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The frequency (Lamb) shift and local density of states (LDOS) in two-dimensional photonic crystals
composed of a cluster of infinitely long circular cylinders is calculated classically using the radiation
reaction mechanism. We investigate the frequency shift and LDOS as a function of the size of the
cluster and show that, at the edges of the band gap, both quantities can be large and increase in
magnitude with cluster size. We explain this in terms of poles of a scattering operator and also show
that both the Lamb shift and LDOS are sensitive functions of the shape of the cluster.

1 Introduction

Spontaneous emission [1] and the Lamb (frequency) shift of energy levels of
atoms [2] are amongst the fundamental effects observed in quantum electrody-
namics. While these were studied originally for atoms in free space, it is now
well known that both the emission rate and source frequency can be modi-
fied by the environment [3–5]. Such spontaneous emission can be particularly
strong in photonic crystals [6], micro-structures with a periodic refractive in-
dex distribution, having ranges of propagating states (pass bands) as well as
ranges with no propagating states (band gaps) in their frequency spectrum. In
infinite photonic crystals, the photon density of states vanishes in band gaps,
prohibiting spontaneous emission completely. Accordingly, photonic crystals
can be regarded as forming a true vacuum for electromagnetic waves at the
gap frequencies. However, when atoms, embedded in a photonic crystal, radi-
ate with a frequency that lies in a band gap but near the gap edge, a variety
of interesting, new quantum effects are observed, such as localisation of super-
radiance near the photonic band edge [7], control of the spontaneous emission
rate [8] and non-Markovian character of radiative decay [9, 10].

Calculations of the Lamb shift have been undertaken with different models,
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all of which, to date, have assumed that the photonic crystal is infinite. Assum-
ing an isotropic dispersion model, it has been shown that, at the edge of the
gap, there exists a photon-atom bound state as well as an enhancement of the
Lamb shift [11]. On the other hand, assuming an anisotropic dispersion model,
smaller energy shifts (relative to vacuum) have been reported [12]. There also
appears to be some controversy concerning the size of the Lamb shift at the
edge of the band gap, with Li [13], using a vector model, finding no signif-
icant change in the Lamb shift (compared with that observed in free space)
for a hydrogen atom embedded in an infinite photonic crystal, and Wang [14]
coming to the opposite conclusion.

In reality, all photonic crystals are finite and it is important to understand
the effect of both the finite size and cluster shape on the spatial distribution
of the Lamb shift—constituting the primary aim of this paper. In our model,
we consider a two-dimensional photonic cluster composed of a finite number of
cylinders of infinite length, and irradiated with a dipole antenna (line source)
which is embedded in the structure. We follow the approach developed by
Morawitz et al [4] and Kahn et al [15] (see also Hinds [16]) for calculating the
frequency shifts for a dipole oscillator located near a metallic interface. This
treatment was adopted subsequently by Erdogan et al [17] to calculate both
the frequency shift and the modification of the dumping rate of an embedded
line source, and has been successful in explaining experimental observations of
Chance et al [18]. The frequency shift calculation based on this model can be
regarded as an AC Stark shift and agrees well with the quantum-mechanically
calculated level shift when the source is described by a harmonic oscillator [19].

The results we report here are based on methods similar to those used by
us [20–23], who comment on both the 2D Lamb shift (a line source in a cluster
of cylinders), and the so-called 2.5D Lamb shift (a point source in a cluster
of cylinders). We restrict ourselves to the 2D case, and compare Lamb shifts
for both circular and square clusters. The results are surprisingly dissimilar
for these two cluster shapes, and we comment on the physics underlying this
difference.

