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ABSTRACT 

The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 

(P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp 

recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 

caused a rapid, concentration-dependent depolarisation of the resting membrane potential in 

neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Nav) channels. This action 

was completely suppressed by the addition of 200 nM TTX to the external solution, indicating this 

effect was mediated through TTX-sensitive Nav channels. In addition P-CTX-1 also prolonged 

action potential and afterhyperpolarisation (AHP) duration. In a sub-population of neurons, 

P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by 

significant oscillation of the resting membrane potential. Conversely, in neurons expressing 

TTX-resistant Nav currents, P-CTX-1 failed to alter any parameter of neuronal excitability 

examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited 

both delayed-rectifier and ‘A-type’ potassium currents in a dose-dependent manner, actions that 

occurred in the absence of alterations to the voltage-dependence of activation. These actions appear 

to underlie the prolongation of the action potential and AHP and contribute to repetitive firing. 

These data indicate that a block of potassium channels contributes to the increase in neuronal 

excitability, associated with a modulation of Nav channel gating, observed clinically in response to 

ciguatera poisoning. 

Key Words: ciguatoxin; potassium channel, dorsal root ganglia, neuronal excitability, patch 

clamp. 

INTRODUCTION 

Ciguatera poisoning is a form of ichthyosarcotoxism that occurs as a consequence of eating 

certain tropical and sub-tropical reef fish species that have bioaccumulated the marine neurotoxin, 

ciguatoxin. Each year, ciguatera poisoning affects more than 25,000 people worldwide and is the 

most frequent foodborne illness related to fin fish consumption. Typically the poisoning is 

characterised by gastrointestinal, neurological and to a lesser extent, cardiovascular disturbances. 

The gastrointestinal symptoms, such as vomiting, diarrhoea, nausea and abdominal pain, tend to 

occur within 24 hours of ingestion of a toxic fish, and last 1-3 days (Gillespie et al., 1986). The 

neurological symptoms usually take longer to develop, often between 2-5 days, but may last for 
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weeks to months or even longer in some cases. They involve the peripheral nervous system causing 

weakness and diaphoresis but predominantly result in sensory neuropathies including paraesthesia 

of the extremities, pruritus, myalgia, arthralgia, dental pain, and a paradoxical temperature reversal. 

Ciguatoxins are heat-stable, highly oxygenated, lipid-soluble cyclic polyethers with 

molecular weights of approximately 1000-1200 Da that underlie ciguatera in the Pacific, Indian 

Ocean and Caribbean regions (Lewis, 2001; Hamilton et al., 2002a; Hamilton et al., 2002b; Pottier 

et al., 2003). In general, Pacific and Indian Ocean ciguatoxins cause predominantly neurological 

symptoms, while Caribbean ciguatoxins are associated with more gastrointestinal symptoms 

(Lewis, 2001; Hamilton et al., 2002b). Of all the different strains, Pacific CTX-1 (P-CTX-1) is the 

most potent, with an LD50 in mice of 0.25 µg/kg i.p. (Murata et al., 1990; Lewis et al., 1991). These 

toxins originally derive from precursors found in epiphytic benthic marine dinoflagellates of the 

order Dinoflagellatae, in particular Gambierdiscus spp. These dinoflagellates produce less polar 

and less potent ciguatoxins (formerly known as gambiertoxins) that are biotransformed into more 

polar ciguatoxins in the liver of fish by oxidative metabolism and spiroisomerisation. The 

neurological symptoms observed in clinical cases of ciguatera poisoning are believed to be the 

consequence of the direct interaction of ciguatoxin with voltage-gated sodium (Nav) channels 

(reviewed by (Lewis et al., 2000)). Previous radioligand binding experiments have shown that 

ciguatoxin competes with another cyclic polyether toxin, brevetoxin (PbTX), from the marine 

dinoflagellate Gymnodinium breve (formerly Ptychodiscus brevis), for neurotoxin receptor site 5 on 

Nav channels. This interaction causes membrane depolarisation and stimulates sodium influx in 

neuroblastoma cells (Bidard et al., 1984). Pharmacological studies have shown that ciguatoxins 

activate Nav channels in a variety of preparations to cause depolarisation, spontaneous action 

potentials and an elevation of [Na+]i, with resulting oedema of Schwann cells and axons (Bidard et 

al., 1984; Allsop et al., 1986; Benoit et al., 1986; Lewis and Endean, 1986; Molgó et al., 1993; 

Benoit et al., 1996; Mattei et al., 1999). This results in a stimulation of transmitter release from rat 

brain synaptosomes and enhanced spontaneous and evoked transmitter release from motor nerve 

terminals (Molgó et al., 1990; Brock et al., 1995; Hamblin et al., 1995). Under voltage-clamp 

conditions these actions appear to be the result of hyperpolarising shifts in the voltage dependence 

of activation of TTX-sensitive Nav channels. Furthermore P-CTX-1 induces a TTX-sensitive 

leakage current in DRG neurons (Strachan et al., 1999) most likely from the spontaneous opening 

of a sub-population of Nav channels at resting and hyperpolarised membrane potentials. In contrast, 

the only significant action of P-CTX-1 on TTX-resistant Nav channels in DRG neurons was an 
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increase in the rate of recovery from Nav channel inactivation (Strachan et al., 1999). 

