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Abstract 

Currently, the occurrence and fate of antibiotics in the aquatic environment has 

become a very serious problem in that they can potentially and irreversibly damage 

the ecosystem and human health. For this reason, interest has increased in developing 

strategies to remove antibiotics from water. This study evaluated the performance of 

powdered activated carbon (PAC) in removing from water 6 representative groups of 

28 antibiotics, namely Tetracylines (TCs), Macrolides (MCs), Chloramphenicols 

(CPs), Penicillins (PNs), Sulfonamides (SAs) and Quinolones (QNs). Results indicate 

that PAC demonstrated superior adsorption capacity for all selected antibiotics. The 

removal efficiency was up to 99.9% in deionized water and 99.6% in surface water at 

the optimum conditions with PAC dosage of 20 mg/L and contact time of 120 minutes. 

According to the Freundlich model’s adsorption isotherm, the values of n varied 



among these antibiotics and most were less than 1, suggesting that the adsorption of 

antibiotics onto PAC was nonlinear. Adsorption of antibiotics followed well the 

pseudo-second-order kinetic model (R2 = 0.99). Analysis using the Weber-Morris 

model revealed that the intra-particle diffusion was not the only rate-controlling step. 

Overall, the findings in this study confirm that PAC is a feasible and viable option for 

removing antibiotics from water in terms of water quality improvement and urgent 

antibiotics pollution control. Further research is essential on the following subjects: (i) 

removing more types of antibiotics by PAC; (ii) the adsorption process; and (iii) the 

mechanism of the competitive adsorption existing between natural organic matters 

(NOMs) and antibiotics. 

Keywords: antibiotics, adsorption, powdered activated carbon, kinetics, water 

treatment 

 

1 Introduction  

In recent years, the occurrence and impacts of antibiotics in the aquatic environment 

have led to grave concerns about their ecological safety and health impacts given that 

the demand for high quality drinking water is increasing. Many studies have reported 

that a variety of antibiotics are present in wastewater effluents (Brown et al., 2006; 

Watkinson et al., 2007; Li et al., 2013; Golovko et al., 2014), surface and groundwater 

(Watkinson et al., 2009; Chen and Zhou, 2014; Jiang et al., 2014), some of which 

have even been detected in water treatment plants and drinking water supplies 

throughout the world (Ye et al., 2007; Yiruhan et al., 2010). The antibiotics of 

sulfamethoxazole, trimethoprim, and ofloxacin were detected at concentrations 

ranging from 110 to 470 ng/L in treated effluent at a large wastewater treatment plant 

(WWTP) in Albuquerque - New Mexico (Brown et al., 2006). At a WWTP in 

Brisbane (Australia), antibiotics (ciprofloxacin, sulphamethoxazole, lincomycin and 

trimethoprim) were detected in both influents and effluents with 100% frequency. Of 

the detected antibiotics, the concentration of ciprofloxacin was highest in influent and 

effluent with the mean value of 0.6 mg/L and 0.6μg/L, respectively (Watkinson et al., 



2007). Watkinson et al. (2009) also observed that the macrolide, quinolone and 

sulphonamide antibiotics were most prevalent in WWTP effluents with the 

concentration up to a maximum of 3.4 μg/L. Li et al. (2013) investigated the 

occurrences of 22 antibiotics in a wastewater reclamation plant in Beijing (China).  

They discovered that quinolones were the dominant antibiotics with 4916 ng/L in 

influents and 1869 ng/L in secondary effluents. In the study by Golovko et al. (2014), 

the target compounds of 10 antibiotics were investigated in a WWTP. Specifically, 

these were norfloxacin, levofloxacin, ciprofloxacin, azithromycin, erythromycin, 

clarithromycin, trimethoprim, sulfapyridine, sulfamethoxazole, and sulfasalazine. The 

maximum concentrations of 10 antibiotics varied from 0.069 μg/L to 3.09 μg/L in 

wastewater treatment plant (WWTP)’s influents and from 0.018 μg /L to 2.31μg/L in 

WWTP’s effluents.  

 

According to the study results of Watkinson et al. (2009), the antibiotics of macrolide, 

quinolone and sulphonamide were detected with the detection frequency of 15% - 83% 

in the low ng/L range up to 2 μg/L in the surface waters of six investigated rivers. In 

addition, the mean concentrations of oxytetracycline was up to 13640.9 ng/L in 

surface water and 8325.8 ng/L in groundwater from the Wangyang River (China), 

having a detection frequency of 100% (Jiang et al., 2014). In the Huangpu River, 

sulfonamides indicated the highest concentrations of 34-859 ng/L in water samples 

(Chen and Zhou, 2014). 

 

In drinking waters, some antibiotics including sulfamethoxazole (3.0-3.4 ng/L), 

macrolides (1.4-4.9 ng/L), and quinolones (1.2-4.0 ng/L) were detected by Ye et al. 

