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Abstract 

The material in the human proximal femur is considered as bi-modulus material and the density 

distribution is predicted by topology optimization method. To reduce the computational cost, the 

bi-modulus material is replaced with two isotropic materials in simulation. The selection of local 

material modulus is determined by the previous local stress state. Compared with density prediction 

results by traditional isotropic material in proximal femur, the bi-modulus material layouts are 

different obviously. The results also demonstrate that the bi-modulus material model is better than 

isotropic material model in simulation of density prediction in femur bone.  

Keywords: Topology optimization, proximal femur, bone remodelling, multiple load cases, 

bi-modulus material 

1 Introduction 

Osteoporosis, a kind of bone illness, happens widely in aged people. Serious osteoporosis leads to 

fracture of bone happening easily. To give an efficient therapy of osteoporosis (e.g., improving the 

speed of bone apposition), the mechanical properties of (both of cortical and cancellous) bone should 

be investigated and some results may act an important role in therapy of osteoporosis. In research of 

bone mechanics, the Wolff‟s law (Wolff 1892), which states that bone micro-structure (Figure 1) and 

local stiffness tend to align with the principal stress directions according to its mechanical 

environments, is actually a core concept. In the viewpoints of some researchers, the bone is an 

optimal structure with “maximum” mechanical efficiency but “minimum” mass according to the 

Wolff‟s law. During the last 40 years experimental equipments and computational techniques have 

been developed rapidly. Nowadays, the quantitative study of the Wolff‟s law can be carried out both 

of experimentally and numerically.  

During the last four decades, the Wolff‟s law has been validated by many investigations. Much 

attention has been paid on the relations between the loading environments and the micro-structure of 

bone (Whitehouse and Dyson 1974; Cowin 1986; Odgarrd et al. 1997; Zhu et al. 2006; Cory et al. 

2010; Nazarian et al. 2011). 

It is interesting that bone modelling process is often considered as an optimization process. Hollister 

et al. (1993) tried to answer the question: whether bone remodelling can approach a globally 

optimized structure. Confined by computational conditions, the conclusion was not positive. Later, 

Jang and Kim (2008) quantitatively investigated the validity of Wolff‟s law by topology optimization 

method. They claimed that topology optimization (with minimal structural compliance) and the bone 

remodeling (SED distributing uniformly) are equivalent. Fernandes et al. (1999) an analytical 

parametric micro-structural model for trabecular bone in proximal femur was proposed according to 

the homogenization theory, and optimal densities and orientations were obtained by topology 

optimization. Similar work was given by Kowalczyk (2010). Design space optimization (DSO) 

method by (Kim and Kwak 2002) was adopted for micro-structure prediction of proximal femur by 

their group (Kim et al. 2008; Jang and Kim 2008).  

Zhu et al. (2006) tested the tensile and compressive modulus of Takin femoral cortical bone. They 

found that the compressive modulus of bone is 5-6 times of the tensile modulus. The difference also 

exists in other bones (Cory et al., 2010; Nazarian et al., 2011). However, till now, no work gives the 
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prediction of cancellous bone in proximal femur with consideration of the bi-modulus behavior of 

bone. In this study, a material replacement method (Cai et al. 2013) is used to investigate the optimal 

material layout in proximal femur. 

2 Material Properties 

2.1 Bi-modulus behavior of elastic material 

Experiments (Zhu et al, 2006) show a cortical bone has different elastic behaviors under tension and 

compression load. Therefore, bone is a typical bi-modulus material. Figure 2 gives the stress-strain 

curve of a bi-modulus material. Tangent   gives the tension modulus of material, i.e., tanTE  ; 

and the tangent   is the compression modulus, i.e., tanCE  . The ratio between them are 

marked with R, e.g., 
T CR E E . The material becomes an isotropic material when   . Clearly, 

bi-modulus material properties are stress-dependent. Usually, in structural analysis, the piece-wise 

linear material has to be treated as nonlinear and approximated with differentiable curve in structural 

reanalysis (Medri 1982). But in the present work, the character of the curve, i.e., piecewise linear, is 

adopted by material replacement operation (Cai et al., 2013), i.e., the bi-modulus material is replaced 

with two isotropic material and one of them will be used for an element in finite element analysis 

according to the previous stress state of the element.  

  

Figure 1. Photograph and radiograph of 

human proximal femur (Skedros 

and Baucom 2007) 

Figure 2. The stress-strain curve of a 

bi-modulus material,    

2.2 Stiffness of porous material 

For porous material (e.g., the m-th material sample or finite element), the relationship between the 

stiffness tensor and the volume fraction (relative density) is expressed as 

 
, 0,

p

m ijkl m ijklD D   (1) 

Where 
,m ijklD  is the elastic tensor of porous material, and the relative density  0 1.0m  . 

According to experiments data of bone (Buchler et al. 2002), the power coefficient p is set to be 2 in 

the present study. 
0, ijklD  is the elastic tensor of fully solid material. 