Dinoflagellate-derived ciguatoxins (formerly gambiertoxins) are not especially toxic to 

mammals because they are less oxidised than ciguatoxins and are only present in small quantities in 

fish muscle. Nevertheless, it has been suggested that high concentrations of P-CTX-4B, the less 

polar precursor of P-CTX-1, blocks nodal voltage-gated potassium (Kv) channels in frog myelinated 

nerve fibres resulting in a decrease in the amplitude, and an increase in the duration of action 

potentials (Benoit and Legrand, 1994). This is due to the finding that tetraethylammonium failed to 

further prolong action potential duration following exposure to 24 nM P-CTX-4B. However, to date 

no studies have investigated the actions of ciguatoxins commonly implicated in human poisoning 

on neuronal excitability in mammalian sensory neurons, particularly actions on voltage-gated ion 

channels other than Nav channels. 

The aim of the present study was to examine the effects of P-CTX-1 on action and resting 

potentials in mammalian sensory neurons. Dorsal root ganglion (DRG) neurons were chosen to 

investigate the actions of P-CTX-1 on action potential electrogenesis as their cell bodies and/or 

afferent fibres are presumably the origin of the characteristic sensory neurological disturbances 

reported clinically for ciguatera. Given that P-CTX-4B has been shown to block Kv channels, we 

determined if the P-CTX-1-induced alterations to neuronal excitability involved the modulation of 

Kv channels in addition to effects on Nav channel gating reported previously. Specifically, we 

investigated if P-CTX-1 modulated delayed-rectifier (KDR) or transient ‘A-type’ (KA) potassium 

channels, given their importance in controlling in neuronal excitability (Hille, 2001). These 

experiments were carried out using current- and voltage-clamp methods employing the whole-cell 

patch clamp technique in acutely dissociated newborn rat DRG neurons.  

 

MATERIALS AND METHODS 

Isolation and purification of P-CTX-1 

Pacific ciguatoxin-1 (P-CTX-1) was isolated from the viscera of moray eels (Lycondontis 

javanicus) that were collected from a region of Tarawa (1.3°N, 173°E) in the Republic of Kiribati 

(central Pacific Ocean) where ciguatera is endemic. The isolation and purification techniques 

required to extract P-CTX-1 have been previously described. Briefly, the purification technique 
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involved heating the viscera to 70°C and extracting the lipid-soluble components using acetone. 

This product was then subjected to silica gel vacuum liquid chromatography followed by five 

chromatographic steps. Samples of isolated ciguatoxins were reapplied to HPLC columns and 

eluted with different polarity solvents to confirm homogeneity, and an array detector was used to 

determine the UV profile and establish purity. The sample was >95% pure and contained no 

detectable P-CTX-4B, which is not present in carnivorous fish where the moray eels were captured. 

P-CTX-1 stock was dissolved in 50% aqueous methanol and stored in glass at –20°C. 

Concentrations of P-CTX-1 ranging from 2-20 nM were made by dilution with external solution 

and applied directly to the patch-clamp recording chamber. Control experiments were performed 

with 50% aqueous methanol at a maximum concentration of 2.2 mg/ml to assess the effects on 

neuronal excitability. 

DRG Isolation and preparation 

All electrophysiological experiments were carried out on acutely dissociated rat DRG 

neurons as previously described. Briefly, DRG neurons were isolated from 2-12 day-old Wistar rat 

of either sex and the connective sheath weakened by incubation in 25 mg/ml of trypsin (Type XI). 

After enzyme treatment the DRGs were washed twice with sterile Dulbecco’s modified Eagles 

medium (DMEM) (Gibco, Grand Island, NY, USA), containing 10% newborn calf serum (Gibco) 

and 80 mg/ml gentamycin. After the final wash the ganglia were re-suspended in 2 ml of the 

remaining DMEM culture media and mechanically triturated through a heat-flamed Pasteur pipette. 

The neurons were then evenly distributed onto 12 mm glass coverslips (Assistent, West Germany) 

that were pre-coated with poly-L-lysine. DRG neurons were incubated overnight in 1 ml of DMEM 

at 37ºC (10% CO2, 90% O2 and 100% relative humidity) to allow isolated neurons to adhere to the 

coverslips. All animal experimentation was approved by the joint Animal Care & Ethics Committee 

of the University of Technology, Sydney and the Royal North Shore Hospital, Sydney, Australia. 

Electrophysiology 

Electrophysiological experiments employed the patch-clamp recording technique in 

whole-cell configuration to measure current and voltage changes from single DRG neurones. 

Neurons were bathed in iso-osmotic external solution using a continuous gravity-fed perfusion 

system (Barrington, IL, USA), that maintained a flow rate of 0.3-0.6 ml/min. Patch pipettes were 

pulled from borosilicate glass capillary tubing (Corning 7052 Glass, Warner Corp.) and had 
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resistances of 0.8-2 MΩ when filled with internal pipette solution. Experiments were performed at 

22°C. 

Membrane voltage and current were recorded using an Axopatch 200A patch-clamp 

amplifier (Axon Instruments, Foster City, CA) and current and voltage pulse protocols were 

generated using pClamp software system (Axon Instruments). Signals were filtered using an 

internal 1-kHz low-pass, 5-pole Bessel filter (-3dB) and digitised at 15-25 kHz, depending on 

protocol length. Leakage and capacitive currents were subtracted electronically with P-P/4 

procedures and series resistance compensation was >80% for all neurons. The voltage-clamp data 

recorded in this study were rejected if there were large leak currents or currents showed signs of 

inadequate space clamping such as an abrupt activation of currents upon relatively small 

depolarising pulses. Current-clamp data were rejected if the initial resting membrane potential was 

more depolarised than -45 mV.  

Effects on action and resting membrane potentials - The effects of P-CTX-1 on action and 

resting potentials were investigated using current-clamp recordings from DRG neurons. The 

extracellular solution for current-clamp recordings (solution 1) contained (in mM): 120 NaCl, 3 

KCl, 10 D-glucose, 1.8 CaCl2, 1.8 MgCl, 10 HEPES-acid and was adjusted to pH 7.4 using 1 M 

NaOH. The internal patch pipette solution contained (in mM): 110 KCl, 10 NaCl, 5 HEPES-acid 

and was buffered to pH 7.0 with 1 M KOH. Action potentials were elicited by 1-2 ms 

supramaximal currents delivered at 0.1 Hz.  