(2007). Four fluoroquinolone antibiotics (norfloxacin, ciprofloxacin, lomefloxacin, 

and enrofloxacin) were detected in tap water at high rates in Guangzhou (77.5%) and 

Macao (100%), ranging respectively from 1.0 to 679.7 ng/L and 2.0 ng/L to 37.0 ng/L 

(Yiruhan et al., 2010).  

 



Although the concentrations of antibiotics in the aquatic environment were generally 

low (μg/L or ng/L level), their impact on ecosystem function and potential to 

endanger people’s health cannot be neglected (Constanzo et al., 2005, Ahmed et al., 

2015). Since antibiotics are being increasingly detected in the aquatic environment, 

finding efficient and effective approaches to remove them from water supplies is 

critical. Normally, antibiotics cannot be effectively removed (only 5%) using 

conventional water treatment processes, for example coagulation, flocculation, 

sedimentation and filtration (Adams et al., 2002). However, they can be removed 

using oxidation processes such as chlorination and ozonation. Despite free chlorine, 

chlorine dioxide and ozone could effectively remove some antibiotics such as 

sulfonamides, macrolides, carbadox, and trimethoprim from surface water (>90%), 

while the formation of certain oxidation by-products and their activity and toxicity  

still require more research (Adams et al., 2002; Westerhoff et al., 2005). Regarding 

membrane filtration, only nanofiltration (NF) and reverse osmosis (RO) can reject 

antibiotics (Snyder et al., 2007; Nghiem et al., 2005; Radjenovic et al., 2008). For 

instance, the concentration of trimethoprim decreased from 265 ng/L to 25 ng/L after 

RO treatment (Snyder et al., 2007). Sulfamethoxazole can be rejected by NF 

membrane with the mean value of 21 ng/L in groundwater dropping to below 2 ng/L 

in permeate of NF. Nevertheless, the rejection of antibiotics by NF and RO depends 

on the physico-chemical properties and characteristics of the membranes (Nghiem et 

al., 2005; Radjenovic et al., 2008).  

 

Adsorption is another viable method for treating antibiotics. Both powdered activated 

carbon (PAC) and granular activated carbon (GAC) have been used to remove the 

selected antibiotics from water (Adams et al., 2002; Kim et al., 2010; Genç and 

Dogan, 2015). Based on the findings of Adams et al. (2002), the percentage removed 

was more than 90% for the antibiotics (carbadox, sulfachlorpyridazine, 

sulfadimethoxine, sulfamerazine, sulfamethazine, sulfathiazole and trimethoprim) 

with a PAC dosage of 50 mg/L in deionized water. Genç and Dogan (2015) found 



PAC (0.0125 g in 50 mL) removed 87% ciprofloxacin at an initial concentration of 20 

mg/L at 22 °C, while GAC of 2g/L can remove more than 90% trimethoprim with an 

initial concentration of 50 mg/L (Kim et al., 2010). 

 

Rivera-Utrilla et al. (2009) investigated the removal of nitroimidazole antibiotics by 

adsorption on activated carbon (AC), and their results showed AC could eliminate 

nitroimidazoles efficiently from surface and groundwater (e.g. the adsorption capacity 

ranging from 1.04 mmol/gAC to 2.04 mmol/gAC). Carabineiro et al. (2012) compared 

the adsorption capacity of ciprofloxacin using three types of carbon-based materials 

(AC, carbon nanotubes and carbon xerogel). They found that the maximum 

adsorption capacity of AC (230 mg/gAC
−1) was much higher than the other two 

materials (112 and 135 mg/gAC
−1for carbon xerogel and carbon nanotubes, 

respectively). The removal of fluoroquinolones antibiotics such as ciprofloxacin and 

norfloxacin was also investigated by adsorption on microporous AC, and results 

indicated that maximum removal percentages of more than 96% were achieved 

(Ahmed et al., 2014)  

 

Despite the types and concentrations of antibiotics in the aquatic environment vary 

from place to place, the levels of some antibiotics in the surface water are very high 

with concentration up to 150 μg/L being documented in the US (Kolpin et al., 2002). 

As reviewed by Lapworth et al. (2012), maximum concentrations for the most 

commonly detected antibiotics in groundwater were reported over the 40-104 ng/L 

range. A recent study by Ngumba et al. (2016) showed that the maximum 

concentration in the river waters (Kenya) of three antibiotics (sulfamethoxazole, 

trimethoprim, ciprofloxacin) was 13,800 ng/L. Therefore it is important to investigate 

the occurrence of antibiotics in water sources in a certain region to: firstly, control 

antibiotics pollution; and secondly, treat water. Recently, Li et al. (2014) discovered 

that 28 selected antibiotics were prevalent in four water reservoirs in North China 

with the highest concentration of 73.66 ng/L (florfenicol).  