The objective of this paper is to investigate the frequency shift and local
density of states and their dependence on the size and shape of a photonic
crystal cluster, characterising this in terms of poles of a scattering matrix.
We begin in Sec. 2 with an outline of the method and present the results
and interpretation of our computational simulations in Sec. 3 before giving
conclusions in Sec. 4.
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2 Model and Method of calculation

2.1 Frequency shifts

We begin with a point dipole located at r = rs in free space—which is equiv-
alent to an infinite line source parallel to the axis of cylinders in three dimen-
sions. The equation of motion for the line source driven by its own radiated
field is [4, 15,17]

d2p(t)
dt2

+ ω2
0p(t) =

q2

m0
E0(rs, t), (1)

where m0, q and p(t) respectively denote the mass, charge and dipole moment
per unit length of the source, and where ω0 is the frequency of the source
when decoupled from all fields. The quantities p(t) and q in turn are related
by p(t) = ql(t) where l(t) is the displacement of the electron oscillations,
determined by the field amplitude. Here, E0(rs, t) is the electric field strength
at the location of the dipole. The wave field of the dipole E0(r, t) is determined
by the wave equation

∇2E0(r, t) + k2E0(r, t) = −ω2p(t)
ε0c2

δ(r− rs), (2)

and has the form

E0(r, t) = −ω2p(t)
ε0c2

G0(k|r− rs|), (3)

where G0(r) = H
(1)
0 (r)/(4i) is the two-dimensional Green function, expressed

in terms of the Hankel function of the first kind. Here, ε0 denotes the free
space dielectric permittivity, k = 2π/λ is the free space wavenumber of the
radiation, and c is the speed of light in vacuum. The value of the dipole field
E0(r, t) at the location of the dipole r = rs is infinite and it is necessary to
renormalise the mass of the dipole [2]. This renormalisation can be performed
classically by noting that the self-reaction damps the oscillations and causes
a shift in frequency from ω to ω′. Proceeding in this way [4, 15, 17], we can
rewrite the equation of motion (1) in the form

d2p(t)
dt2

+ γ0
dp(t)
dt

+ ω2p(t) = 0, (4)
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and seek a harmonic time dependent solution of the form exp(−iω′t) which
leads to the calculation of the frequency shift

δω = ω′ − ω. (5)

In Eq. (4), ω is the observable frequency and the γ0 is the damping coefficient
which can be calculated as the ratio of the rate of energy radiation P to the
total energy of the oscillator W [24],

γ0 =
P

W
=

ωq2

4ε0mc2
, (6)

where P and W are given by

P =
q2l20ω

3

8ε0c2
, W =

mω2l20
2

. (7)

In (7), l0 denotes the amplitude of the harmonically-varying quantity l(t).
We now generalise the problem from that of an isolated point dipole source

to one that is embedded in the two-dimensional cluster of Fig. 1—where the
source may be located either in the background medium or in one of the
cylinders. This time, the equation of motion of the dipole placed at a point
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Figure 1. The geometry of the problem.

in the complex multiple scattering environment of the cluster, which is the
analogue of Eq. (1), is

d2p(t)
dt2

+ ω2
0p(t) =

q2

m0
E(rs, t). (8)
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Here

E(r, t) = −ω2p(t)
ε0c2

[
G

(1)
0 (k|r− rs|) + GR(r)

]
, (9)

is the total field at the location of the dipole, comprising the self field G0

and the response or scattered (reflected) field GR. The self reaction field G0 is
again infinite at the location of the dipole and thus requires the renormalisation
described above, while the scattered field GR is finite. The consequence of the
self reaction field G0 is to damp the oscillations, leading to a frequency shift
(5). After renormalisation, the equation of motion is

d2p(t)
dt2

+ γ0
dp(t)
dt

+ ω2p(t) = −4ωγ0p(t)GR(rs). (10)

Seeking a harmonic solution p(t) = pe−iω′t, and noting that γ0 ¿ ω, we obtain
the shifted frequency

ω′ ≈ ω − γ2
0

8ω
+ 2γ0 ReGR, (11)

and the new damping coefficient

γ/2 = γ0/2− 2γ0 ImGR = −2γ0 ImG (12)

which is proportional to the local density of states (LDOS) [20]. In (11) the
term γ2

0/(8ω) is second order [4, 15, 17] in the small quantity γ, so that the
first order frequency shift is

δω = ω′ − ω ≈ −2γ0Re GR, (13)

and is proportional to the real part of the scattered (response) Green function
at the location of the source (11). The new damping coefficient γ is composed
of the free space damping coefficient γ0 and the contribution due to the en-
vironment γ0ImGR, in which the radiated source is located. This damping
coefficient γ is also the spontaneous emission coefficient, and from (12) is pro-
portional to the local density of states given by the imaginary part of the
Green function [20].