The predominant Nav channel present in each neuron was determined prior to current-clamp 

recordings using a modified steady-state Nav channel inactivation protocol under voltage-clamp 

conditions. This takes advantage of the separation of steady-state inactivation curves for 

TTX-sensitive and TTX-resistant Nav channels (Roy and Narahashi, 1992). Larger diameter 

neurons from older animals tended to express fast TTX-sensitive Nav channels, whilst smaller 

neurons tended to express predominantly slow TTX-resistant Nav channels (Roy and Narahashi, 

1992). In those experiments that assessed the actions of P-CTX-1 on neurons expressing 

TTX-resistant Nav channels, 200 nM TTX was applied in the external solution to eliminate any 

residual TTX-sensitive INa. Only those neurons that exhibited less than 10% TTX-resistant INa, were 

used to determine the actions of P-CTX-1 in neurons expressing predominantly TTX-sensitive Nav 

channels. Once the identity of the major type of sodium current (INa) was established, the 

patch-clamp amplifier was switched over to current-clamp mode and changes in the membrane 
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voltage were measured. In those experiments investigating the action of P-CTX-1 on Kv channels 

the current clamp external solution (solution 1) was then switched to the voltage clamp solution for 

recording IK (see solution 2 below) 

Effects on K+ channels - Rat DRG neurons express a variety of Kv channels. The present 

study investigated the effects of P-CTX-1 specifically on delayed-rectifier potassium (KDR) 

channels and transient ‘A-type’ potassium (KA) channels, given their importance in the controlling 

action potential duration and firing frequency (Hille, 2001). The extracellular solution for 

voltage-clamp recordings (solution 2) of delayed-rectifier potassium currents (IK(DR)) and transient 

‘A-type’ potassium currents (IK(A)) contained (in mM): tetramethylammonium (TMA) chloride 120, 

KC1 5, CaCl2 1.8 MgCl2 1, D-glucose 25 and HEPES-acid 5, with the pH adjusted to 7.4 using 1 M 

TMA-OH. The internal patch pipette solution contained (in mM): KF 80, TMA-chloride 50, 

D-glucose 5, EDTA 5 and HEPES-acid 5, with the pH adjusted to 7.0 using 1 M KOH.  

When recording IK, 200 nM tetrodotoxin (TTX) was added to the external solution to block 

tetrodotoxin-sensitive INa. Neurons displaying TTX-resistant INa were not used for experiments 

investigating actions on IK. Since INa were blocked by TTX, any involvement of Na+-dependent IK 

was eliminated. In addition, the internal solution contained 80 mM KF and the external solution 

contained 30 nM charybdotoxin and 1 mM CdCl2, eliminating any Ca2+-dependent components of 

IK. To record IK(DR), 5 mM 4-aminopyridine (4-AP) was added to the external solution to eliminate 

any possible contamination by IK(A). This required readjustment of the pH to 7.4 using 1 M HCl. For 

recordings of IK(A), 25 mM tetraethylammonium (TEA) chloride was added to the external solution 

to block IK(DR). The osmolarity of all external and internal solutions was adjusted to 300 mOsmol/l 

with sucrose using a vapour pressure osmometer (Gonotec Osmomat, Berlin, Germany) to reduce 

osmotic stress on the DRG neurons. The liquid junction potential was determined using the JPCalc® 

software program and all data were compensated for this value. 

Delayed-rectifier potassium currents were generated using a single-pulse protocol from a 

holding potential of –80 mV to +10 mV for 100 ms every 5 seconds. In the presence of 5 mM 4-AP, 

this test pulse evokes only IK(DR) in isolation. The voltage-dependence of KDR activation was 

determined using a 100-ms voltage step protocol from a holding potential of –80 mV to voltages 

between –80 to +40 mV in 10-mV steps every 5 seconds. Fast transient ‘A-type’ potassium currents 

(IK(A)) were isolated by subtraction in the presence of 25 mM TEA-Cl in the external solution to 

eliminate any residual IK(DR). Currents were elicited by a test pulse (Vtest) to +20 mV for 500 ms. 
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IK(A) recorded following an initial 1.5-s prepulse (Vprepulse) to –40 mV, to inactivate IK(A), were 

subtracted from those recorded from a holding potential of –80 mV. The effect of P-CTX-1 on the 

voltage-dependence of activation of KA was determined using a similar subtraction protocol except 

the test pulse was varied from –80 to +30 mV in 10-mV steps every 10 seconds.  

Reagents used 

All chemicals used were analytical grade and, unless otherwise stated, were obtained from 

Sigma Chemical Co., St. Louis, MO, USA. Tetrodotoxin (Calbiochem, San Diego, CA), supplied as 

a citrate buffer, was made up to 100 µM stock solution with sterile water and stored at –20°C for up 

to 6 months. The stock was then diluted with external solution to a final concentration of 200 nM 

on the day of an experiment.  

Data analysis. 

Numerical data are presented as the mean ± S.E. (n, number of observations). Statistical 

differences in current-clamp experiments were determined using a one-way ANOVA followed by a 

Tukey’s HSD post-hoc test, at P < 0.05. For voltage-clamp experiments on Kv channels, statistical 

differences were determined using a Student’s t-test, at P < 0.05. Mathematical curve fitting was 

accomplished using GraphPad Prism version 4.00 for Macintosh (GraphPad Software, San Diego 

CA, USA). All curve-fitting routines were performed using non-linear regression analysis 

employing a least squares method. 

