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4 

Abstract— This paper presents an electroencephalography 
(EEG) based- classification of between pre- and post- mental 
load tasks for mental fatigue detection from 65 healthy 
participants. During the data collection, eye closed and eye 
open tasks were collected before and after conducting the 
mental load tasks. For the computational intelligence, the 
system uses the combination of principal component analysis 
(PCA) as the dimension reduction method of the original 26 
channels of EEG data, power spectral density (PSD) as feature 
extractor and Bayesian neural network (BNN) as classifier. 
After applying the PCA, the dimension of the data is reduced 
from 26 EEG channels in 6 principal components (PCs) with 
above 90% of information retained. Based on this reduced 
dimension of 6 PCs of data, during eyes open, the classification 
pre-task (alert) vs. post-task (fatigue) using Bayesian neural 
network resulted in sensitivity of 76.8 %, specificity of 75.1% 
and accuracy of 76%.  Also based on data from the 6 PCs, 
during eye closed, the classification between pre- and post- task 
resulted in a sensitivity of 76.1%, specificity of 74.5% and 
accuracy of 75.3%.  Further, the classification results of using 
only 6 PCs data are comparable to the result using the original 
26 EEG channels.  This finding will help in reducing the 
computational complexity of data analysis based on 26 channels 
of EEG for mental fatigue detection. 

 

I. INTRODUCTION 

Mental fatigue is associated with symptoms of mental 
tiredness, cognitive dysfunction and loss of motivation 
following engagement in a demanding task for a prolonged 
duration of time. As a result, mental fatigue impairs task 
performance, including skill deterioration and elevated 
anxiety. Mental fatigue is believe to be highly associated with 
accidents in the workplace [1]. Mental fatigue may also 
impact a person’s performance when using hands-free brain 
computer interfaces, requiring attention and concentration to 
perform mental tasks for significant period of time. 
Therefore, a tool for automatic mental fatigue detection is 
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needed that alerts the user of their fatigue status, and help to 
restore their attention and mental capacity [1, 2, 3]. 

Currently state, mental fatigue can be assessed by using 
either psychological or physiological measurement 
techniques. Psychological fatigue measurement methods are 
based on individual responses to psychometric 
questionnaires. This method will be cumbersome as practical 
countermeasure of mental fatigue, given subjective responses 
to the questionnaire most likely is done offline. Moreover 
psychological self-report of their fatigue result in a biased 
outcomes (e.g. purposely underestimating fatigue for liability 
reason). Physiological strategies of fatigue measurement 
include using video recordings for facial analysis, 
electrocardiography (ECG) for detecting heart rate activity or 
variability [4], electrooculography (EOG) and eye tracking 
devices for detecting eye activity and electroencephalography 
(EEG) for detecting brain activity [5]. This paper explores 
further the use of EEG as promising method for mental 
fatigue measurement, as EEG classification system can be 
used in online system and it measures neurophysiological  
rhythmic activity directly [3]. 

The basic block diagram of the classification EEG-based 
mental fatigue study comprises of the EEG data collection, 
signal pre-processing, feature extraction, and classification 
[6]. Normally in the EEG dataset comprises data derived 
from a certain number of EEG channels, reflecting the 
dimension of the dataset. The more EEG channels used 
increases the dataset dimension and this directly increases the 
computational complexity of performing further signal 
processing methods. This paper combines the use of the 
principal component analysis (PCA) for data dimensional 
reduction, power spectral density (PSD) as the feature 
extraction method and Bayesian neural networks (BNN) as 
the classification algorithm for classifying between pre-task 
(alert) and post-task (fatigue). PCA is used here to help 
transforming from a high dimensional EEG dataset to a low 
dimensional orthogonal feature set while still retaining the 
maximum information of the original high dimension dataset. 

II. METHODOLOGY 

A. Components of EEG-based Mental Fatigue Analysis 

The main components used in this study are shown in 
Fig.1. The process began with an experiment that induced 
mental fatigue in healthy participants, with the recorded data 
using EEG and continued by applying dimension reduction 
method using PCA method on the original dataset from 26 
EEG channels. After PCA, low dimension orthogonal 
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features were obtained. This is continued with a 
segmentation process and feature extraction using PSD, 
which is then classified using BNN. 