2.2 Scattered field in a photonic crystal

For the two-dimensional geometry of Fig. 1 comprising a cluster of Nc cylin-
ders, we use a multipole treatment to calculate the Green function [20], which
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is ideally suited to the calculation of the frequency shifts.
For an exterior source, the field in the exterior vicinity of some cylinder

l may be expanded in a cylindrical harmonic basis, comprising the regular
terms (represented by Jn(kr) exp(inθ)) sourced by all other cylinders and
the exterior source, and the irregular field (represented by H

(1)
n (kr) exp(inθ))

which is sourced on the given cylinder. Equating the local expansion with
the global expansion of the type identified by Wijngaard [20] yields a field
identity [20], [25, 26] which in matrix form can be written as

(H + M) B = Q. (14)

In (14), Q derives from the mutipole representation of the exterior source(s),
B is a partitioned vector of multipole coefficients Bq

m for all cylinders, M is a
block diagonal matrix containing the boundary condition relations that derive
from the continuity conditions, while H is a block partitioned matrix that
characterises the interaction of all scatterers in the system, for all scattering
orders. By solving this linear system the unknown coefficients can be found
and the exterior field may be reconstructed from

G(r, rs) =
1
4i

H
(1)
0 (k|r − rs|)

+
Nc∑

q=l

∞∑
m=−∞

Bq
mH(1)

m (k|r − rq|)eim arg(r−rq). (15)

while the field interior to cylinder l is reconstructed from

G(r, rs) =
∞∑

m=−∞
C l

mJm(knl|r− rl|)eim arg(r−rl). (16)

In the case of a source interior to cylinder l, the interior field is again ex-
panded in the cylindrical harmonic basis, with the regular terms sourced at
the cylinder boundary, and with the singular terms associated with the interior
source. The exterior form in the vicinity of a particular cylinder has the same
form as before, but this time with contributions from only the other cylinders
contributing to the regular part of the field. Applying the field continuity con-
ditions at the boundary of the cylinders leads to the field identity, from which
the field may be reconstructed everywhere. The exterior form is identical to
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that in Eq. (15), but without the source term, while the interior form is now

G(r, rs) =
1
4i

H
(1)
0 (knl|r − rs|) +

∞∑
m=−∞

C l
mJm(knl|r− rl|)eim arg(r−rl). (17)

The first term in each of Eq. (15) and in Eq. (17) is the unscattered free
space dipole field of the oscillator, while the second term is the response (scat-
tered) field of the oscillator GR(r). The frequency shifts are determined by
calculating the real part of the reflected field at the location of the oscillator
GR(rs, rs), a quantity which is finite and which may be conveniently calcu-
lated. Accordingly, the method is both accurate and efficient.

3 Frequency shift and LDOS calculations

In this section we discuss numerical results based on the theory developed
in Section 2. In Section 3.1 we present the level shift for clusters of different
shapes, and find a very strong dependence on cluster shape. Then in Section
3.2 we show corresponding results for the local density of states. We also
discuss the relation between the level shift, local density of states and cluster
resonances.

3.1 Level shift in circular and square clusters
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Figure 2. (a) Normalised frequency shift δω/γ0 vs λ/d for a source located at x = 0, y = 0 (red
curve) and x = 0, y = 0.4 (blue curve) and for a circular cluster with Nc = 317; (b) the same as for

(a) but for a square cluster of Nc = 289 cylinders. The insets show the shape of the clusters.

We initially consider a cluster with Nc = 317 cylinders, each of refractive
index nl = 3 and radius al = 0.3d, located in air and arranged in a square
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lattice, as shown in the insets of Fig. 2 (with d denoting the distance between
the neighbouring cylinders). In E‖ polarised light, the corresponding infinite
structure has a band gap in the wavelength range 2.98 < λ/d < 3.769. Fig. 2(a)
displays the radiation shift normalised to the free space radiation rate, δω/γ0,
as a function of wavelength for an approximately circular cluster (see inset)
at two source locations: inside the central cylinder (red curve) and immedi-
ately outside the cylinder (blue curve). It is evident that the frequency shift
is enhanced at the long wavelength edge of the band gap at λ/d ≈ 3.77 for
points inside the cylinder, and that the shift achieves its most positive value
(around 12) at λ/d ≈ 3.78176 and its most negative value (around -9) for
λ/d ≈ 3.78233. After these two peaks follow a succession of weaker peaks of
alternating sign as the wavelength increases into the lowest-frequency propa-
gating band. In the band gap the radiation shift is small, with weak oscillations
apparent just beyond the short wavelength edge of the gap.