The I/V data were normalised to maximum control current and fitted with the following 

equation: 
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where IK is the amplitude of the IK at a given test potential, V, gmax is the maximal K+ 

conductance, V1/2 is the voltage at half-maximal activation, s is the slope factor and Vrev is the 

reversal potential. 
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RESULTS 

Actions of P-CTX-1 on neuronal excitability 

An increase in neuronal excitability resulting in membrane depolarisation and repetitive 

action potential discharges has previously been observed with ciguatoxins at frog motor terminals 

and myelinated axons as well as rat parasympathetic neurons and neuroblastoma cells. To 

investigate membrane excitability in response to P-CTX-1 in mammalian sensory neurons, DRG 

neurons were held under current-clamp conditions and action potentials generated from a single 

depolarising pulse. A variety of action and resting potential parameters were then measured, 

including the resting membrane potential, action potential amplitude and duration, 

afterhyperpolarisation amplitude and duration, and spontaneous action potential firing frequency.  

A typical response of 10 nM P-CTX-1 on neuronal excitability in a DRG neuron expressing 

predominantly TTX-sensitive Nav channels is shown in Fig. 1A-C. This shows the depolarisation of 

the resting membrane potential, and increases in action and afterhyperpolarisation duration. These 

changes occurred in the absence of significant alterations in the amplitude of the spike or 

afterhyperpolarisations, although there was a small decrease their amplitude. The application of 

P-CTX-1 from 2-20 nM induced an almost immediate, concentration-dependent membrane 

depolarisation in neurons expressing TTX-sensitive Nav channel subtypes (Fig. 1C and D). The 

average resting membrane potential (Em) for DRG neurons expressing TTX-sensitive Nav channel 

subtypes was significantly depolarised from –54.7 ± 1.1 mV (n = 22) in controls to –42.9 ± 1.6 mV 

(n = 13; P < 0.0001) and –36.2 ± 2.9 mV (n = 5; P < 0.0001) after a 10-min perfusion in 10 nM 

and 20 nM P-CTX-1, respectively (Fig. 1D). The effects of P-CTX-1 on the resting membrane 

potential were completely suppressed by the addition of 200 nM TTX to the external solution (n = 

5, data not shown), indicating this effect was mediated through TTX-sensitive Nav channels. 

Furthermore, Figure 1C also shows that P-CTX-1 caused a concentration-dependent increase in 

action potential duration, measured at both 0 mV and 50% maximum spike amplitude. At 50% of 

maximum action potential amplitude, the average duration increased 3.4-fold from 1.3 ± 0.1 ms (n 

= 22) in control recordings to 4.4 ± 0.2 ms (n = 13; P = 0.02) in the presence of 10 nM P-CTX-1. 

The duration of the afterhyperpolarisation, measured at 50% decay, was also significantly increased 

at all concentrations of P-CTX-1 tested, while the amplitude of the afterhyperpolarisation tended to 

be reduced after P-CTX-1 (Figure 1B and C). This data is summarised in Table 1. 

During depolarisation of the resting membrane potential, 10 nM P-CTX-1 induced a short 
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5-10 minute episode of stimulus-evoked repetitive firing of action potentials. This occurred in 

response to a single depolarising stimulus but only in neurons expressing predominantly 

TTX-sensitive Nav channels (Fig. 2A-B). Moreover these neurons then underwent spontaneous 

tonic action potential firing (Fig 2C-D). However, this evoked and tonic repetitive action potential 

firing only occurred in 25% of neurons exposed to P-CTX-1. The frequency of these repetitive 

discharges averaged 56 ± 6 Hz (n = 4) and always occurred after the membrane had depolarised to 

between approximately –45 to –50 mV. This spontaneous firing ceased when the resting membrane 

potential became depolarised beyond –40 mV. However, manual hyperpolarisation of the 

membrane potential resulted in the re-emergence of spontaneous action potential firing in those 

TTX-sensitive neurons that had initially displayed repetitive firing in response to a single stimulus 

Fig. 2F). Interestingly, these reappearing spontaneous action potential discharges were of a much 

higher frequency of 100 ± 5 Hz (n = 4). It was also noted that in most cells the resting membrane 

depolarisation was accompanied by small oscillations of the membrane potential (Fig. 2D). These 

oscillations were observed at potentials between –49 and –58 mV and had an amplitude of 0.5-5 

mV (mean 1.8 ± 0.1 mV, n = 5 cells) and frequencies of 23-40 Hz (mean 33 ± 2 Hz, n = 5 cells). 

Spontaneous action potential firing following addition of P-CTX-1 was not observed in the 

presence of 200 nM TTX (n = 4, data not shown). 

To investigate the effect of P-CTX-1 on the threshold of action potential firing, a 

current-step protocol of increasing amplitude was applied. Under control conditions, the threshold 

for generation of action potentials occurred at a mean current injection of 10 ± 1 nA (n = 29). 