 

To date, although some evaluation studies on the removal of antibiotics using AC and 

other absorbents (e.g. zeolite, aluminum oxide, mesoporous silica spheres etc.) were 

carried out, only a limited number of antibiotics were involved in the investigations 

(Adams et al., 2002; Braschi et al., 2010; Chen and Huang, 2010; Xu et al., 2011; Gao 

et al., 2012; Zhang et al., 2013; Wu et al., 2013; Martucci et al., 2013; Martins et al., 

2015). Moreover, the adsorption kinetic is essential to determine the rate of adsorption, 

especially for designing a water treatment plant. Nonetheless, only in recent times 

have a few studies on adsorption of antibiotics on AC focused on this problem (Kim 

et al., 2010; Méndez-Díaz et al., 2010; Rivera-Utrilla et al., 2013; Genç and Dogan, 

2015). Hence, this study aimed to quantify the adsorptive capacity and adsorption 

rates of 28 selected antibiotics using PAC. The experimental data were also 

interpreted with kinetic and isotherms models so that the antibiotic adsorption onto 

PAC could be better understood. 

 

2 Materials and Methods 

2.1 Chemicals and Materials 

The 28 selected antibiotics used can be divided into 6 groups, including 4 Tetracylines 

(TCs), 4 Macrolides (MCs), 3 Chloramphenicols (CPs), 1 Penicillins (PNs), 13 

Sulfonamides (SAs), 3 Quinolones (QNs) (Table 1). Physico-chemical properties of 

antibiotics are listed in Table 1. Oxytetracycline, Thiamphenicol, and Kitasamycin 

were obtained from the Institute of Biomedical Research (China), while 

Chloramphenicol and Sulfapyridine derived from the Institute of Metrology (China). 

Others were purchased from J&K Scientific (China). All the compounds were at least 

reagent grade (>95% purity).  

 



The PAC used in this study was obtained from Shanxi Xinhua Active Carbon Factory 

(China) with an average pore size of 3.03 nm, specific surface area of 852.94 m2/g, 

iodine adsorption value of 903 mg/L, methylene blue adsorption of 142 mg/L and 

particle size of 200 mesh (75 μm) (more than 95% passing). Firstly, the PAC was 

washed with deionized water and then dried at 105C for 2 hours and cooled to room 

temperature (25±1C) in the dryer. A slurry of PAC (1000 mg/L) was prepared using 

deionized water and stored at 4C, and mixed by ultrasonic oscillation for 30 min 

prior to use. The 0.45 μm glass microfiber filters (Millipore, USA), were soaked for 

over 2 hours in 200 mL deionized water, and then kept at 4C in the refrigerator.  

 

Table 1 Physico-chemical properties of 28 antibiotics used in the study 

Group Compound Acronym 
Molecular 

mass 
LogKow

a pKaa 

Tetracylines (TCs) Oxytetracycline OTC 460.45 -0.9 3.27 

Tetracycline TC 444.43 -1.30 3.3 

Chlortetracycline CTC 478.88 -0.62 3.3 

Doxycycline DXC 444.44 -0.02 n/ab 

Macrolides (MCs) Erythromycin ETM 733.92 3.06 8.88 

Roxithromycin RTM 837.05 2.75 n/ab 

Kitasamycin KIT 785.98 3.077 n/ab 

Spiramycin SPI 843.05 1.456 n/ab 

Chloramphenicols (CPs) Thiamphenicol TAP 356.22 -0.33 n/ab 

 Florfenicol FF 358.21 n/ab n/ab 

 Chloramphenicol CAP 323.13 1.14 n/ab 

Penicillins (PNs) Penicillin G PNG 373.49 1.83 n/ab 

Sulfonamides (SAs) Sulfadiazine SDZ 250.28 -0.09 6.5c 

 Sulfamerazine SMR 264.30 0.14 8.0c 

 Sulfamethazine STZ 278.33 0.89 7.59 

 Sulfameter ST 280.30 0.41 n/ab 

 Sulfamonomethoxine SMMX 280.30 0.7 7.2c 

 Sulfamethizole STL 270.33 0.54 5.5c 

 Sulfamethoxazole STX 253.27 0.89 8.8c 

 Sulfamethoxypyridazine STPD 302.28 n/ab n/ab 

 Sulfachlorpyridazine SCPD 284.73 0.31 5.5c 

 Sulfacetamide STM 214.24 -0.96 7.59 

 Sulfapyridine SPD 249.29 0.35 8.43 

 Sulfadimethoxine SDMX 310.33 1.63 5.9c 

 Sulfaguanidine SPGD 214.24 -1.22 11.25 



Quinolones (QNs) Oxolinic acid OLA 261.23 0.94 6.87 

 Nalidixic acid NDA 232.23 1.59 8.6 

 Flumequine FMQ 261.25 1.6 n/ab 

LogKow: Octanol/water partition coefficient. 

pKa: Acidic equilibrium constant. 
a Values obtained from U.S. National Library of Medicine: http://toxnet.nlm.nih.gov/. 
b Not available. 
c Values obtained from Li et al., 2014. 

