.10) is improved to become an AID-based rule tree (Def. 2.11). It can be proved that the following 

theorem holds from the definitions of rules (Def. 2.5) and AID-based rule trees (Def.2.11).  

   Theorem 2.1: If we suppose the isomorphic trees to be the same, then there is a one-to-one 

correspondence between a rule set and an AID-based rule tree.  

   One-to-one correspondence means, each rule set can only construct one AID-based rule tree, and each 

AID-based rule tree can extract rules to generate one rule set only. 

   Compared to decision rule sets, an AID-based rule tree has the following advantages: 

1) An AID-based rule tree is a more concise data structure, especially when the scale of a rule set is huge; 

2) An AID-based rule tree is a more structured data model, and provides useful properties, such as 

confliction and repetition in an original decision rule set; 

3) Using AID-based rule trees can speed up the searching and matching process for decision rules; 

4) The rules in an AID-based rule tree are ordered, which provides a way to solve the uncertainty problems 

in decision rule set functions. 

   Definition 2.12 (Comparison of rules): Rule dr1:∧{(ai, va1i)} (d1, vd1) is more important (or better) 

than rule dr2:∧{(ai, va2i)} (d2, vd2), if va1k is more important (or better) than va2k or the value of ak is 

deleted from rule dr2, where attribute ai is more important (or better) than ai+1, and for each j<k, va1j=va2j. If 

each attribute ai, va1i has the same importance (or evaluation) degree as va2i, rule dr1 has the same 

importance (or evaluation) degree as rule dr2. 

For example, we have two rules as follows:  

dr1: (Age, Middle) ∧ (Working Seniority, Long) 2,  

dr2: (Age, Middle) ∧ (Working Seniority, Short) 3, 

and the value “Long” is better than the value “Short” in the attribute “Working Seniority”, with Def. 2.12 

we know dr1 is better than dr2.  

   Theorem 2.2: In an AID-based rule tree, the rule expressed by the left branch is more important (or 

better) than the rule expressed by the right branch. 

   It can be proven from Def. 2.11 and Def. 2.12. 

   Theorem 2.3: After transformation to an AID-based rule tree, the rules in a rule set are totally in order, 

that is, every two rules can be compared. 

   The theorem holds from Def. 2.11 and Theorem 2.2. 

   For example, we can order the rules expressed by the rule tree shown in Fig. 2.1 as follows: 

1) (Age, Young) ∧ (Edulevel, High) 2, 

2)  (Age, Middle) ∧ (Working Seniority, Long) 2,  

3) (Age, Middle) ∧ (Working Seniority, Short) 3, 

4) (Age, Old) 4, 

5) (Edulevel, Short)  4, 
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where rule i is better than rule i+1, i = 1, 2, 3, 4.  

III.    A RULE-SETS BASED MODELING ALGORITHM FOR BI-LEVEL DECISION 

In general, a bi-level decision problem is described by bi-level programming, in which the objectives and 

constraints of the leader and the follower are expressed by linear, or non-linear functions as follows: 
                                                                   ),(min yxF

Xx
 

subject to 0),( yxG  

               ),(min yxf
Yy

                                                          (3.1) 

                                                                                     subject to 0),( yxg  

where , , , .n mx R y R    

However, some real-world bi-level decision problems cannot be easily formulated or approximated as a 

linear or non-linear bi-level programming model. To handle the issue, this study uses rules sets (Def. 2.5), 

rather than mathematical functions, to express objectives and constraints of a bi-level decision problem. 

The concepts and theorems presented in Section II show that rule sets can be used to establish suitable 

bi-level decision models. 

A. Objectives and objective decision rule sets 

 In a bi-level decision problem, both the leader and the follower have individual objectives. When these 

objectives are hard to describe by functions in mathematical programming models, we will consider 

expressing them by decision tables (Def. 2.1). In principle, a decision table can implement any computable 

functions. It is observed that any Turing Machine program can be “emulated” by a decision table by letting 

each Turing Machine instruction of the form (input, state) + (output, tape movement, state) be represented 

by a decision rule (or a decision table), where (input, state) are conditions and (output, tape movement, 

state) are actions. From a more practical point of view, it can also be shown that all computer program 

flowcharts can be emulated by decision tables [29; 30]. Therefore, after emulating all possible situations in 

a bi-level decision problem, all objective functions can be transformed to a set of decision tables, named as 

objective decision tables. That is, the objectives of the leader and the follower in a bi-level decision 

problem can be transformed into a set of decision tables, where decision variables are represented by the 

objects in these decision tables. 

   However, there are two disadvantages in the application of decision tables. One is that when a problem is 

very complex, its decision tables may become extremely large and related algorithm effectiveness 

becomes very low. Another is that the objects in a decision table lack adaptability. They are hard to adapt 

to any new situations and one object can only record a situation. The literature shows that decision rule sets 

are generally knowledge generated from decision tables and have stronger knowledge expressing ability 

than decision tables by overcoming the two disadvantages indicated. In the proposed bi-level decision 

model, we use decision rule (Def. 2.6) sets to represent the objectives of the leader and the follower, called 

objective decision rule sets, while decision tables can be viewed as special cases of decision rule sets. 