However, following a 10-min perfusion with 10 nM P-CTX-1 on neurons not showing spontaneous 

firing an average current injection of 20 ± 1 nA (n = 13) was required to induce action potential 

firing. Neurons undergoing repetitive firing of action potentials did not require an increase in 

current injection to stimulate the high frequency repetitive discharges. In contrast to its actions in 

neurons expressing predominantly TTX-sensitive Nav channels, P-CTX-1 at concentrations up to 10 

nM did not induce significant membrane depolarisation, or alter any aspect of action potential 

electrogenesis in neurons expressing predominantly TTX-resistant Nav channels (n = 8, data not 

shown). In addition, experiments that assessed the action of the vehicle showed that at a 

concentration up to 2.2 mg/ml of methanol, which represents the amount of methanol in solutions 

containing 20 nM P-CTX-1, had no significant effect on the resting or action potential parameters.  
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Actions of P-CTX-1 on delayed-rectifier potassium (KDR) channels 

Fast activating delayed-rectifier potassium channels function to limit the duration of action 

potentials by remaining open for as long as depolarisation occurs, thereby promoting the onset of 

repolarisation (Hille, 2001). To assess the actions of P-CTX-1 on the kinetics of IK(DR), initial 

experiments measured the amplitude and time course of IK(DR) currents following perfusion with 

P-CTX-1. Currents were recorded under control conditions prior to a 10-min perfusion with 

P-CTX-1 and the change in maintained IK(DR) amplitude determined. Figure 3C-D shows typical 

IK(DR) recorded before, and 15 min following, the addition of 5 and 20 nM P-CTX-1. Mean 

maintained IK(DR) amplitude, measured at the end of the depolarising test pulse, was significantly 

reduced by 24 ± 3 % (n = 5; P < 0.005) and 64 ± 6% (n = 4; P < 0.05) by 5 and 20 nM P-CTX-1, 

respectively. The magnitude of the block of IK(DR) at 20 nM P-CTX-1 is comparable to inhibition by 

10-25 mM TEA (Figure 3H). Only a partial 26 ± 9% (n = 5) reversal of the effects of 5 nM P-CTX-

1 were noted following washout in toxin-free external solution (Fig. 3C). The effects of 20 nM P-

CTX-1 were not reversible, even after prolonged washout in toxin-free solution. The time taken to 

reach peak IK(DR) amplitude was also not significantly altered following addition of 5 or 20 nM 

P-CTX-1. The time to peak was unchanged in the presence of 5 nM P-CTX-1 and only slightly 

decreased by 0.1 ± 0.9 ms following perfusion with 20 nM P-CTX-1 (n = 4, P > 0.9). This indicates 

that toxin does not alter the kinetics of channel activation. 

The voltage dependence of KDR channel activation was also analysed to determine whether 

the block by P-CTX-1 was caused by a depolarising shift in the voltage-dependence of activation. 

Maintained IK(DR) amplitude, measured at the end of the 100-ms depolarising test pulse, was 

measured and plotted against membrane potential. Under control conditions, IK(DR) activated in 

response to depolarising test pulses at potentials greater than -60 mV (Fig. 3G). Following a 10-min 

perfusion with either 5 of 20 nM P-CTX-1, there was no significant alteration in the threshold of KDR 

channel activation (Fig. 3G). The only observed change was a significant reduction in peak IK(DR) 

amplitude at all test potentials indicating the absence of any voltage-dependent block of KDR 

channels by P-CTX-1 (Fig. 3G).  

Actions of P-CTX-1 on A-type potassium (KA) channels 

One of the main functions of the transient ‘A-type’ potassium channels (KA) is to modulate 
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action potential firing frequency and slow the rate of depolarisation by altering the duration of the 

afterhyperpolarisation (Hille, 2001). To determine whether the ability of P-CTX-1 to initiate tonic 

action potentials involves a block of KA channels the amplitude and timecourse of A-type 

potassium currents (IK(A)) was determined. Figure 4C-D shows typical IK(A) recorded before, and 10 

min following, the addition of 5 and 20 nM P-CTX-1. In the presence of 5 nM P-CTX-1, peak IK(A) 

were reduced by 18 ± 8 % in the presence of 5 nM P-CTX-1 (n = 5, P < 0.05). At a concentration of 

20 nM, P-CTX-1 inhibited IK(A) by 47 ± 8% (n = 5, P < 0.02). The magnitude of the block of IK(DR) 

at 20 nM P-CTX-1 is comparable to inhibition by 1-5 mM 4-AP (Figure 4H). Again only a partial 

27 ± 8% (n = 5) reversal of the effects of 5 nM P-CTX-1 were noted following washout in toxin-

free external solution (Fig. 4C). The effects of 20 nM P-CTX-1 were not reversible, even after 

prolonged washout in toxin-free solution. The time taken to attain peak IK(A) amplitude and the 

timecourse of decay was assessed to determine if P-CTX-1 significantly altered the kinetics of 

channel activation or inactivation. No significant alteration in the time to peak IK(A) or decay were 

noted following addition of 5 or 20 nM P-CTX-1. The time to peak was only slightly increased by 3 

± 2 ms from 14 ± 2 ms in controls to 17 ± 3 ms in the presence of 5 nM P-CTX-1 (n = 5, P > 0.1) 

Similarly the time to peak was only slightly increased by 2 ± 1 ms following perfusion with 20 nM 

P-CTX-1 from 9 ± 2 ms in controls to 11 ± 2 ms in toxin (n = 5, P > 0.5). This indicates that toxin 

does not alter the kinetics of channel activation. 

The voltage-dependence of KA channel activation was also analysed to determine whether 

P-CTX-1 altered the voltage-dependence of activation. Peak IK(A) was measured and plotted against 

membrane potential on an IK(A)/V curve, as shown in Fig 4G. Under control conditions, IK(A) 

activated in response to the depolarising test pulse at potentials greater than -60 mV (Fig. 4G). 

Following a 10-min perfusion with either 5 or 20 nM P-CTX-1, there was no significant alteration 

in the threshold of KA channel activation. The only observed change was a significant reduction in 

peak IK(A) amplitude which occurred at all test potentials again indicating the absence of any 

voltage-dependent block of KA channels by P-CTX-1 (Fig. 4G). 