2.2 Sampling and Sample Preparation 

The surface water (pH=7.1±0.1) was directly collected from Yixingbu Station in 

Tianjin Xinkaihe Water Treatment Plant, China. The sampling water was the mixture 

of 28 antibiotics spiked into the surface water, and the initial concentration of each 

antibiotic in all adsorption experiments was 5000 ng/L.  

 

Following collection, the water samples were filtered through 0.45 μm glass 

microfiber filters. Sample volumes of 500 mL were adjusted to pH 2.0-3.0 and to 

them was added 0.5 g disodium ethylenediamine tetraacetate (Na2EDTA). The target 

antibiotics were then concentrated through a solid phase extraction (SPE) with Oasis 

HLB cartridges (6 mL/500 mg, Waters, USA) and a 12 position vacuum manifold 

(HSE-12D). After that, antibiotics were eluted in a test tube by three 4 mL methanol 

and evaporated under nitrogen sparge. Finally, the sample was reconstituted to a final 

volume of 1 mL with 10% methanol (v/v) and transferred to an amber autosampler 

vial for LC-MS/MS analysis. Detailed information is documented in our previous 

study (Li et al., 2014). All adsorption experiments were conducted at room 

temperature (25±1C). 

2.3 Analytical Methods 

The LC system was an ACQUITY Ultra Performance liquid chromatography (UPLC) 

(Waters, Milford, USA). An ACQUITY BEH C18 (2.1 mm×50 mm i.d., 1.7 μm, 

Waters, USA) chromatograph column was employed and operated at 24℃. The 



injection volume was 10 μL. Acetonitrile (phase A), ultrapure water with 0.1% (v/v) 

formic acid (phase B1) and ultrapure water (phase B2) were served as mobile phases 

at flow-rate of 0.3 mL/min. The set-up of the gradient programs of the UPLC is 

shown in Tables S1 and S2. 

The mass spectrometer was a Quattro Premier XE (Waters, USA) equipped with an 

electrospray ionization (ESI) source. The antibiotics were ionized in positive ion 

mode except for thiamphenicol, florfenicol and chloramphenicol which used a 

negative ion mode. Both positive and negative ions were acquired in the multiple 

reactions monitoring (MRM) mode. The temperature of the heated capillary was 

350℃, and the source voltage was 2.8 kV. High purity nitrogen was used as the 

desolvation gas and the cone gas at the flow rates of 600 L/h and 75 L/h, respectively. 

High purity argon was utilized as the collision gas with the collision cell pressure 

being 5×10-3 mbar. The potential of the entrance and exit of the collision cell were set 

at 0 V and 1 V, respectively. Target antibiotics were identified based on the precursor 

ion and the two most intensive product ions, together with the retention time (Table 

S3). Details on this have been documented elsewhere (Li et al., 2014). 

2.4 Quantification and Quality Control 

A calibration curve was generated across a wide range of concentrations (1.5-500ng/L) 

with the correlation coefficients greater than 0.99. The limits of quantifications (LOQs) 

were determined as signal-to-noise ratio of 10 ranging from 0.1 to 1.0 ng/L. Recovery 

experiments with spiked samples of surface water from sampling sites were 

performed to determine the method’s precision and accuracy. The range of recoveries 

was from 67.58% to 133.30%, and the relative standard deviation (RSD) values 

ranged from 0.60% to 12.29% (in Table S4).  

2.5 Adsorption equilibrium  

The PAC of 5, 10, 15, 20, 30 and 50 mg/L was added to six 600 mL water samples in 

1L Erlenmeyer flasks respectively. Thereafter, the samples were continuously stirred 



in the magnetic stirrer (HJ-6D, China) at speed 300 rpm. After 48-hour agitation, the 

samples were collected by vacuum filtration for analysis. 

The adsorption capacity qt (ng/mg) at time t (min) was computed using the following 

equation: 
 

M

VCC
q e

t


 0                                                              (1)                  

where, C0 (ng/L) is the initial concentration of the antibiotics, Ce (ng/L) is the residual 

antibiotic concentration, V (L) is the volume and M (mg) is the weight of PAC. 

The antibiotics adsorptive removal efficiency  (%) was calculated as follows: 

%100
0

0 



C

CC e
                                                  (2) 

The Freundlich model was applied to evaluate the adsorption isotherms (Kim et al, 

2014): 

                                                         (3) 

where, qe (ng/mg) is the adsorption capacities at equilibrium, KF (ng1-nL-nmg-1) and n 

constitutes the Freundlich adsorption parameters. 

 

2.6 Adsorption kinetics 

For adsorption kinetics, six 600 mL water samples in 1L Erlenmeyer flask water with 

PAC dosage of 20mg/L were stirred continuously at 25C. Water samples were 

collected at 10, 20, 30, 60, 120, 180 min from six flasks for analysis, respectively. 