B. Constraints and constraint rule sets  

   In a bi-level decision model, the constraints of each decision entity can be seen as the description of the 

searching space of the entity in the decision problem, and can be represented by a set of rule sets. Similarly, 

as discussed above for objectives of a bi-level decision model, after emulating all possible situations in the 

constraint field, the constraints can be formulated to an information table. When the information table is 

too big to be processed, it can be transformed to rule sets using the mining association rules methods 

provided by Agrawal & Srikant [37] Agrawal et al. [38]. 
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   Rule sets can be viewed as knowledge generated from information tables, but with stronger knowledge 

expressing ability and better adaptability than information tables. An information table can be viewed as a 

special case of rule sets.  By using rule sets, we provide the following definition for constraint functions. 

   Definition 3.1 (Constraint Function): Suppose x is a decision variable and RS is a rule set, thus a 

constraint function cf (x, RS) is defined as 
, ( )

( , )
,

True if r RS x m r
cf x RS

False else

  
 


 

   The meaning of the constraint function cf(x, RS) is whether variable x belongs to the region constrained 

by RS. 

C. A rule-sets based bi-level decision model 

 As described in Equation (3.1), in a bi-level decision model, control of the decision variables is 

partitioned between the decision entities who seek to optimize their individual payoff functions. Both the 

leader and the follower are assumed to know the objective and feasible choices available to the other. 

Therefore, based on the discussions above, we can describe the objectives and constraints of the two 

decision entities by rule sets, called a rule-sets based bi-level decision model, as follows. 

   Definition 3.2 (Rule-sets based bi-level decision model):  
                                                         ),(min yxf

L
x

                                                                  

                                                          subject to ),(
L

Gxcf  = True 

                               ),(min yxf
F

y
                                                           (3.2) 

                                                                                   subject to  ),(
F

Gxcf = True, 

where x and y are decision variables (vectors) of the leader and the follower respectively; fL and fF are the 

objective decision rule set functions (Def. 2.8) of the leader and the follower respectively; cf is the 

constraint function (Def. 3.1); FL and GL are the objective decision rule set and constraint rule set of the 

leader; and FF and GF are the objective decision rule set and constraint rule set of the follower, 

respectively. 

    We assume the decision rule sets of the objectives will cover the objects in the constraints. That is, each 

object in the constraints can be matched by one decision rule at least in the objective decision rule sets. The 

assumption is reasonable, because when the objective decision tables used to generate objective decision 

rule sets are huge and the objects in these decision tables are uniformly distributed, the resulting decision 

rule sets usually cover most of the objects to be decided. In other situations, where some objects in the 

constraint fields cannot be matched by any decision rules in the objective decision rule sets, some 

additional methods should be introduced, such as similarity matching and fuzzy matching [39]. Therefore, 

it is acceptable to establish the models and develop related decision methods based on the above 

assumption in this study. 

D. An algorithm for modeling bi-level decision problems by rule sets 

 Based on the objective decision rule sets, constraint rule sets, and related definitions introduced above 

and in our previous work [26], we provide a rule-sets based bi-level decision modeling algorithm as 

follows. 

    Algorithm 3.1 (Rule-sets based bi-level decision modeling algorithm) 

    Input: A bi-level decision problem with the objectives and constraints of the leader and the follower; 

    Output: A rule-sets based bi-level decision model; 

Step 1: Transform the bi-level decision problem with a set of rule sets (information tables are as special 

cases); 

Step 2: Pre-process FL, so as to delete reduplicate rules from the rule sets, eliminate noisy and etc.; 

Step 3: If FL needs to be reduced, then use a reduction algorithm to reduce FL; 
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Step 4: Pre-process GL, so as to delete reduplicate rules from the rule sets, eliminate noise, etc.; 

Step 5: If GL needs to be reduced, then use a reduction algorithm to reduce GL; 

Step 6: Pre-process FF, so as to delete reduplicate rules from the rule sets, eliminate noise etc.; 

Step 7: If FF needs to be reduced, then use a reduction algorithm to reduce FF; 

Step 8: Pre-process GF, so as to delete reduplicate rules from the rule sets, eliminate noise etc.; 

Step 9: If GF needs to be reduced, then use a reduction algorithm to reduce GF. 

Complete 

    The flow chart of the proposed bi-level decision problem modeling algorithm is shown in Fig. 3.1. We 

now provide explanations for the proposed Algorithm 3.1. Step 1 is the key step for the modeling process. 

Decision makers (or experts) complete this step by transforming a bi-level decision problem into a set of 

information tables or related rule sets. This transformation is done by laying out all possible situations of 

the bi-level decision problem.  

    In Step 2, Step 4, Step 6 and Step 8, four sets of decision rule sets are pre-processed respectively. As data 

incompleteness, noise, and inconsistency are the common characteristics for a huge real data set, we need 

to use related techniques to eliminate these problems before using the rule sets to model a bi-level decision 

problem [40]. 

    In Step 5, Step 7, and Step 9 of Algorithm 3.1, related rule sets are reduced by applying a reduction 

algorithm because of at least one of the following three reasons: 

(1) When modeling a real-world bi-level decision problem, the rule sets in the model are often at a large 

scale, which is not convenient to  process, and cannot be easily interpreted and understood. 

(2) The rules in the rule sets lack adaptability. In this situation, the rule sets cannot adapt well to new 

situations , so it is unable, or has poor ability, to support decision making.  

(3) The rule sets in the model are just original data sets; the patterns in these data sets need to be extracted, 

and the results are more general rules. 

    To reduce the size of a decision rule set or extract decision rules from a decision table, several rough sets 

[41] based decision rule extraction and reduction algorithms, named as value reduction algorithms, have 

been developed [28; 36; 42- 46]. These algorithms have been successfully applied in many fields [47-49]. 