 

DISCUSSION 

The present study shows that, under current-clamp conditions, purified P-CTX-1 induces a 

concentration-dependent membrane depolarisation in rat sensory neurones expressing 

predominantly TTX-sensitive Nav channels. This membrane depolarisation, combined with an 
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ability to prolong spike and afterhyperpolarisation duration, and the previously observed action to 

cause a hyperpolarising shift in the activation of Nav channels, all act to promote tonic firing of 

action potentials in DRG neurons. These results clearly show for the first time that P-CTX-1 

significantly alters neuronal excitability in mammalian sensory neurones that underlie the 

paraesthesiae and dysesthesiae observed clinically in ciguatera poisoning. DRG neurons, or their 

axons, have been previously identified to be sites of ectopic impulse generation leading to these 

types of spontaneous or altered sensations (Wall and Devor, 1983; Rizzo et al., 1996). We also 

report that nanomolar concentrations of P-CTX-1 inhibit Kv channels in DRG neurons, an action 

that underlies changes in spike and afterhyperpolarisation duration and contributes to tonic firing of 

action potentials. 

The capacity of ciguatoxins to induce membrane depolarisation in many excitable cells is 

commonly thought to be due to the ability of ciguatoxins to increase Na+ influx through Nav 

channels. In the present study we have confirmed that P-CTX-1 also causes membrane 

depolarisation in rat somatosensory neurons. This action appears to be mediated via Nav channels 

given that the resting membrane depolarisation was blocked by the addition of TTX. In support, we 

have previously shown that P-CTX-1 precipitates a large increase in the leakage current in 

whole-cell voltage-clamp experiments on rat DRG neurons, an action that was reversed upon the 

addition of TTX. This indicates that the rise in leakage current is mediated via TTX-sensitive Nav 

channels. This P-CTX-1-induced leakage current is most likely due to the spontaneous opening of a 

sub-population of Nav channels at resting and hyperpolarised membrane potentials that remain in a 

permanent open state (Hogg et al., 1998) and no doubt underlies the marked membrane 

depolarisation observed in the present study.  

The ability of ciguatoxins to cause repetitive action potential firing in many cell types is 

commonly thought to be due to their ability to shift the voltage dependence of Nav channel 

activation to potentials closer to the resting membrane potential (Bidard et al., 1984; Seino et al., 

1988; Molgó et al., 1990; Brock et al., 1995; Hamblin et al., 1995; Strachan et al., 1999; Hogg et 

al., 2002). This action, in combination with ongoing membrane depolarisation and in some neurons 

a marked oscillation in the membrane potential (Hogg et al., 1998; Hogg et al., 2002), triggers 

spontaneous action potential firing. Unlike previous studies in rat parasympathetic neurons where 

membrane oscillations were in the range of 10-25 mV (Hogg et al., 2002), oscillations observed in 

the present study were subthreshold and only between 0.5-5 mV in amplitude. These oscillations 

may contribute to repetitive firing of action potentials but is unlikely to be important unless the 
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membrane potential is close to the threshold of Nav channel activation. It is also interesting to note 

that in the present study spontaneous repetitive firing only occurred in 25% of neurons undergoing 

membrane depolarisation and occurred in the absence of significant membrane potential 

oscillations. This differential sensitivity of individual DRG neurons to P-CTX-1 is similar to that 

reported for P-CTX-4B isolated from the dinoflagellate Gambierdiscus toxicus in frog myelinated 

nerve (Benoit and Legrand, 1994) and guinea-pig sympathetic ganglia (Hamblin et al., 1995). In the 

case of DRG neurons, it may represent differences in the action of P-CTX-1 on distinct subtypes of 

Nav channels that are differentially expressed in these neurons (see (Goldin, 2001) for details of 

nomenclature). Given that P-CTX-1 failed to alter neuronal excitability in current-clamp recordings 

from small diameter DRG neurons expressing TTX-resistant Nav channels, it would appear that the 

Nav1.8 (PN3/SNS) and Nav1.9 (NaN/SNS2) channel subtypes (Sangameswaran et al., 1996; Dib-

Hajj et al., 1998) are not involved to any appreciable extent. Nevertheless, one or several of the 

TTX-sensitive Nav subtypes such as Nav1.1 (rat I), Nav1.6 (NaCh6/PN4) and Nav1.7 (PN1) that 

have been shown to be highly expressed in larger diameter DRG neurons (Beckh, 1990; Toledo-

Aral et al., 1997; Caldwell et al., 2000), or even Nav1.2 (rat II) which is expressed at low levels 

(Felts et al., 1997), may be involved.  

An unexpected action of P-CTX-1 was that it caused a significant increase in action 

potential and afterhyperpolarisation duration. This is in contrast to previous findings in frog 

myelinated nerves, whereby action potential duration was not significantly modified by ciguatoxin 

at concentrations up to 1.25 nM. However a prolongation of action potential duration has been 

previously reported with P-CTX-4B and C-CTX-1 on single frog myelinated axons. This increase 

in spike duration suggests that P-CTX-1 may either slow the inactivation of Nav channels or may 

block Kv channels. Given that a previous study has shown that P-CTX-1 does not alter the kinetics 

of INa inactivation in DRG neurons (Strachan et al., 1999), we determined if P-CTX-1 modulated 

the gating or kinetics of Kv channels.  