 

As the 28 selected antibiotics studied in the research belong to different types, their 

adsorption to PAC may reveal different removal rates. To analyze the adsorption data 

further, the adsorption kinetics models, such as pseudo-first order model (Eq. (4)) (Ho, 

2004, 2006), pseudo-second-order model (Eq. (5)) (Ho and McKay, 1998) and 

Elovich model (Eq. (6)) (Ho, 2006; Aroua et al., 2008), were chosen to evaluate and 

explain the adsorption kinetics. In this paper, moreover, the rate-controlling step of the 

adsorption process was investigated with the intra-particle diffusion model (Weber 



and Morris, 1962) (Eq. (7)). 

  t
k

qqq ete 303.2
loglog 1                                            (4) 

where, qt (ng/mg) is the adsorption capacity at time t (min), k1 (min-1) is the rate 

constant of pseudo-first-order adsorption.  

t
qqkq

t

eet

11
2

2


 
and 2

2 eqkh                                          (5) 

where, h (ng/mg min) is the initial adsorption rate, and k2
 
(mg/ng min) is the pseudo 

second-order rate constant of adsorption. 

   tqt ln
1

ln
1





                                                       (6) 

where, a is the initial adsorption rate (ng/mg min) and β(mg/ng) is the desorption 

constant. 

CtKq d  21
t                                                       (7) 

where, Kd ( ng/mg min1/2) is the intra-particle diffusion rate constant and values of C 

provide a clue concerning thickness of the boundary layer. 

 

2.7 Effect of natural organic matters on PAC adsorption 

The adsorption experiments were conducted using both surface water and deionized 

water to investigate the effect of natural organic matters (NOMs) on removal of 

antibiotic. The concentrations of turbidity and DOC in surface water were 2.52±0.92 

NTU and 2.98±1.09 mg/L, respectively. The PAC was added at a dosage of 20 mg/L 

and the solutions were mixed for 120 min prior to sampling. Sample analysis was 

conducted as described for the adsorption equilibrium and kinetics experiments. The 

adsorption experiments were conducted in triplicate. 

 

3 Results and discussion 

3.1 Adsorption equilibrium 



The removal efficiencies of 28 antibiotics at different dosages in surface water are 

shown in Table 2 with the standard deviation being less than 5%. Results indicated 

that removals of the antibiotics were enhanced by increasing PAC dosage; 

subsequently the removal efficiency rose from 70% to 100%. However, the removal 

efficiencies differed slightly when PAC dosage varied from 20 mg/L to 50 mg/L. 

Although higher PAC dosage could result in more of the antibiotics being removed, it 

also increased the cost of water treatment. Therefore, 20 mg/L of PAC was selected as 

the optimal dosage in this study for removing antibiotics from water with the 

adsorption capacity being greater than 220 ng/mg.  
 

Table 2 

Removal efficiency of 28 antibiotics at different dosages of PAC 

Group Compound 

Removal efficiency at different dosages (%) 

5mg/L 10mg/L 15mg/L 20mg/L 30mg/L 50mg/L 

TCs OTC 85.4  94.7  95.9  98.3  98.9  99.0  

TC 89.6  96.4  97.9  99.2  99.3  99.4  

CTC 94.9  97.9  99.1  99.7  99.8  99.8  

DXC 89.6  96.8  97.4  98.9  99.2  99.3  

MCs ETM 92.3  93.3  95.4  96.5  97.5  97.5  

RTM 85.1  88.5  92.3  95.9  95.9  97.0  

KIT 90.4  93.5  97.8  99.8  99.9  100.0 

SPI 87.5  93.7  97.4  99.9  100.0 100.0  

CPs TAP 92.6  95.9  97.1  99.4  99.4  99.7  

FF 88.1  93.8  97.3  99.2  99.6  100.0  

CAP 88.9  93.3  95.6  98.8  99.4  99.8  

PNs PNG 76.3  86.4  91.3  96.8  99.4  99.5  

SAs SDZ 75.9  80.8  84.9  91.1  93.9  96.8  

SMR 80.4  83.9  88.1  92.8  96.4  96.9  

STZ 76.9  84.6 88.1  95.4  96.9  98.6  

ST 74.6  82.4  86.8  95.2  98.3  98.8  

SMMX 76.9  82.6  87.5  93.9  96.2  96.7  

STL 73.2  78.4  84.2  90.2  93.7  94.7  

STX 72.9  76.0  81.5  88.0  90.8  92.1  

STPD 82.6  90.7  93.1  98.2  99.2  99.3  



SCPD 75.6  81.5  88.3 94.9  96.8  98.9  

STM 76.5  80.1  84.3  89.9  91.0  92.0  

SPD 81.0  88.2  93.6  97.8  98.8  99.0  

SDMX 78.8  82.3  87.6  92.2  96.8  97.7  

SPGD 80.7  89.5  93.6  97.5  98.9  99.1  

QNs OLA 93.4  98.5  99.1  99.9  100.0  100.0 

NDA 72.5  88.1  90.8  98.6  99.5  99.9  

FMQ 82.1  93.4  96.9  99.6  100.0  100.0 

 

The parameters of the Freundlich model are given in Table S5. The Freundlich model 

was fitted to the adsorption data with R2 > 0.9, and could reasonably describe the 

adsorption of antibiotics onto PAC. According to the results of the adsorption 

isotherm, most values of n were less than 1, which suggests the adsorption of 

antibiotics onto PAC was nonlinear and heterogeneous. The values of n obtained 

varied from the different antibiotics, possibly because the moieties of the adsorbate 

molecule influencing the adsorption of different antibiotics onto PAC (Kim et al, 

2014). 
 