There are some rough sets based software systems, such as ROSETTA [50], RIDAS [51], RSES [52], 

which can be used to reduce the size of a decision rule set or extract decision rule sets from a decision 

table. Therefore, this issue can be handled by applying these methods and systems.  

To reduce the size of the constraint rule sets or to generate constraint rules from the information tables, 

several effective methods are available, such as Apriori algorithm [38], Fast algorithms for mining 

association rules [37], and the FP tree algorithm [53]. We select one of them to complete this task. We 

have found that in many cases, when the constraint rules are obvious or already known, the rule generation 

process can be passed over. After the pre-process and reduction for these rule sets, the decision rule set 

functions are improved correspondingly.  

Now we analyse the complexity of Algorithm 3.1. Obviously, it can be estimated as the complexity of 

Step 1, Steps 2, 4, 6, 8 and Steps 3, 5, 7, 9 respectively.  

Suppose poL and poF are the numbers of the rules in the objective decision rule sets of the leader and the 

follower generated in Step 1, respectively; pcL, and pcF are the numbers of the rules in the constraint rule 

sets of the leader and the follower generated in Step 1 respectively; and mL and mF are the numbers of the 

condition attributes of the leader and the follower. For Step 1, the complexity is  

   
L F oL oF cL cF

O m m p p p p    . 

For Steps 2, 4, 6, 8, different pre-process methods can cause different complexities. For the above 

mentioned pre-process methods, the complexity is between   
L F

O m m p  and   2

L F
O m m p , where 

p=poL for Step 2, p= poF for Step 4, p= pcL for Step 6, and p= pcF for Step 8. 
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For Steps 3, 5, 7, and 9 the time complexity depends on the sizes of the processed rule sets. Using the 

methods mentioned above, it has complexity  

    1
L F

O m m p p    , 

where  p=poL for Step 3, p=poF for Step 5, p=pcL for Step 7, and p=pcF for Step 9. 

Therefore, Algorithm 3.1 has the maximal time complexity  

   2 2 2 2

L F oL oF cL cF
O m m p p p p    . 

   In the following sub-section, we will apply the proposed algorithm for a case based example to illustrate 

the modeling process of a bi-level decision problem b. 

E. A case based example 

    A company’s recruitment management is distributed in two levels: the upper level is the company’s 

executive committee and the lower is the workshop management committee. Recruitment policy requires 

that the executive committee mainly consider how to meet the overall business objectives with a long-term 

development plan, and the workshop management committee concentrate on the current daily needs of 

workers. Obviously, their objectives are different. However, their objectives are transparent to each other, 

though they may operate in separate ways. A recruitment action will ultimately emerge that is the optimal 

result for the company as a whole, which also considers current daily needs. This is a typical bi-level 

decision problem, in which the company executive committee is the leader, and the workshop 

management committee, the follower. 

    When deciding whether a person could be recruited for a particular position, the company executive 

committee mainly considers the following two factors:  “age” and “education level (edulevel)” of the 

applicant; and the workshop management committee mainly considers another two factors: “seniority” 

and “health”. Suppose the condition attributes, in an ascending order according to the importance degrees, 

are “age”, “edulevel”, “seniority”, and “health”. 

    Obviously, it’s hard for the two committees to express the conditions of the workers whom they want to 

recruit as linear or non-linear mathematical functions. However, the data for all applicants are available in 

a database. We can therefore build two decision tables as shown in Tables 3.1 and 3.2 using the data. We 

then generate decision rule sets from the two decision tables to represent the objectives of the two 

committees. The condition attributes of the two decision tables are the factors; and the decision attributes 

of the two decision tables are acceptance grades of these applicants. The constraints of the two committees 

are expressed by simple rule sets (Equations 3.3 and 3.4), which define the constraint regions. 

    We use Alg. 3.1 to describe the problem in a rule-sets based bi-level decision model. 

Alg. 3.1-Step 1: Transform the problem with rule sets (information tables as special cases).  

    Table 3.1 and Table 3.2 represent the objective decision rule sets of the leader and the follower, 

respectively. Equations (3.3) and (3.4) give the constraint rule sets of the leader and the follower, 

respectively. 

    The constraint rule set of the leader: 

GL= {True  (Age, Young)  (Age, Middle)}        (3.3) 

    The constraint rule set of the follower: 

GF= {True  (Seniority, Long)  (Seniority, Middle)}(3.4) 

    Because the scale of the data is very small, the pre-process steps (Steps 2, 4, 6 and 8) can be passed over. 

The constraint rule sets of the leader and the follower are brief , so the reduction steps of GL and GF (Step 

5 and Step 9) can be ignored. 

     Alg. 3.1- Step 3 and Step 7: Reduce the objective decision rule sets of the leader and the follower. 

    After reducing the decision tables based on the rough set theory given in Section 2 (E), we find reduced 

objective decision rule sets of the leader and the follower, as shown in Equations (3.5) and (3.6), 
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respectively. We use the decision-matrices based value reduction algorithm [54] in the RIDAS system [51] 

to conduct this job. 