 
Figure 1.  Block diagram of EEG-based mental fatigue study 

B. Experiment of Data Collection for Mental Fatigue 

The mental fatigue experiment EEG dataset was obtained 
from a previous experimental study reported elsewhere [7] 
involving 65 healthy participants aged between 17 to 69 
years. Participants were assessed over a period 2-3 hours as 
they performed cognitively challenging mental tasks 
controlled laboratory condition. This research was approved 
by the Institutional Human Research Ethics Committee and 
conducted according to ethical research principles.  

The protocol of the experiment is divided into three 
sections: pre-task EEG measurement, mental work load task 
for inducing mental fatigue and post-task EEG 
measurement. First, participants were asked to open or close 
their eyes with duration of 30 seconds, and this data was 
used as pre-task (alert) dataset. Second, participants were 
asked to conduct a series of mental workload task with the 
duration of around 90 minutes designed to result in fatigue. 
The mental work load tasks included an auditory habituation 
task, an auditory oddball task, Stroop/go-no-go task, an eye 
tracking task, visual working memory tasks, an executive 
maze task and a pre-pulse inhibition task. Third, after 
completing the series of mental workload tasks, the EEG of 
the participants were again assessed when participants 
opened and closed their eyes for duration of 30 seconds 
each, and this data was used for post-task (fatigue) dataset. 
Mental fatigue was determined using a validated self-report 
questionnaire called IOWA Fatigue Scale, as well as EOG 
assessing eye blink measurement. The IOWA Fatigue Scale 
has been shown to be reliable tool for mental fatigue 
assessment [5]. Eye blink rates have also been shown to be a 
reliable assessment of increased when fatigue [5]. 

 
Figure 2.  The 26-EEG channels location and its raw data from this study  

For EEG measurement, the study used a Quick cap – 
Compumedics Neuroscan system with 26 EEG channels 

placed over the scalp using standardized position included 
[7]: FP1, FP2, F7, F3, Fz, F4, F8, FC3, FCz, FC4, T3, C3, 
Cz, C4, T4, CP3, CPz, CP4, T5, P3, Pz, P4, T6, O1, Oz, and 
O2 (F=frontal, C=central, P=parietal, T=temporal, 
O=occipital). The average EEG at mastoid locations A1 and 
A2 were used for reference. The impedance recording was 
kept below 5kOhm and the sampling rate was 500Hz. 

C. Principal Component Analysis (PCA) for dimensional 
reduction  

Here the PCA was used to reduce the high dimension of 
the 26 EEG channel data into a lower dimension involving 
an orthogonally linear transformation that convert the EEG 
data into new coordinate system or principal component 
(PCs) with the first principal component (PC) containing the 
greatest variance, the second PCs as the second greatest 
variance and so on [8, 9]. Given a set of N centered of raw 
EEG dataset, 
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where M denotes the number of EEG samples or 
participants, N denotes the number of input values or the 
number of EEG channels. The calculation of the covariance 
matrix (C) of PCA as follows: 

1

1 M
T

j j
j

C x x
M 

   (2)

where T
j jx x is a vector of N × N matrix. PCA needs to solve 

the eigenvector as follows:  
u Cu   (3)

where u denotes the eigenvectors of C and  denotes the 
eigenvalues. Based on the eigenvector (u), the principal 
components of st as the orthogonal transformation of xt can 
be calculated as follows: 

T
t ts u x  (4)

The principal components contain the maximum variance in 
the data defined by set of mutually orthogonal eigenvectors. 
These eigenvectors are ranked in a descending order of 
eigenvalues. By choosing only first few eigenvectors, PCA 
performs a dimension reduction from the high dimensional 
raw EEG dataset of EEG channels into low dimensional 
features containing only a few principal components. 

D. Features Extraction and Classification 

Before feature extraction, data from the process of PCA 
were segmented by applying a moving window of 2s with 
overlapped 1.5 seconds. The power spectral density (PSD) 
[6, 10] was applied to 2s of PCs segments to convert the 
data segment into frequency domains. EEG bands used for 
the features include delta band from 0.5Hz to 3Hz, theta 
band from 3.5Hz to 7.5Hz, alpha band from 8Hz to 13Hz 
and beta band from 13.5Hz to 30Hz. The total PSD value of 
each EEG band was used with the calculation based on the 
trapezoidal rule of numerical integration. 