Fig. 2(b) displays the normalised frequency shift as a function of wavelength,
this time for a cluster of Nc = 289 cylinders identical to those for Fig. 2(a)
but this time arranged in a square. Here it is evident that the frequency shift
is strongly enhanced at the long wavelength edge of the gap at λ/d ≈ 3.77
for points inside of the cylinder, reaching a value of 2 × 103. The maximum
frequency shift is δω/γ0 = 2058 occurring at λ/d ≈ 3.783142, with the mini-
mum of δω/γ0 = −2038 occurring at λ/d ≈ 3.783147. These extrema are three
order of magnitude higher that the frequency shift for a dipole located near
a mirror or between two mirrors [16]. Clearly, from the data in Fig. 2, it is
evident that the frequency shift is a strong function of the cluster shape.

Figure 3. Contour plot of (a) the logarithmic frequency shift log10(δω/γ0) in a square cluster for
the wavelength λ/d ≈ 3.783142 (b) (linear scale) frequency shift δω/γ0 for λ/d ≈ 3.783147.

In Fig. 3(a) we display log10(δω/γ0) as a function of position for a wavelength
of λ/d ≈ 3.783142 where the frequency shift is maximal for the square cluster
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shown in the inset of Fig. 2(b). Correspondingly Fig. 3(b) shows the map
of δω/γ0 (on a linear scale) for the wavelength λ/d ≈ 3.783147 where the
frequency shift is minimal δω/γ0 = −2038.
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Figure 4. Variation of the frequency shift along the y axis for λ/d = 3.783142 (red curve) and for
λ/d = 3.783147 (blue curve), for a square cluster with Nc = 289 cylinders; (b) the same as for (a)
but for a circular cluster with Nc = 317 cylinders, red curve is for λ/d = 3.78176 and blue curve is

for λ/d = 3.78233.

In either case, the magnitude of the frequency shift |δω/γ0| increases as the
centre of the cluster is approached, with the larger shifts occurring for points
inside the cylinders. This is clearly seen in Fig. 4 where we plot the variation
of the frequency shift along the y axis for the two wavelengths at which the
frequency shift is maximal (red curve) and minimal (blue curve). Note the
coincidence of the minima and the maxima of the frequency shifts for the two
curves in each of Fig. 4(a) and 4(b).

-15000

-10000

-5000

 0

 5000

 10000

 15000

 3.77 3.772 3.774 3.776 3.778 3.78 3.782 3.784

δω/γ
0

λ/d
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

-2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

log (ω  /γ )
m 0

log(λ/d- λ  /d)
e

Figure 5. (a) δω/γ0 vs λ/d for square clusters of different size. From right to left,
Nc = 17× 17, 19× 19, 21× 21, 23× 23, 25× 25, 27× 27, 29× 29. The vertical line at λ/d ≈ 3.77
denotes the gap edge; (b) Comparison of the logarithm of the most positive frequency shift vs

wavelength (solid line), and a linear fit log10(δωm/γ0) = −2 log10(λ/d− λe/d)− 0.75 to the curve
(dashed line).
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It is also interesting to investigate the dependence of the shift on the size
of the cluster. In Fig. 5 we plot the frequency shift versus wavelength for
square clusters of different size, with the source located at a common position
in the centre of the central cylinder. As is evident from Fig. 5, the frequency
shift is a strong function of the size of the cluster. For a cluster comprising
29 × 29 cylinders, the frequency shift δω/γ0 exceeds 1.5 × 104, four orders of
magnitude greater than the corresponding value reported in cavity quantum
electrodynamics [16]. Clearly, the size of the frequency shift increases with
cluster dimension, with the location of the maxima and minima moving to-
wards the edge of the band gap (associated with the infinite structure) at the
wavelength λe. The widths of the maxima and minima also decrease as the
size of the cluster increases. In Fig. 5(b) we plot the logarithm of the most
positive frequency shift log10(δωm/γ0) versus wavelength (solid line), and its
linear least squares approximation

log10

(
δωm

γ0

)
= −2 log10

(
λ

d
− λe

d

)
− 0.75. (18)