    The reduced objective decision rule set of the leader: 

FL= {(Age, Young) ∧ (Seniority, Middle)  (Grade, 2) 

          (Age, Middle) ∧ (Edulevel, High) (Grade, 2) 

          (Edulevel, Short) ∧ (Seniority, Short) (Grade, 4) 

          (Edulevel, Middle) ∧ (Seniority, Short) (Grade, 3) 

          (Edulevel, Middle) ∧ (Seniority, Long) (Grade, 2) 

          (Age, Old) ∧ (Health, Middle) (Grade, 3) 

          (Age, Old) ∧ ( Edulevel, Short) (Grade, 4) 

          (Age, Middle) ∧ (Health, Good) (Grade, 3) 

 (Age, Middle) ∧ (Seniority, Long) ∧ (Health, Middle) (Grade, 2) 

 (Age, Old) ∧ (Edulevel, High) ∧ (Health, Good) (Grade, 2) 

 (Edulevel, High) ∧ (Health, Poor)  (Grade, 3) 

 (Age, Young) ∧ (Edulevel, High) ∧ ( Seniority, Long)  (Grade, 4) 

(Age, Young) ∧ (Edulevel, Short) ∧ (Seniority, Long)  (Grade, 3)}                                                 (3.5) 

    The reduced objective decision rule set of the follower: 

FF= {(Edulevel, High) ∧ (Health, Good)  (Grade, 2)   

          (Edulevel, Short) ∧ (Seniority, Short) (Grade, 4)   

          (Age, Old) ∧ (Health, Middle) (Grade, 3)   

          (Age, Young) ∧ (Seniority, Long) ∧ (Health, Middle) (Grade, 4)   

          (Seniority, Middle) (Grade, 3)   

          (Seniority, Long) ∧ (Health, Good) (Grade, 2)   

          (Seniority, Short) ∧ (Health, Poor) (Grade, 4) }                                                                      (3.6) 

     With above steps, we get the rule-sets based bi-level decision model of the decision problem, as 

follows: 
                                             ),(min yxf

L
x

                                                                 

                                             subject to ),(
L

Gxcf  = True 

                                                                       ),(min yxf
F

y
                        

                                                                       subject to  ),(
F

Gxcf = True, 

where fL, fF are the corresponding decision rule set functions based on rule sets FL, FF , respectively. 

This example shows the feasibility to model a bi-level decision problem by the proposed rule-sets based 

modeling algorithm. 

IV.    A NEW RULE-SETS BASED SOLUTION ALGORITHM FOR BI-LEVEL DECISIONS   

 In this section, we will present a solution algorithm to solve a bi-level decision problem that is described 

by rule sets.  

A. Concepts  

    Before a rule-sets based solution algorithm is given, we first introduce the concept of a solution for 

bi-level decision problems and analyze related properties. Based on the solution definition of bi-level 

optimization given by Bard [6], we have the following solution concepts for a bi-level decision problem 

described by rule sets: 

    Definition 4.1 (Bi-level decision solution): 
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(a) Constraint region of a bi-level decision problem: 

S= {(x, y): ),(
L

Gxcf =True, ),(
F

Gxcf =True} 

(b) Feasible set for the follower for each fixed x: 

S(x) ={y: (x, y) ∈ S} 

(c) Projection of S onto the leader’s decision space: 

S(X) ={x:  y, (x, y) ∈ S} 

(d) Follower’s rational reaction set for x∈S(X): 
)]}(':)',([minarg:{)( XSyyxfyyxP

F
y

  

(e) Inducible region:  

IR={( x, y): (x,  y)∈S, y∈P(x)} 

    To ensure that the model presented by Equation (3.2) is well posed it is common to assume that S is 

non-empty and compact, and that for all decisions taken by the leader, the follower has some room to 

respond, i.e. P(x)≠Ф. The rational reaction set P(x) defines the response, while the inducible region IR 

represents the set over which the leader may optimize. In terms of the above notation, the bi-level decision 

problem can be written as 

min {  ,
L

f x y : (x, y)∈IR}. 

    From the features of bi-level decisions, once the leader selects an x, the first term in the follower’s 

objective function becomes a constant and can be removed from the problem. In this case, we replace   fF(x, 

y) with fF(y). 

    To begin, let (x[1], y[1]), (x[2], y[2]), …, (x[N], y[N]) denote N ordered feasible solutions to a rule-sets based 

one level one objective problem 

}),(:),({min Syxyxf
L

x
                                                             (4.1) 

so that 

),(),(
}1[]1[][][ 


iiLiiL

yxfyxf                                                             (4.2) 

and i=1, …, N-1. Solving Equation (4.1) is equivalent to finding the global optimum (x[k], y[k]). This result 

will be used in the following algorithm. 

B. An algorithm for solving rule-sets based bi-level decision problems  

We now present an algorithm for solving a rule-sets based bi-level decision problems. The main 

objective of the algorithm is to repeatedly solve two rule-sets based one-level decision problems. One is 

for the leader in all of the variables x and a sub-set of the variables y associated with an optimal basis to the 

follower’s problem. The other is for the follower with all of the variables x fixed. The leader first makes 

his/her decision, and the decision will influence the objective decision rule-set functions and the constraint 

rule-set functions of the follower. In a systematic way, the algorithm explores the optimal solution of the 

follower’s problem for x fixed, and then returns to the leader’s problem with the corresponding variables y. 

If the set of variables y are not an optimal solution to the leader’s decision problem, then the leader 

modifies its decision and repeats the procedures.  

Based on the analysis in Section II (E), we know that there is a one-to-one correspondence between a 

rule set and an AID-based rule tree (Theorem 2.1). Using AID-based rule trees to represent decision rule 

sets can solve the uncertainty problems arising in decision making (Section II (C)). Therefore, all the rule 

sets are expressed by AID-based rule trees in this algorithm. 