3 Optimization model 

3.1 Formulations of topology optimization problem 

Continuum topology optimization method became a hot point in structural optimization since the 

homogenization design method (HDM) was presented by (Bendsøe and Kikuchi 1988). A large 

number of efforts have been paid on the development of continuum topology optimization methods 

over the past two decades. Besides the HDM, the most popular methods are, the solid isotropic 

micro-structures with penalization (SIMP) method (Rozvany et al. 1992; Bendsøe and Sigmund 

1999); the nodal density description method (Matsui and Terada 2004; Kang and Wang 2012; Luo et 

al. 2013); the evolutionary structural optimization (ESO) method by (Xie and Steven 1993); and the 

level set method by (Wang et al. 2003; Allaire et al. 2004; Luo et al. 2007). 

In the present work, the final density distribution of bone in proximal femur is obtained by modified 
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SIMP method, rather than bone remodeling model. The volume constrained optimization of a 

structure with minimum of the structural mean compliance under multiple load cases, is expressed as 
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where the objective function c is the sum of the structural mean compliance. N is the number of load 

cases the structure subjected to. 
iw  is the weighted coefficient for the i-th load case. M is the total 

number of elements.  m  is the set of relative densities of elements. 
iU  and 

iP  are the global 

nodal displacement and force vectors in the i-th load case, respectively. mk  is the modified matrix 

of 
mk (the stiffness matrix of the m-th element with isotropic material). The global stiffness matrix 

of structure 
iK  is assembled with  m i

k . iK  is assembled with  m i
k . 

mu  is the nodal 

displacement vector of the m-th element. 
mv  is the volume of the m-th element. 

vf  is the critical 

volume ratio of the final structure. 
0V  is the total volume of solid design domain. 

3.2 Selection criterion of elastic modulus of material 

After being replaced with two isotropic materials, the original bi-modulus material in an element 

will be considered as one of the two isotropic materials for structural analysis. The elastic modulus 

of an element in structure under MLC is determined by the following equation 
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where the TSED (tension strain energy density) and CSED (compression strain energy density) can 

be calculated by the following formulations 
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Where 
,j i  and 

,j i  are the mean principal stress and strain of element, respectively. 

4 Result and Discussions 

The deformation analysis in topology optimization of proximal femur is accomplished with the 

commercial software ANSYS (2013) and 4-node plane stress element is used. 

4.1  Finite element model for proximal femur 

Table 1. Forces in three load cases on the proximal femur model. Orientations are given according 

to vertical (negative for left and positive for right). Negative force means compression and 

positive means tension (Jang and Kim 2008) 

Load case Cycles/day 
Abductor reaction Joint reaction 

Magnitude/N Orientation/  Magnitude/N Orientation/  

1(one-legged 6000 703  28 -2317  24 
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stance) 

2 (abduction) 2000 351  -8 -1158  -15 

3(adduction) 2000 468  35 -1548  56 

The upper part of proximal femur of human (see Figure 3a) is discretised into 9240 elements. The 

bottom is simply supported. In this study, the cortical bone with tensile elastic modulus of 17.0 GPa 

(the mean value) and Poisson‟s ratio of 0.3 (Gupta et al., 2004.). The relative density of bone varies 

within the interval [0.05 1.0]. The modulus of bone under tension is not greater than that under 

compression. And the ratios between tension and compression moduli are as follows. R=1.0 and 0.5, 

respectively. As R equals 1.0, the material shows isotropic. At the same time, two cases on 

considering the volume ratio of proximal femur are discussed, e.g., 35% and 46%. From the data in 

Table 1, the three weighted coefficients are 0.6, 0.2 and 0.2 for three cases, respectively. 

4.2 Optimal material distributions in proximal femur 

 
  

(a) three load cases (b) density plot as fv=35% (c) density plot as fv=46% 

Figure 3. Finite element of proximal femur (a) and density distributions of isotropic material (R=1) 

Figure 3b and c give the final isotropic material distributions in proximal femur with different 

volume ratios. The amount of material supporting the first load case (one-legged stance) increase 

obviously. It reflects the real loading activity one proximal femur. 

Figure 4 gives the final bi-modulus material (R=0.5) distributions in proximal femur with different 

amount of residual material. The amounts of material with mid-density are greater than those in 

Figure 3b and c, respectively. Comparing with Figure 3b and c, the result in Figure 4b gives a better 

prediction of cancellous distribution in femur bone (Figure 1). 

  

(b) density plot as fv=35% (b) density plot as fv=46% 

Figure 4. density distributions of isotropic material (R=0.5) in proximal femur 

5 Conclusions 
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In simulation of density distribution of the human proximal femur, the material constitutive model is 

essential to the results. From the results given above, the bi-modulus material model matches the real 

architecture better than isotropic material model. As the finer finite element mesh is adopted, a 

perfect detailed architecture of trabecular in femur bone can be found.  
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