Fig. 6 displays the dependence on cluster size of the wavelength at which the
frequency shift is maximal, together with a nonlinear least squares approxi-
mation. The fit is given by the relation

λ

d
=

λe

d
+

2.56
N0.91

c

. (19)

From these two fits (Eqns (18) and (19)) we can eliminate λ/d − λe/d and
show that (δωm/γ0) ∝ Nα

c , with α . 2, a result confirmed by the data.
We next consider the sensitivity of the frequency shift on the shape of the

cluster. Fig. 7 displays the frequency shift vs wavelength of the maximal shift
for two clusters: (a) a square cluster having 21×21 cylinders (red curve) and (b)
a cluster derived from (a) by removing the four corner cylinders (blue curve).
The effect of removing the four corner cylinders is dramatic, with the maximum
of the frequency shift reducing from δω/γ0 = 4528.44 to δω/γ0 = 277.34
and the location moving by only one part in 105 from λ/d = 3.7787197 to
λ/d = 3.7787320. The width of the maxima and minima are also broadened
by the change.

As further confirmation of the sensitivity of frequency shift to cluster shape,
we show in Fig. 8 the analogue of Fig.5(a), but now for circular clusters of
varying size. Note that the circular cluster never exhibits frequency shifts as
large or as rapidly varying as those for the square cluster. Once again, we can
see the tendency for the location of the peak of the frequency shift to migrate
towards the band edge with increasing cluster size, but for the circular cluster
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Figure 7. The frequency shift δω/γ0 vs wavelength λ/d for different cluster shapes. The red curve
is for a 21× 21 square cluster, while the blue curve is for the cluster with the four corner cylinders

removed.

there is no sign of the strong increase in magnitude of the frequency shift with
size evident in Fig. 5(a). Note that for the latter case, the peak frequency shift
scales with cluster size as Nα

c with α . 2.
We have also calculated the frequency shifts for an inverted photonic cluster

comprising a hexagonally packed array of circular air voids of common radii
al/d = 0.48 embedded in a dielectric matrix of refractive index n = 3.605.
In the case of E‖ polarisation, the infinite photonic crystal has a band gap
in the wavelength range 1.94 < λ/d < 2.31. The results in Fig. 9 display
characteristics opposite to those observed for rod-type structures. Specifically,
the sharp change of the shift frequency is now located on the short wavelength
edge of the gap, while at the long wavelength edge of the gap the shift is
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Figure 8. δω/γ0 vs λ/d for circular clusters of different size. From right to left,
D = 17, 19, 21, 23, 25, 27, where D is the cluster diameter.
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Figure 9. (a) The normalised frequency shift δω/γ0 versus λ/d for source location at x = 0, y = 0
(red curve) and x = 0, y = 0.49 (blue curve) for a cluster with Nc = 128 hexagonally packed

cylinders.

substantially weaker.
The strong dependence of the Lamb shift on both wavelength and position

in the cluster is amply illustrated in the attached animation which displays
contour maps of frequency shift with varying wavelength. The animation spans
the first band gap and Fig. 10 depicts a frame comprising a band diagram with
a superimposed line showing the normalised frequency for that frame, and a
spatial map of the frequency shift coloured according to the legend and scaled
according to (2/π) tan−1(δω/γ0) . The animation reveals that the frequency
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Figure 10. The contour plot of the frequency shift log10(δω/γ0) versus position for the wavelength
λ/d ≈ 4.22; the dispersion curves of the corresponding infinite structure.

shift is low throughout the cluster for wavelengths shorter than the lower
wavelength edge of the gap, but increases monotonically as the wavelength
is scanned across the band gap from the short to the long wavelength edges
of the gap. Immediately above the long wavelength edge of the gap (in the
pass band) there is a sharp increase in the Lamb shift throughout the cluster,
followed by a sequence of complex patterns with increasing wavelength, similar
to resonances in Fig. 2(a) in the long wavelength pass band.