   Algorithm 4.1 (A rule-sets based bi-level decision solution algorithm) 

   Input: The objective decision rule set FL={drL1, …, drLp} and the constraint rule set GL of the leader, the 

objective decision rule set FF={drF1, …, drFq} and the constraint rule set GF of the follower. 
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   Output: The final decision (optimal solution) of the leader and the follower (x[i], y[i]). 

Step 1: Construct the objective rule tree FTL of the leader by FL; 

Step 1.1: Arrange the condition attributes in ascending order according to the importance degrees 

of these attributes. Let these attributes be the discernible attributes of levels from the top to the 

bottom of the tree; 

Step 1.2: Initialize FTL to an empty AID-based rule tree; 

Step 1.3: For each rule R of the objective decision rule set FL { 

Step 1.3.1: let CNroot node of the rule tree FTL; 

Step 1.3.2: For i=1 to m /*m is the number of levels in the rule tree*/ 

{If there is a branch of CN representing the ith discernible attribute value of rule R, then    

 let CNnode I; /*node I is the node generated by the branch*/ 

else {Create a branch of CN to represent the ith discernible attribute value; 

According to the value order of the ith discernible attribute, place the created branch in the right 

place; 

Let CNnode J /*node J is the end node of the branch*/}}} 

Step 2: Construct the objective rule tree FTF of the follower by FF; 

    The detail of Step 2 is similar to that in Step 1. That is, it can be described by the same sub-steps of Step 

1, but replacing FTL with FTF, and FL with FF . 

Step 3: Solve the problem shown in Equation (4.1) to obtain the optimal solution (x[i], y[i]) , and initialize 

i=1;  

Step 3.1: Initialize FTL’ to an empty AID-based rule tree, where FTL’ represents the objective rule 

tree of the follower pruned by constraint rule sets; 

Step 3.2: Use the constraint rule tree sets GL and GF to prune FTL; 

For each rule dr in GL and GF,  

Add the rules in FTL that are consistent with dr to FTL’; 

Delete the rules in FTL and FTL’ that conflict with dr; 

Step 3.3: Search for the rules with the minimal decision value in FTL’ and the resulting rule set 

is RS= {dr1, …, drm}, where dr1 to drm are the rules from left to right in FTL’; 

Step 3.4: Let dr be the first rule in RS; 

Step 3.5: RS=RS-{dr};  

OS= {o|o is the object consistent with dr and the constraint rule sets}; 

Step 3.6: Order the objects in OS so that the ith object in OS is better than the (i+1)th object in 

OS according to Def. 2.12; 

Step 3.7: The solution to the problem shown in Equation (4.1) is the first object (Def. 2. 12) in 

OS. 

Step 4: Prune the objective rule tree of the follower with the constraint rule sets of the leader and the 

follower, and suppose FTF ’  is the resulting objective rule tree; 

Step 5: Prune the rules from FTF’, which are not consistent with the rule True x[i]and suppose the result 

is a rule tree FTF’’; 

Step 6: Solve the follower’s rule-sets based decision problem: 

)}(:),({min
][][ iiF

y
xPyyxf                                                             (4.3) 

and find the optimal solution (x[i], y); 

Step 6.1: Search for the rules with the minimal decision value in FTF’’ and the resulting rule set is 

RS’= {dr1’, …, drm’}; 

Step 6.2: Let dr’ be the first rule in RS’; 

Step 6.3: RS’=RS’-{dr’}; OS’= {o’|o’ is the object consistent with dr’ and the constraint rule 

sets}; 
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Step 6.4: Order the objects in OS’ so that the ith object in OS’ is better than the (i+1)th object 

in OS’ according to Def. 2.12; 

Step 6.5:  The solution of the follower’s problem is the first object (Def. 2.12) in OS’. 

Step 7: If y= y[i], then  

{The optimal solution set is obtained, which is (x[i], y[i]); End;} 

Else {  Go to Step 8 ;} 

Step 8: Select another solution for the follower. 

Step 8.1: OS’=OS’-{(x[i], y)}; 

Step 8.2: If OS’ is null, then  

 {If RS’ is null, then 

{Go to Step 9;} 

            Else 

{Let dr’ be the first rule in RS; 

RS’=RS’-{dr’};  

OS’= {o’|o’ is the object consistent with dr’ and the constraint rule sets}; 

Step 8.3: Order the objects in OS’ and the next solution of the follower’s problem is the first object 

(x[i], y)  (Def. 2.12) in OS’. 

Step 8.4: Go to Step 7; 

Step 9: Select another solution for the leader. 

Step 9.1: OS=OS-{(x[i], y[i])}; 

Step 9.2: W=W {(x[i], y[i])}; 

Step 9.3: If OS is null, then  

{If RS is null, then {There isn’t an optimal solution for the problem; End;} 

else 

{ Let dr be the first rule in RS; 

RS=RS-{dr};  

OS= {o|o is the object consistent with dr and the constraint rule sets;} 

Let (x[i+1], y[i+1]) be the first object in OS; 

i=i+1; 

Go to Step 5;} 

   Complete 

 

Suppose noL and noF are the numbers of the rules in the objective decision rule sets of the leader and the 

follower, respectively, and ncL, ncF are the numbers of the rules in the constraint rule sets of the leader and 

the follower, respectively. min

oLn  and min

oFn  are the numbers of the rules with the minimal decision value in 

FTL ’ and FTF ,’ respectively. Suppose
1
, ,

L
L Lm

c c are the leader’s condition attributes, where mL is the 

number of the leader’s condition attributes, and 
1
, ,

F
F Fm

c c  are the follower’s condition attributes, where 

mF is the number of the follower’s condition attributes. For each attribute c, dc is the number of the 

possible values of the attribute. Then, the total maximal time complexity of the algorithm is: 

    min min

1 1 1  

 
        