  

For the classification algorithm, Bayesian neural networks 
(BNN) was used [6, 11, 12]. BNN is a non-linear 
classification method able to handle the general 
classification problem of overfitting. The probability 
distribution of the network parameters is considered in 
Bayesian learning to provide the best generalization of the 
network. The BNN structure uses a 3-layers (input, hidden 
and output layers) feed-forward structure as follows: 
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where f(.) is based on the hyperbolic tangent of transfer 
functions, m is the input nodes number, l is the hidden nodes 
number, p is the number of outputs, wji is the weight to the 
hidden unit yj from input unit xi, wkj denotes the weights to 
output (zk) from hidden unit (yj), bj and bk are the biases. In 
the BNN framework, the weights of the network are based 
on minimizing the cost function as follows: 
 ( ) ( ) ( )D WF w E w E w    (6)

where F(w) is the cost function,    and   are hyper-

parameters with the ratio /   controlling the effective 

complexity of the network structure. The use of the hyper-
parameters in the cost function can prevent the network 
trapped in poor generalization. As result, for BNN training, 
a validation set is not needed. For updating the 
hyperparameters, the Bayesian regulation method is used as 
follows: 
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where Ew refers to the sum square of weight function, Ew 
refers to the error function,  refers the effective number of 
parameters, N refers the total errors number, and wMP refers 
to the minimum point. At the final stage, the network 
structure of the highest log evidence value is chosen as the 
best optimal structure of the BNN. For the performance 
classification indicators, the sensitivity, specificity and 
accuracy are reported in this study. 

III. RESULTS 

Initially, the collected EEG dataset for the pre-task 
(alert)comprised of matrix with dimension of 26×15000×65 
(number of EEG channels × 30 seconds of data point with 
frequency of 500Hz × number of participants) for eyes 
closed and another 26×15000×65 matrices for eyes open. 
The same amounts were applied to the post-task (fatigue). 
These matrices were fed into the PCA process. The PCA 
produces eigenvectors and eigenvalues. 

The variances captured for the corresponding PCs were 
calculated as well. An eigenvalues scree plot is shown in 
Fig. 3 as a plot of percent variance captured versus number 
of principal components. It can be seen that that with 3 PCs, 
it already covers more than 80% of the variance of the 
original 26 EEG channels data. More detailed information of 

the percentage of the total variance from each and 
cumulative PCs is given in Table 1. The contribution of 10 
PCs was shown in the descending order from the top to 
bottom. The 1st PCs contributed the highest data variance of 
60.3% while the 10th PC contributed only 0.8%. For 
cumulative PCs contribution, the combination of three PCs 
already contributed a percentage data variance of 82.6%. 
This study applied a threshold of 90% of PCs to be used for 
further processing, in this case, up to 6 PCs were needed 
resulting in a total variance explained of 90.7%. The 6 PCs 
are the chosen component to generate the orthogonal 
transformation of the original 26 EEG channel. 
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Figure 3.  Scree plot of the pricipal components (PCs) 

TABLE I.  PERCENTAGE OF TOTAL VARIABILITY FROM EACH AND 
CUMULATIVE  PRINCIPAL COMPONENTS (PCS) 

PCs number % variance from 
individual PCs 

% variance from 
cumulative PCs

1st PC 60.3% 60.3% 

2nd PC 14.4% 74.7% 

3rd PC 7.8% 82.6% 

4th PC 3.8% 86.4% 

5th PC 2.3% 88.7% 

6th PC 2.0% 90.7% 

7th PC 1.5% 92.2% 

8th PC 1.3% 93.6% 

9th PC 0.9% 94.5% 

10th PC 0.8% 95.3% 

After applying the PCA, the original high dimension of 
the EEG dataset was reduced from 26×15000×65 (number 
of channels × duration of data × number of participant)   into 
a low dimension of 6×15000×65 (number of PCs × duration 
of the data × number of participants. Such a reduced dataset 
dimension results in a lower computational complexity. 