Voltage-gated potassium channels are regulators of neuronal excitability, opening in 

response to depolarising membrane potentials allowing outward flux of K+ to repolarise the neuron 

(Hille, 2001). The modulation of potassium channel gating by classical organic Kv blockers such as 

TEA and 4-AP can profoundly affect the resting membrane potential, spike amplitude and duration, 

and the afterhyperpolarisation amplitude and duration in DRG neurons (Amir et al., 2002). The 

dominant outward Kv current in DRG neurons is a delayed-rectifier (KDR) whose kinetic and 

pharmacological properties are consistent with expression of Kv1.1/Kv1.2/Kvβ2.1 channels 
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(Fedulova et al., 1998; Rasband et al., 2001). Previous studies have shown that block of KDR 

channels in DRG neurons using TEA, depolarized the cell membrane, prolonged action potential 

duration, reduced the amplitude of afterhyperpolarisations and lowered the threshold for action 

potential firing (Safronov et al., 1996). The present study has shown that nanomolar concentrations 

of purified P-CTX-1 also block IK(DR) and produces similar changes in neuronal excitability to those 

described above. Thus the block of KDR channels would most likely contribute to membrane 

depolarisation previously identified to be due to the permanent activation of a sub-population of 

Nav channels (Hogg et al., 1998; Strachan et al., 1999). In addition it would also contribute to a 

lowering of action potential threshold in concert with the hyperpolarising shift in the voltage 

dependence of TTX-sensitive Nav channel activation (Strachan et al., 1999).  

Although the majority of Kv channels present in DRG neurones are of the delayed-rectifier 

Kv subtype, transient ‘A-type’ Kv channels also play a vital role. Their function is to dampen 

developing interspike depolarisations to space successive action potentials (Hille, 2001). 

Electrophysiological and immunochemical studies suggest that, in large diameter DRG neurons, KA 

channels are heterotetrameric combinations most likely expressing either Kv1.4 or Kv4.2 (Baldwin 

et al., 1991; Fedulova et al., 1998; Rasband et al., 2001). The IK(A) seen in DRG neurons has similar 

properties to the slowly-inactivating IK(A) found in nodose and hippocampal neurons which have 

previously been shown to play an important role in limiting firing frequency (McFarlane and 

Cooper, 1991; Klee et al., 1995). Inhibition of this current can induce profound repetitive firing of 

action potentials (Stansfeld et al., 1986; Storm, 1988). Agents that block IK(A) such as 4-AP 

(Safronov et al., 1996) have also been shown to induce repetitive firing in rat dorsal root fibres 

(Baker et al., 1985) and DRG neurons (Amir et al., 2002). Importantly, at concentrations that 

profoundly affect spike electrogenesis and Nav channel gating, P-CTX-1 produced a significant 

inhibition of IK(A). This promotes a faster firing frequency by speeding the rate of interspike 

membrane potential depolarisation .  

Interestingly the spike amplitude was unaffected by concentrations of P-CTX-1 up to 20 

nM, despite a block of KDR channels. Previous studies in rat DRG neurons have shown that 

blockers of KDR channels cause an increase in spike amplitude (Amir et al., 2002). This apparent 

inconsistency can be reconciled by the fact that in voltage clamp experiments P-CTX-1 has 

previously been shown to reduce TTX-sensitive INa in these rat DRG neurons (Strachan et al., 

1999), an action that would decrease the action potential amplitude. These competing actions on 

distinct voltage-gated ion channels involved in action potential electrogenesis would therefore tend 
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to oppose one another, leaving spike amplitude unaltered. 

A variety of small-, large- and possibly intermediate-conductance calcium-activated 

potassium (KCa) channels are also present in DRG neurons (Gold et al., 1996; Scholz et al., 1998; 

Abdulla and Smith, 2001; Boettger et al., 2002). Here they function to increase the 

afterhyperpolarisation and prevent repetitive firing in small diameter DRG neurons (Scholz et al., 

1998). Indeed block of the large-conductance IK(Ca) by iberiotoxin has been shown to prolong action 

potential duration, reduce the amplitude of the afterhyperpolarisation and cause repetitive firing 

during long depolarisations (Scholz et al., 1998). Given that P-CTX-1 causes a maintained 

depolarisation of the resting membrane potential (Table 1), KCa channels may be involved in 

shaping the action potential discharge patterns seen during P-CTX-1 exposure (see Fig. 2F). 

Unfortunately the effects of P-CTX-1 on IK(Ca) could not be determined in the present study for two 

reasons (i) IK(Ca) could not be isolated from IK(DR) using the standard KDR channel blocker TEA 

since it is an effective blocker of KCa channels in DRG neurons, with an EC50 of 0.4 mM (Scholz et 

al., 1998), and (ii) IK(Ca) could not be isolated using current subtraction procedures since P-CTX-1 

also blocks IK(DR) (Fig. 3). Future investigations should address the possibility of P-CTX-1 

modulating IK(Ca) using single channel patch clamp techniques.  

In conclusion, this is the first study to find that P-CTX-1 causes a significant block of Kv 

channels with IC50 values around 20 nM. Given that KDR and KA channels play multiple roles in the 

excitability of DRG neurons block of these channels by P-CTX-1 influences the shape of the action 

potential, its firing threshold and the resting membrane potential. The block of KDR and KA 

channels act in concert with permanent activation of a sub-population of Nav channels to depolarise 

the resting membrane potential and a hyperpolarising shift in the threshold of TTX-sensitive Nav 

channel activation (Strachan et al., 1999), as the underlying determinants for the spontaneous action 

potential firing induced by P-CTX-1 in sensory neurons. These actions on neuronal excitability 

provide us with further understanding of the predominant paraesthesiae, dysesthesiae and other 

neurological symptoms associated with ciguatera poisoning in the Pacific region. 
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Table 1 

Effects of P-CTX-1 on neuronal excitability in DRG neurones 

P-CTX-

1 

Concentration 

Em 

(mV) 

AP 

Amplitude 

(mV) 

AP 

Duration0 

(ms) 

AP 

Duration50 

(ms) 

AH

P 

Amplitude 

(mV) 

AH

P 

Duration50 

(ms) 

Control 

(n = 22) 