 
  

L F F

Li Fi Fi

m m m

oL oF cL cF L F oL c c oF c

i i i

n n n n m m n d d n dO .                                    (4.4) 

The total minimal time complexity of the algorithm is       oL oF cL cF L Fn n n n m mO . In Eq.(4.4), 

1 1 

 
L F

Li Fi

m m

c c

i i

d d  in the second item is the maximal number of objects in OS (in Step 3.5), and 
1


F

Fi

m

c

i

d in the 

third item is the maximal number of objects in OS’ (in Step 6.3). Usually, the numbers of objects in OS and 
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OS’ are much smaller than 
1 1 

 
L F

Li Fi

m m

c c

i i

d d  and 
1


F

Fi

m

c

i

d , respectively.  min

oLn  and min

oFn  are very small in 

most cases. Table 4.1 is the comparison of time complexities between Algorithm 4.1 and the 

transformation-based algorithm presented in [27]. The minimal time complexity of Alg.4.1 is much 

smaller than that of the transformation-based solution algorithm. In a situation where possible values of 

attributes are few, the maximal time complexity of Alg.4.1 will be lower than that of the 

transformation-based solution algorithm. The space complexity of Alg.4.1 is 

   
oL oF cL cF L F

n n n n m mO     . Fig. 4.1 shows the flow charts of Alg. 4.1. We will use the recruitment 

case study to further illustrate the use of the algorithm. 

  

C. A case based example 

    In Section III (E), we established a rule-sets based bi-level decision model for a company recruitment 

situation. Now, we use Alg. 4.1 to solve the recruitment bi-level decision problem, to find a solution for 

this rule-sets based bi-level decision model established. We suppose the four condition attributes used in 

this case are ordered by attribute importance degrees as “age”, “edulevel”, “seniority”, and “health” for the 

recruitment issue. 

Alg. 4.1-Step 1: Construct the objective rule tree FTL of the leader by FL and the result is shown in Fig. 

4.2; 

Alg. 4.1-Step 2: Construct the objective rule tree FTF of the follower by FF and the result is shown in Fig. 

4.3; 

Alg. 4.1-Step 3: Solve problem shown in Equation (4.1), and initialize i=1. 

Step 3.1: Let FTL’ be the objective rule tree of the follower pruned by the constraint rule sets, and 

initialize FTL’ to an empty AID-based rule tree; 

Step 3.2: Use the constraint rule tree GTL to prune FTL and the result is FTL’ as shown in Fig. 4.4; 

Step 3.3: Search for the rules with the minimal decision value in FTL’ and the resulting rule set 

is  

RS={(Age, Young) ∧ (Seniority, Middle)  (Grade, 2); 

(Age, Middle) ∧ ( Edulevel, High)  (Grade, 2); 

(Age, Middle) ∧ (Seniority, Long) ∧ (Health, Middle) (Grade, 2); 

(Edulevel, Middle) ∧ (Seniority, Long)  (Grade, 2)}; 

Step 3.4:  

dr: (Age, Young) ∧ (Seniority, Middle) (Grade, 2); 

Step 3.5-3.6:  

RS={(Age, Middle) ∧ ( Edulevel, High)  (Grade, 2); 

(Age, Middle) ∧ (Seniority, Long) ∧ (Health, Middle) (Grade, 2); 

(Edulevel, Middle) ∧ (Seniority, Long)  (Grade, 2)}; 

   OS={(Age, Young) ∧ (Edulevel, High) ∧ (Seniority, Middle) ∧ (Health, Poor); 

(Age, Young) ∧ (Edulevel, Middle) ∧ (Seniority, Middle) ∧ (Health, Good); 

(Age, Young) ∧ (Edulevel, Middle) ∧ (Seniority, Middle) ∧ (Health, Middle); 

(Age, Young) ∧ (Edulevel, Middle) ∧ (Seniority, Middle) ∧ (Health, Poor); 

(Age, Young) ∧ (Edulevel, Poor) ∧ (Seniority, Middle) ∧ (Health, Good); 

(Age, Young) ∧ (Edulevel, Middle) ∧ (Seniority, Middle) ∧ (Health, Middle); 

(Age, Young) ∧ (Edulevel, Middle) ∧ (Seniority, Middle) ∧ (Health, Poor)}; 

Step 3.7: The solution of problem (4.1) is the first object in OS, that is 
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o = (Age, Young) ∧ (Edulevel, High) ∧ (Seniority, Middle) ∧ (Health, Good). 

Alg. 4.1-Step 4: Let FTF’ be the objective rule tree of the follower pruned by the constraint rule sets and 

FTF’  is as  shown in Fig. 4.5. W =φ; 

Alg. 4.1-Step 5: x[1] = (Age, Young) ∧ (Edulevel, High). Prune the rules from FT which are not consistent 

with  

 True x[1] 

and suppose the result is the rule tree FT’ as shown in Fig. 4.6; 

Alg. 4.1-Step 6: Solve the follower’s rule-sets based decision problem below.  

)
[1] [1]

{ ( , ) : ( }
F

y

min f x y y P x . 