Next, the dataset was fed into a moving window 
segmentation of 2s window with overlapping 1.5s for the 
30s eyes open and eyes closed datasets of pre-task (alert) 
and post-task (fatigue) data group from the 65 participants. 
This provided 57 overlapping segments from each 
participant, or 3705 segments from the 65 participants. As a 
result, for the eyes open data, 3705 units for alert state and 
another 3705 units for a fatigue state were obtained. The 
dimension of the dataset after the segmentation is 6 × 3705 
for the alert state and another 6 × 3705 for the fatigue state. 
The same dataset dimension was obtained for the eyes 
closed dataset. The PSD was used next to convert 2s 
segments into a frequency domain and a total PSD of 4 EEG 
band (delta, theta, alpha and beta) was calculated. With the 6 



  

PCs this resulted in dimension of 24× 3705 for each alert 
and fatigue stage. For comparison, classification for the 
features from original 26 EEG channels without the use of 
PCA was also reported. The original 26 EEG data with 
dimension of 26×15000×65 were fed to segmentation and 
features extraction (PSD)  processes which resulted features 
with dimension of 104  × 3705 (26 channels by 4 EEG 
bands × 2s windows segments). 

For the BNN classifier training, the dataset was divided 
into half portions to act as a training set and another half 
portions for the testing set. The log evidence of BNN 
plotting for optimum structure of the network (log evidence 
against optimum hidden nodes number is shown in Fig. 4. 
The optimum number of hidden nodes for classification 
fatigue vs. alert was 16 for eyes closed and 14 for eyes open. 
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Figure 4.  Log evidence from the BNN classifier training  

TABLE II.  THE RESULT OF PCA-BNN FOR FATIGUE VS. ALERT 
CLASSIFICATION AND COMPARISON WITH NO PCA USED  

PCA/ Non-PCA used 
Eyes 

Closed/Opened 
Sensitivity Specificity Accuracy

 PCA (only 6 PCs) Eye Opened  76.8% 75.1% 76% 

No PCA (32 channels) Eye Opened 83.3% 68.2% 75.7% 

PCA (only 6 PCs) Eye Closed 76.1% 74.5% 75.3% 

No PCA (32 channels) Eye Closed 79% 71.5.2% 75.2% 

The classification result tabulated in Table 2 reveal two 
groups: during eyes open and during eyes closed of fatigue 
vs. alert classification. During eyes open fatigue vs. alert 
classification, the PCA-BNN resulted in a sensitivity of 
76.8%, a specificity of 75.1% and an accuracy of 76%, 
while the original 26 EEG channels (without PCA) resulted 
in a sensitivity of 83.3%, a specificity of 68.2% and an 
accuracy of 75.7%. During eyes closed fatigue vs. alert 
classification, the PCA-BNN resulted in a sensitivity of 
76.1%, a specificity of 74.5% and an accuracy of 75.3%, 
while the original 26 EEG channels (without PCA) resulted 
in a sensitivity of 79%, a specificity of 71.5% and an 
accuracy of 75.2%. From this classification result, the PCA 
reduced the dimension of the dataset successfully for both 
eyes closed and eyes open data, and furthermore, resulting 
in a comparable accuracy to the dataset without the use of 
PCA. Moreover, this classification validates the use of the 
PCA-BNN for pre-task as fatigue data vs. post task (alert) 
classification with an accuracy around 75%, which involved 
of series eight mental load tasks. This also validates the 

series eight mental tasks for successfully inducing mental 
fatigue during the experiment. 

IV. CONCLUSION 

In this study, PCA was successfully applied for dimension 
reduction from an original 26 EEG channels of dataset into 6 
principal components which still retained its information of 
above 90% from the original data. Feature extraction based 
PSD was applied and BNN used for classification between 
the fatigue and alert states with the dimension of 24× 3705. 
For comparison, the features of PSD were extracted from the 
original 26 EEG channels without the PCA method with 
dimension of 104 × 3705. Data also collected during eyes 
opened and closed validated fatigue status. The results 
suggest that PCA-BNN provides a comparable result in term 
of accuracy to dataset from original 26 EEG channels 
(without PCA) for classifying fatigue vs. alert states during 
eyes opened and closed periods. This demonstrates the 
capability of PCA in terms of dimension reduction which 
contributes to reducing computational complexity, a 
valuable findings if such an approach were to be used in real 
time monitoring of fatigue. The results also validate the use 
of the series mental work load in this study for inducing 
mental fatigue with classification accuracy around 75% (pre-
task/fatigue vs. post-task/alert). 
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