3.2 Adsorption kinetics 

Previous studies have reported that hydrolysis of most studied antibiotics either does 

not occur or has a half-life of more than 16 hours under typical environmental 

conditions (pH=6.0-8.5; temperature = 20-25C) ( Loftin et al., 2008; Białk-Bielin´ska 

et al., 2012). Consequently, these 28 antibiotics remained hydrolytically stable under 

current experimental conditions and could mainly be removed by PAC adsorption. Fig. 

1 depicts the removal percentage changes of antibiotics with contact time. Results 

showed that the concentrations of 28 selected antibiotics decreased rapidly during the 

first 10 min, and more than 70% of each antibiotic was removed. Afterwards, the 

adsorption rate fell while the concentration of antibiotics decreased slowly. 

Correspondingly, the adsorption capacity was up to 249 ng/mg and 250 ng/mg at 120 

min and 180 min, respectively. From 120 to 180 min, the residual concentrations of 

antibiotics did not change except that the removals of SMR, STL, STX and SDMX 



were slightly better at 180 min. Therefore, the results suggested that 120 min was 

suitable contact time for the antibiotic adsorption to PAC. 

 

 

a. Removal efficiency of OTC, TC, CTC, DXC, ETM, RTM, KIT and SPI 

 

b. Removal efficiency of TAP, FF, CAP, OLA, NDA and FMQ 
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c. Removal efficiency of SDZ, SMR, STZ, ST, SMMX, STL and STX 

 

 

d. Removal efficiency of STPD, SCPD, STM, SPD, SDMX, SPGD and PNG 

Fig.1. Removal efficiency of 28 selected antibiotics versus contact time at PAC 

dosage of 20mg/L 

 

All kinetic parameters and correlation coefficients R2
 are summarized in Table S6. As 

can be seen from Table S6, the values of R2
 were very low based on the pseudo- 

first-order model and the experimental qe values differed greatly from the 

corresponding values derived from the equation. Hence, the adsorption of antibiotics 

onto PAC did not follow the pseudo-first-order model, which suggested that the 
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external diffusion was not the determining step in the adsorption process. Conversely, 

the adsorption kinetics data fitted well with both the pseudo-second-order and Elovich 

models according to R2 values. Moreover, the second-order model indicated 

significantly higher R2 values (0.9989-0.9999), as well as better consistency of the 

experimental and theoretical qe values when compared to the pseudo-first-order and 

Elovich models. Thus, the antibiotics adsorption can be simulated more appropriately 

by the pseudo-second-order kinetic model, which indicated that chemisorption 

controlled the adsorption (Aroua et al., 2008). Additionally, although the Elovich 

model is an empirical equation and does predict any definite mechanism, it is useful 

in describing adsorption rate and the concentration changes. As the Elovich constant 

 can represent the initial rate of adsorption, MCs and CPs demonstrated higher initial 

adsorption (up to 87% and 89%, respectively) than other groups of antibiotics at the 

beginning of the kinetic experiments due to their higher  values. The rate-controlling 

step affecting the kinetics of adsorption was analyzed by the intra-particle diffusion 

model (Weber-Morris). Generally, the adsorption process includes three steps: the 

external surface adsorption; the gradual equilibrium stage with intra-particle diffusion 

dominating; and a final equilibrium stage with the intra-particle diffusion starting to 

slow down. If the plot qt compared with t1/2 has a zero intercept (C=0), the 

intra-particle diffusion is an important controlling factor in determining the kinetics of 

the process (Rauthula and Srivastava, 2005; Aroua et al., 2008). According to Table 

S6, obtained high C values varying from 182.38 to 229.86 suggested the intra-particle 

diffusion was not the predominant mechanism. Therefore, both external and 

intra-particle diffusion controlled the adsorption process of antibiotics onto PAC. 

 

3.3 Performance of PAC adsorption under two water scenarios  

The results of the PAC adsorption experiments showed that the percentage removals 

of 28 selected antibiotics ranged from 96.5 to 99.9% and 86.8 to 99.6% in deionized 

water and surface water, respectively (Table 3). Under the surface water scenario, to a 

small extend the removal efficiency declined. This could be explained by the NOMs 



in surface water competing for adsorption sites (direct site competition) and/or 

hindered diffusion of the antibiotics into carbon pores (pore blockage/constriction) 

(Ando et al., 2010), which reduced the antibiotics’ adsorption capacity.  

 

Furthermore, the removal of SAs decreased more than other antibiotics, which 

indicated NOMs in surface water exerted a greater influence on the removal of SAs. 