Step 6.1: Search for the rules with the minimal decision value in FT’’and the resulting rule set is  

RS’ = {(Edulevel, High) ∧ (Health, Good) (Grade, 2) ; 

(Seniority, Long) ∧ (Health, Good) (Grade, 2)}; 

Step 6.2:  

dr’: (Edulevel, High) ∧ (Health, Good)  (Grade, 2); 

Step 6.3-6.4:  

RS’= {(Seniority, Long) ∧ (Health, Good)  (Grade, 2)}; 

OS’= {(Age, Young) ∧ (Edulevel, High) ∧ (Seniority, Long) ∧ (Health, Good); 

(Age, Young) ∧ (Edulevel, High) ∧ (Seniority, Middle) ∧ (Health, Good); 

(Age, Middle) ∧ (Edulevel, High) ∧ (Seniority, Long) ∧ (Health, Good); 

(Age, Middle) ∧ (Edulevel, High) ∧ (Seniority, Middle) ∧ (Health, Good)}; 

Step 6.5:  The solution of the follower’s problem is  

(Age, Young) ∧ (Edulevel, High) ∧ (Seniority, Long) ∧ (Health, Good). 

Alg. 4.1-Step 7: Because y≠ y[i], Go to Step 8; 

Alg. 4.1-Step 8:  

Step 8.1-8.2:  

OS’= {(Age, Young) ∧ (Edulevel, High) ∧ (Seniority, Middle) ∧ (Health, Good); 

(Age, Middle) ∧ (Edulevel, High) ∧ (Seniority, Long) ∧ (Health, Good); 

(Age, Middle) ∧ (Edulevel, High) ∧ (Seniority, Middle) ∧ (Health, Good)}; 

Step 8.3: The next solution of the follower’s problem is 

o’ = (Age, Young) ∧ (Edulevel, High) ∧ (Seniority, Middle) ∧ (Health, Good); 

Step 8.4: Go to Step 7; 

Alg. 4.1-Step 7: Because y= y[i], the optimal solution is  

(Age, Young) ∧ (Edulevel, High) ∧ (Seniority, Middle) ∧ (Health, Good). 

Complete 

The solution shows that the applicants who are young, with a high education level, middle seniority 

experience, and good health will most closely meet the requirements of the company. This solution meets 

the objective of the company executive committee by meeting the objectives of the workshop management 

committee and handling its reaction for each possible recruitment decision of the company executive 

committee. This case study also illustrates the functions and effectiveness of the proposed rule-sets based 

solution algorithm to solve bi-level decision problems.  

V. EXPERIMENTS 

In order to test the effectiveness of the proposed rule-sets based bi-level decision problem modeling 

algorithm (Algorithm 3.1) and solution algorithm (Alg. 4.1), we implemented these two algorithms within 

Matlab 6.5. We then used a set of classical data sets in the UCI database 
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(http://www.ics.uci.edu/~mlearn/MLRepository.html) to conduct two experiments for the purpose. The 

UCI database consists of many data sets collected from real applications that can be used by the decision 

systems and machine learning communities for related empirical analysis of algorithm effectiveness tests.  

For each data set chosen, we selected the first half as the original objective decision rule set of the leader, 

and the remaining half for the original objective decision rule set of the follower. We assumed that there 

were no constraints, which means all objects consistent with the objective decision rule sets were in the 

constraint region. The importance degrees of the condition attributes were descending from the first 

condition attribute to the last condition attribute. The two experiments are processed on the computer with 

2.33GHz CPU and 2G memory space.  

 

Experiment 1: Testing of Algorithm 3.1 with the data sets in UCI database. 

Step 1. Randomly choose 50% of the objects from the data set to be the original objective decision rule 

set of the leader, and the remaining 50% of the objects to be the original objective decision rule 

set of the follower; 

Step 2. Apply Algorithm 3.1 to construct a rule-sets based bi-level decision model by using the chosen 

rule sets. Here, we use the decision matrices based value reduction algorithm [54] in the RIDAS 

system [51] to reduce the sizes of original rule sets. 

 

Experiment 2: Testing of Algorithm 4.1 and the transformation-based solution algorithm [27] with the 

data sets in UCI database. 

  Following Steps 1 and 2 in Experiment 1, we have 

Step 3. Apply Algorithm 4.1 or transformation-based solution algorithm to find a solution from the 

generated rule-sets based bi-level decision model in Experiment 1.  

 

The complexity of the two algorithms (3.1 and 4.1) is also tested by conducting these two experiments. 

As shown in Table 5.1, pOL and pOF are the numbers of objects in the original decision rules of the leader 

and the follower, respectively (Refer to Step 1 of Algorithm 3.1), mL and mF are the condition attribute 

numbers of the leader and the follower, respectively, nOL and nOF are the numbers of the rules in the 

reduced objective decision rule sets of the leader and the follower, respectively, t1 and t2 are the processing 

times of Algorithms 3.1 and 4.1, respectively. 

From the results shown in Table 5.1 we find that 

1) The modelling algorithm (Alg. 3.1) and the solution algorithm (Alg. 4.1) are effective; 

2) The processing time of Alg. 3.1 highly relates to the numbers of the rules in the original objective 

decision rule sets and the condition attribute numbers of the leader and the follower, respectively, 

expressed by the symbols pOL, pOF, mL and mF; 

3) The processing time of Alg. 4.1 highly relates to the numbers of the rules in the reduced objective 

decision rule sets and the condition attribute numbers of the leader and the follower, respectively, 

expressed by nOL, nOF, mL and mF; 

4）In the case that possible values of attributes in rule sets are few, such as LENSES, HAYES-ROTH, 

AUTO-MPG, PROCESSED_CLEVELAND, and BREAST-CANCER-WISCONSIN, Alg.4.1 is more 

efficient than the transformation-based solution algorithm [27].  