The influence of the shape of the cluster may be understood in terms of
Fabry-Perot resonances that enhance the Lamb shift. Exemplifying this is the
much stronger shift that is apparent for the square array than is observed
for either the circular cluster or the square cluster with its corner cylinders
removed. We have also calculated the frequency shifts for rectangular clusters
with high aspect ratio and observed a similar behaviour for the frequency shift
as for square clusters. All of this supports the interpretation that substantial
frequency shifts rely on strong resonance effects generated by multiple reflec-
tions from ideal mirror boundaries, with the width of the resonance decreasing
with increasing cluster size, as in Fabry-Perot interferometers.

Given that the behaviour of the square clusters are similar to the rectangular
clusters we consider a one dimensional model to demonstrate the Fabry-Perot
interpretation. In this model we impose quasi-periodicity along the x axis
and have a finite number of identical layers in the y direction. The central
layer has a point source embedded in the cylinder and there are NL layers
of gratings on each side of the central grating (see Fig.11). We embed an
array of quasiperiodically phased sources in the cylinders of the central grating
and then by integration of the solutions of the family of different problems
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Figure 11. The quasi one-dimensional model.

over the 1st zone, we may calculate the Green’s function corresponding to a
single source in the central cylinder of the central grating (for the details see
Ref. [27]). The field at the central cylinder is driven by the incoming plane
wave fields from below f+

2 and from above f−1 and we can show that the total
incident field that drives the central grating can be written as

f−1 + f+
2 = (I −LT1)−1LQt, (20)

L = RN (I −R1RN )−1, (21)

using a derivation related to that given in [27]. Here R1 and T1 are plane wave
reflection and transmission matrices for a single layer and RN is the plane wave
reflection matrix for an N layer grating, while Qt is a vector containing the
plane wave coefficients corresponding to a point source transmitted through
the cylinder above and below the grating. This expression (21) quantifies the
Fabry-Perot interpretation, with the term (I −LT1)−1 characterising the res-
onance. Numerical experiments show that the primary resonance increases in
shape and moves towards the edge of the gap as the number of layers increases,
corresponding the reflectance of the bulk slab approaching unity as the band
gap edge is approached.

3.2 Local Density of States

We turn now to consider analogous LDOS properties and note that in earlier
work [25, 26] we investigated its behaviour as a function of cluster size, for
an approximately circular cluster. Given that the frequency shift is shown
to be a strong function of the size of the cluster, one would expect that the
LDOS would increase as a function of cluster size, given the Hilbert transform
connection between LDOS and frequency shift [14,23,28] for infinite structures.
Fig. 12(a) plots the LDOS as a function of wavelength close to the gap edge for
square clusters of dimension 17×17 (blue curve), 19×19 (green curve) and 21×
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21 (red curve). In all cases the LDOS is a very sharp function of wavelength,
with the maximum value increasing from γ/(4γ0) = 2016 at wavelength λ/d =
3.783140 to the value γ/(4γ0) = 4526 at λ/d = 3.7787205. Also, the width
of the peak decreases with increasing cluster size, with the area under the
curve preserved to within approximately 15%. Because of the sharpness of
the features in Fig. 12(a), we replot both the LDOS and the corresponding
frequency shift in Fig. 12(b) on an expanded wavelength scale.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 3.785 3.783 3.78 3.777

γ/(4γ )
0

λ/d

(a)



-5000

-4000

-3000

-2000

-1000

 0

 1000

 2000

 3000

 4000

 5000

 3.77874 3.77872 3.7787

ω/γ
0

λ/d

γ/(4γ )
0

1000

2000

3000

4000

1000

-2000

-3000

-4000

-

-5000

0

(b)

δ

Figure 12. (a) LDOS vs wavelength for clusters of different sizes: 17× 17 (blue curve), 19× 19
(green curve) and 21× 21 (red curve). (b) Plots of the frequency shift δω/γ0 vs wavelength (red
curve and left axis label) and LDOS γ/4γ0 vs wavelength (blue curve and right axis label) for a

square 21× 21 cluster.