-54.7 

± 1.1 

115.5 

± 4.5 

1.5 

± 0.1 

1.3 

± 0.1 

11.2 

± 0.6 

7.2 ± 

1.8 

2 nM 

(n = 10) 

-51.4 

± 1.7 

117.3 

± 10.5 

3.8 

± 0.4* 

3.6 

± 0.3* 

12.4 

± 1.4 

11.9 

± 0.9* 

5 nM 

(n = 9)�-47.2 

± 1.7* 

-47.2 ± 

1.7* 

113.2 

± 11.1 

4.3 ± 

0.3* 

4.2 

± 0.3* 

11.7 

± 1.5 

12.7 

± 1.4* 

�10 

nM 

(n = 13) 

10 

nM 

(n = 13) 

Em, membrane potential; AP, action potential; AHP; afterhyperpolarisation; Duration0, 

duration at 0 mV; Duration50, duration at 50% of maximal amplitude. * P<0.05 using Tukey's HSD 

post-hoc test 
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FIGURES 

 

Fig. 1. Effect of P-CTX-1 on action and resting potentials in DRG neurons expressing 

TTX-sensitive Nav channels. Typical action potentials generated by a single current pulse (see 

inset), before (A) and following a 10-min perfusion with 10 nM P-CTX-1 (B). The dotted line in 

panel B represents the control resting membrane potential and highlights the depolarisation induced 

by 10 nM P-CTX-1. (C) Superimposed voltage traces from panels A and B showing reduced spike 

and afterhyperpolarisation amplitude, prolongation of action potential and afterhyperpolarisation 

duration, and membrane depolarisation. (D) Concentration-dependent membrane depolarisation 

occurred in response to a 5-10 min perfusion with P-CTX-1 (n ≥ 5). Statistical significance 

indicated at the ** P < 0.01 level. 
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Fig. 2. Actions of P-CTX-1 to cause repetitive action potential firing in DRG neurons 

expressing TTX-sensitive Nav channels. (A-B) Typical progression of stimulus-locked repetitive 

action potential firing from limited repetitive firing (A), to trains of action potentials (B), in the 

presence of 10 nM P-CTX-1. (C-D) Typical tonic action potential firing in the presence of 10 nM 

P-CTX-1, where spontaneous firing was not locked to a depolarising stimulus. Note the slow time 

scale in panel C. (E) Typical example of the slight oscillation in the resting membrane potential in 

the presence of 10 nM P-CTX-1. (F) Return of repetitive firing following manual hyperpolarisation 

of the resting membrane potential. 
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Fig. 3. Actions of P-CTX-1 on delayed-rectifier potassium currents (IK(DR)) in rat DRG 

neurons. (A-B) Depolarising voltage command protocols used to elicit outward IK(DR). IK(DR) were 

elicited using 100-ms depolarising test pulses (Vtest) to +10 mV applied from a holding potential of 

-80 mV every 5 seconds (A). Families of IK(DR) were elicited by 100-ms depolarising Vtest from -80 

mV to +40 mV in 10-mV steps (B). (C-D) Representative superimposed current traces before, and 

following, a 20-min perfusion with 5 nM (C) and 20 nM (D) P-CTX-1. Currents were elicited using 

the voltage command protocol shown in panel A. Note the partial reversal of current amplitude 

following perfusion with toxin-free external solution in panel C. (E-G) Effect of P-CTX-1 on 

IK(DR)/V relationships. Typical families of control currents (E) were recorded prior to a 20-min 

perfusion with 20 nM P-CTX-1 (F). Calibration for panels E and F is the same as panel D. (G) 

Normalised maintained IK(DR)/V relationship recorded at the end of the depolarising test pulse before 

(l), and following, perfusion with 5 nM (¡, n = 5) and 20 nM (¨, n = 4) P-CTX-1. Families of 

currents were elicited using the voltage command protocol shown in panel B. Data were fitted with 

equation 1 in the materials and methods. (H) Comparison of the block of IK(DR) by TEA-Cl and P-

CTX-1. Data represents the mean ± SEM of n ≥ 4. All IK(DR) data were recorded in the presence of 5 

mM 4-AP to block any residual IK(A). 
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Fig. 4. Actions of P-CTX-1 on A-type potassium currents (IK(A)) in rat DRG neurons. (A-B) 

Depolarising voltage command protocols used to elicit outward IK(A). (A) IK(A) were evoked by 400-

ms depolarising test pulses (Vtest) to +20 mV applied from a holding potential of –80 mV (P(–)) or 

applied subsequent to a 1.5-second hyperpolarising prepulse (Vprepulses) to –40 mV (P(+)). IK(A) was 

obtained by subtracting the current produced by P(+) from the current produced by P(–). (B) Families 

of IK(DR) were also isolated by subtraction except that Vtest was varied from -80 mV to +30 mV in 

10-mV steps. (C-D) Representative superimposed current traces before, and following, a 20-min 

perfusion with 5 nM (C) and 20 nM (D) P-CTX-1. Currents were elicited using the voltage 

command protocol shown in panel A. (E-G) Effect of P-CTX-1 on IK(A)/V relationships. Typical 

families of control currents (E) were recorded prior to a 20-min perfusion with 20 nM P-CTX-1 (F). 

(G) Normalised peak IK(A)/V relationship recorded before (l), and following, perfusion with 5 nM 



27 

 

(¡, n = 5) and 20 nM (¨, n = 4) P-CTX-1. Families of currents were elicited using the voltage 

command protocol shown in panel B. Data were fitted with equation 1 in the materials and 

methods. (H) Comparison of the block of IK(A) by 4-AP and P-CTX-1. Data represents the mean ± 

SEM of n ≥ 4. All IK(A) data were recorded in the presence of 25 mM TEA-Cl to eliminate any 

residual IK(DR). 

 

 

 