NOMs consist of a mixture of humic substances, polysaccharides, aminosugars, 

proteins, peptides, lipids, small hydrophilic acids, and others (Matsui et al., 2012). 

The humic substances are the main fractions of NOMs in natural surface water which 

consist of three major functional groups, these being carboxyl, methoxyl and phenolic 

hydroxyl, whereas all SAs possess amino and sulfonamide groups (Bajpai et al., 

2000). It is probable that the carboxyl group of NOM interacted with the SAs amino 

group which in turn affected the adsorption of SAs onto PAC. However, the 

adsorption competition mechanisms between NOM and antibiotics are complex and 

need further research. Overall, PAC could adsorb more than 217 ng/mg for the six 

groups of 28 selected antibiotics under deionized and surface water scenario at a PAC 

dosage of 20 mg/L and 120 min. 

 

Table 3 

The removal efficiency of 28 antibiotics by PAC in deionized water and surface water  

Group Compound 
Removal efficiency（%） 

deionized water surface water 

TCs OTC 99.8 97.6 

TC 99.9 99.0 

CTC 99.9 99.5 

DXC 99.9 98.5 

MCs ETM 99.8 96.3 

RTM 99.9 95.1 

KIT 99.9 99.6 

SPI 99.8 91.7 

CPs TAP 98.9 98.4 

FF 99.2 98.5 

CAP 99.2 98.4 

PNs PNG 99.9 96.2 



SAs SDZ 99.6 97.5 

SMR 99.7 90.6 

STZ 99.8 94.6 

ST 99.9 95.5 

SMMX 99.9 93.6 

STL 99.8 90.8 

STX 99.8 86.8 

STPD 99.9 97.2 

SCPD 99.9 93.2 

STM 98.0 87.0 

SPD 99.8 96.8 

SDMX 99.9 89.3 

SPGD 96.5 96.9 

QNs OLA 99.9 99.4 

NDA 99.7 98.4 

FMQ 99.9 98.7 

 

3.4 Comparisons of the antibiotics’ adsorption performance 

In this study, PAC exhibited a high adsorption capacity for 28 selected antibiotics. 

Based on the literature, the adsorption performance of various adsorbents was 

compared for these 28 antibiotics (Table 4). It can be seen that PAC has a high 

removal efficiency ranging from 65 to 100 % at a dosage of 20 mg/L and more than 

90% at a dosage of 50 mg/L, respectively. Furthermore, some other adsorbents such 

as zeolite, mesoporous silica spheres, aluminum oxide and graphene oxide have been 

used to remove the antibiotics, and demonstrated different levels of removal 

efficiency. For example, Braschi et al. (2010) reported that zeolite had the maximal 

adsorption capacity of approximately 15.1% zeolite dry weight for SCPD removal. 

The rattle-type magnetic mesoporous silica spheres exhibited the adsorption capacity 

of 0.034 mmol/g and 0.079 mmol/g for STZ and TC, respectively (Xu et al., 2011). 

Aluminum oxide could remove 43% TC while graphene oxide could reject more than 

71.4% TC and OTC from water (Chen and Huang, 2010; Gao et al., 2012). However, 

since these adsorbents were only employed to remove single or binary antibiotics, the 

feasibility of them removing other groups of antibiotics has not yet been confirmed, 

and more research is needed. Furthermore, considering the antibiotic types, the 



adsorbents’ dosages and experimental conditions, although it is difficult to make a fair 

evaluation through the data shown in Table 4, PAC can function as a good adsorbent 

for removing antibiotics without toxically active products compared to other 

absorbents, for example aluminum oxide (Chen et al., 2010; Rivera-Utrilla et al., 

2013). 



Table 4 

The removal efficiency or adsorption capacity of antibiotics with various adsorbents 
Antibiotics Absorbent Water type Adsorbent dosage  Removal efficiency or adsorption 

capacity (qe) 

Reference 

SCPD 

 

 

PAC Surface water 10, 20, and 50 mg/L 10 mg/L: 49 - 73%  

20 mg/L: 65 - 100% 

50 mg/L: > 90%  

Adams et al. (2002) 

A highly dealuminated faujasite 

zeolite (Y) (200 SiO2/Al2O3 ratio) 

Water a zeolite: antibiotic solution ratio of 

1mg: 2mL. 

>90% Braschi et al. (2010) 

A high silica mordenite  Distilled water Mordenite added with a zeolite: 

antibiotic solution ratio of 1 mg: 2 mL. 