From Fig. 13, which shows the variation of LDOS with wavelength for a
square cluster (red line) and a derived cluster with the four corner cylinders
removed, it is clear that the LDOS behaves in an analogous manner to the
frequency shift and is a very sensitive function of shape. The maximum value
of the LDOS decreases sharply, by an order of magnitude, from the maximum
value 4500 to a value below 500, while the resonance width also broadens as
we remove cylinders.

The strongly resonant behaviour that is exhibited by both the frequency shift
and the LDOS is determined by the structure of the poles of the scattering
operator S = (H + M)−1 that derives from the field identity (14). At the band
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Figure 13. LDOS as a function of wavelength near the band gap edge. The red curve is for a
21× 21 square cluster, while the blue curve is for a cluster derived from the former by removing the

four corner cylinders (see inset).

edge, the poles of the scattering matrix (i.e., points such that det(S) = 0) tend
to lie close to the real axis, thus generating a stronger response field that leads
to enhanced resonances. In Fig. 14(a) we plot the location of the poles in the
complex wavelength plane λ/d for clusters of sizes 17 × 17, 19 × 19, 21 × 21,
23 × 23 and 25 × 25. As the size of the cluster increases, we see that the
poles move towards the real axis, sharpening the features exhibited in both
the frequency shift and LDOS calculations. Note that for an infinite photonic
crystal, the pole will be located precisely on the real axis, and will correspond
to a mode of the periodic structure occurring in a band diagram.
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10

Im(λ/d)

λ/d

Figure 14. (a) The location of the poles in the complex λ/d plane for a clusters of sizes 17× 17,
19× 19 , 21× 21 , 23× 23, and 25× 25 from right to left; (b) spatial distribution of the logarithm

of modal intensity log10 |E|2 for the 21× 21 cluster.

In Fig. 14(b) we plot the spatial distribution of the mode intensity for a
21 × 21 cluster, corresponding to the third point from the left in Fig. 14(a).
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The intensity of this mode is maximal inside the cylinders and is associated
with the dielectric band mode of the corresponding infinite photonic crystal.
The quality factor of this mode can be estimated from the imaginary part of
the wavelength, which gives Q = λ′/(2λ′′) = 2.28 × 106, where λ = λ′ + iλ′′.
The high quality factor and the distribution of the mode implies that the mode
has a long lifetime and is thus capable of interacting strongly with the emitter,
giving rise to strong sharp features in both the frequency shift and LDOS.

4 Conclusion

We have calculated the radiation frequency shift and LDOS of a line source lo-
cated inside a two-dimensional photonic crystal composed of a finite cluster of
cylinders with infinite length and have found that both the frequency shift and
the LDOS are strongly enhanced at the edges of the band gap. The value of the
frequency shift can be either positive or negative and the magnitude of both
the frequency shift and the LDOS is a highly sensitive function of wavelength
and cluster shape. Both the LDOS and frequency shift increase strongly with
size for square and rectangular clusters. In fact, frequency shifts which are
four orders of magnitude higher than reported in cavity quantum electrody-
namics [16] are observed. Despite such strong enhancement, the measurement
of the frequency shift in the visible and near infrared may be experimentally
challenging, given that disorder and absorption are likely to adversely affect
the enhancement of the frequency shift. Furthermore, the spectral width of
the enhanced Lamb shift and LDOS can be very narrow and may not be easy
to locate. Microwave experimental verification of the predictions made here
would be valuable.

As argued earlier, the substantial radiation effects we have demonstrated
are caused by strong resonances arising from multiple reflections within square
and rectangular clusters. Given that these resonance are so narrow, it is not
surprising that apparent small changes to the geometry substantially degrade
the quality of the resonator. The extraordinary sensitivity of frequency shift
to cluster shape we have exhibited here warrants further investigation.

The computational approach that has been adopted here is also applicable
to 3D problems, and indeed, the extent to which the results of this 2D study
carry over into 3D will make for an interesting extension of this study.
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