 

VI. CONCLUSIONS AND FUTURE STUDY 

Organizational decisions often require compromised solutions between two entities, but within 

guidelines determined by the decision entity at the upper level. Although bi-level programming has been 

widely studied, it can only be applied when a bi-level decision problem is modeled by mathematical 

functions. However, many real-world bi-level decision problems cannot be formulated as linear or 

http://www.ics.uci.edu/
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non-linear mathematical programs because various uncertain factors exist. To tackle this issue, our study 

proposes a rule-sets based bi-level decision approach, which first models a bi-level decision problem by 

rule-sets, and then finds a solution to the rule-sets based bi-level decision model. This paper presents a new 

solution algorithm to find an optimized solution for bi-level decision problems using rule set techniques 

with better algorithm complexity. Experiments, and the case study, demonstrate that the proposed rule-sets 

based bi-level decision approach is very effective for modelling and solving bi-level decision problems, in 

particular, when these problems cannot be modeled by the bi-level programming approach. 

As future research, we will develop rule-sets based approaches for more complex bi-level decision 

problems: multi-objective and multi-follower bi-level decision problems. We will explore more 

real-world applications of the proposed approach, and also improve the current bi-level decision support 

system developed to help real decision makers solve their bi-level decision problems effectively. 
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Table 2.1 An information table 

Object height hair eyes Class 

o1 short blond blue + 

o2 short blond brown - 

o3 tall dark blue + 

o4 tall dark blue - 

o5 tall dark blue - 

o6 tall blond blue + 

o7 tall dark brown - 

o8 short blond brown - 

 

Table 3.1 Objective decision rule set of the leader 

Age Edulevel Seniority Health Grade 

Young High Middle Good 2 

Middle High Long Middle 2 

Young Short Short Poor 4 

Young Middle Middle Middle 2 

Middle Middle Short Middle 3 

Middle Middle Long Middle 2 

Old High Long Middle 3 

Young Short Middle Poor 2 

Middle Short Short Middle 4 

Old Short Middle Poor 4 

Middle Short Long Good 3 

Middle Short Long Middle 2 

Old High Middle Poor 3 

Old High Long Good 2 

Old Short Long Good 4 

Young High Long Good 4 

Young Short Long Middle 3 

 

    Table 3.2  Objective decision table of the follower 

Age Edulevel Seniority Health Grade 

Young High Long Good 2 

Old Short Short Good 4 

Young High Short Good 2 

Old High Long Middle 3 

Young Short Long Middle 4 

Middle High Middle Poor 3 

Middle Short Short Poor 4 

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Bazan:Jan_G=.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Wroblewski:Jakub.html
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Old Short Short Poor 4 

Old High Long Good 2 

Young Short Long Good 2 

Young Short Middle Middle 3 

Middle Short Middle Good 3 

Old High Long Good 2 

Middle High Long Good 2 

Middle High Short Poor 4 

 

 

Table 4.1 Comparison of time complexities 

 Alg. 4.1 T-Alg. 

Maximal time complexity 
    min min

1 1 1  

 
        

 
  

L F F

Li Fi Fi

m m m

oL oF cL cF L F oL c c oF c

i i i

n n n n m m n d d n dO      oL oF cL cF L Fn n n n m mO  

Minimal time complexity       oL oF cL cF L Fn n n n m mO      oL oF cL cF L Fn n n n m mO  

 

 

Table 5.1 Testing results of Algorithms 3.1, 4.1 and the transformation-based solution algorithm 

Data Sets pOL pOF mL mF nOL nOF 
Alg. 3.1 Alg. 4.1 T-Alg. 

Mark* 
t1(sec.) t2 (sec.) t2 (sec.) 

LENSES 12 12 2 3 6 3 <0.01 0.02 0.03 1 

HAYES-ROTH 50 50 2 3 21 24 <0.01 0.06 0.09 1 

AUTO-MPG 199 199 4 4 80 76 0.08 0.24 0.39 1 

BUPA 172 172 3 3 159 126 0.06 6.29 3.10 1 

PROCESSED_ 

CLEVELAND 
151 151 6 7 115 127 0.28 4.31 5.20 1 

BREAST-CANCER

-WISCONSIN 
349 349 5 5 47 47 0.51 0.18 0.63 1 

*Note， if mark=1, the algorithm is effective on the corresponding data set. 
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Fig. 2.1 An example of a rule tree 
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Begin

Transform the problem with rule sets

Preprocess FL Preprocess GL Preprocess FF Preprocess GF

Reduce FL? Reduce GL? Reduce FF? Reduce GF?

Reduce FL Reduce GL Reduce FF Reduce GF

A Rule Sets Based Bilevel Decision Model

End

Y Y Y YN N N N

 
Fig. 3.1 Flow chart for the rule-sets based bilevel decision algorithm (Alg.3.1) 
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Fig. 4.1 Flow chart for the rule-sets based bilevel decision solution algorithm (Alg. 4.1) 
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Fig. 4.2 Rule tree of the leader’s objective decision rule set 
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Fig. 4.3 Rule tree of the follower’s objective decision rule set 
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Fig. 4.4 Rule tree of the leader’s objective decision rule set after cutting by constraint rule sets 
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Fig. 4.5 Rule tree of the follower’s objective decision rule set after cutting by constraint rule sets 
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Fig. 4.6 Rule tree of the follower’s objective decision rule set after pruning the rules that are not consistent with x[i] 