Maximal adsorption capacity of about 

15.1% zeolite dry weight 

Martucci et al. (2013) 

PAC Surface water 20 mg/L 93.2%, qe: 235 ng/mg This work 

STX PAC Natural water 5 mg/L  About 35% Snyder et al. (2007) 

Carbon nanotubes Distilled water 40 mg/L qe: 62.8 mg/g Tian et al. (2013) 

Waste based carbon Ultrapure water 2.0 g/L qe > 110 mg/g Calisto et al. (2015) 

PAC Surface water 20 mg/L 86.8% This work 

SPD Carbon nanotubes Distilled water 40 mg/L qe: 82.4 mg/g Tian et al. (2013) 

PAC Surface water 20 mg/L 96.8% This work 

STZ PAC Surface water 10, 20, and 50 mg/L 10 mg/L: 49 - 73%  

20 mg/L: 65 - 100% 

50 mg/L: > 90% 

Adams et al. (2002) 

A highly dealuminated faujasite 

zeolite (Y) (200 SiO2/Al2O3 ratio) 

Water a zeolite: antibiotic solution ratio of 

1mg: 2mL 

>90% Braschi et al. (2010) 

rattle-type magnetic mesoporous 

silica spheres 

Deionized 

Ultrapure water 

0.002 g -Fe2O3/mSiO2 spheres qe: 0.0342 mmol/g  Xu et al. (2011) 



     

PAC Surface water 20 mg/L 94.6%, qe: 238 ng/mg This work 

TC Aluminum oxide Water 0.8-3.5g/ L of Al2O3 43%  Chen and Huang (2010) 

Rattle-type magnetic mesoporous 

silica spheres 

Deionized 

ultrapure water 

0.002 g -Fe2O3/mSiO2 spheres qe: 0.0791 mmol/g Xu et al. (2011) 

Graphene oxide (GO) Water 0.544 mg/mL GO stock solution > 71.4%, the ideal maximum adsorption 

capacity of 313 mg/g 

Gao et al. (2012) 

BSA/Fe3O4 microspheres Ultrapure water BSA/Fe3O4 microspheres (200 mg) 

added into 100 mL of solution 

92.07% Zhang  et al. (2013) 

Carbon nanoparticles made from 

vine woo 

Distilled water  0.4 g/L 74-88% Pouretedal and Sadegh 

(2014) 

NaOH-activated carbon Distilled water  25mg/50mL 70-100% Martins et al. (2015) 

PAC Surface water 20 mg/L 99.0%, qe: 247 ng/mg.\ This work 

OTC Aluminum oxide Water 0.8–3.5g/Lof Al2O3 43-57%  Chen et al. (2010) 

Graphene oxide Water 0.544 mg/mL GO stock solution >71.4%, the ideal maximum adsorption 

capacity of 212 mg/g 

Gao et al. (2012) 

PAC Surface water 20 mg/L 97.6%, qe: 244 ng/mg This work 

NDA Montmorillonite (SAz-1) and 

kaolinite  (KGa-1b) 

Deionized water 0.1 g of clay and 20.0 mL of NDA 

solution 

qe: 1.11 and 0.9 mg/g, respectively Wu et al. (2013) 

PAC Surface water 20 mg/L 98.4%, qe: 246 ng/mg This work 

SDMX PAC Surface water 10, 20, and 50 mg/L 10 mg/L: 49 - 73% 

20 mg/L: 65 - 100% 

50 mg/L: > 90%  

Adams et al. (2002) 

PAC Surface water 20 mg/L 89.3%, qe: 233 ng/mg This work 

SMR PAC Surface water 10, 20, and 50 mg/L 10 mg/L: 49 - 73%  

20 mg/L: 65 - 100% 

Adams et al. (2002) 



50 mg/L: > 90% 

PAC Surface water 20 mg/L 90.6%, qe: 235 ng/mg This work 

ETM BSA/Fe3O4 microspheres Ultrapure water BSA/Fe3O4 microspheres (200 mg) 

added into 100 mL of solution 

98.98% Zhang et al. (2013) 

PAC Surface water 20 mg/L 96.3%, qe: 238 ng/mg This work 

CAP BSA/Fe3O4 microspheres Ultrapure water BSA/Fe3O4 microspheres (200 mg) 

added into 100 mL of solution 

96.4% Zhang et al. (2013) 

PAC Surface water 20 mg/L 98.4%, qe: 246 ng/mg This work 

PNG Carbon nanoparticles made from 

vine woo 

Distilled water  0.4 g/L 74-88% Pouretedal and Sadegh 

(2014) 

PAC Surface water 20 mg/L 96.2%, qe: 246 ng/mg This work 

 



4 Conclusions 

This study investigated the removal of six groups of antibiotics (TCs, MCs, CPs, PNs, 

SAs, QNs) using PAC. The specific findings are as follows:  

 PAC exhibited the high adsorption capacity for all selected antibiotics and 

these antibiotics were effectively removed from water.  

 Based on the adsorption isotherms, the adsorption of antibiotics onto PAC was 

nonlinear and heterogeneous. 

 NOMs in surface water exerted greater influence on the removal of SAs than 

others. 

 The kinetics data suggested the adsorption process was governed by the 

pseudo-second-order reaction.  

 It was observed that both the external surface adsorption and intra-particle 

diffusion were controlling factors in the antibiotic adsorption onto PAC.  

It can be conclusively stated that PAC is an efficient and promising adsorbent for 

removing antibiotics from water.  
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