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1 Introduction

In financial modeling it is typically the case that, in practice, not all quantities
which determine the dynamics of security prices can be fully observed. Some of
the factors that characterize the evolution of the market are hidden. For instance,
correlations between driving Wiener processes often change quite randomly after
certain periods of time. An example is the correlation between the fluctuations of
specific and general market risk, see Platen & Stahl (2003). However, these unob-
served factors, correctly calibrated, are essential to reflect the market dynamics
that one empirically observes in a financial market model. This leads naturally
to a stochastic filtering problem. Given the available information, filter methods
can be used to determine the distribution, called the filter distribution, of the
unobserved factors. This distribution allows one to compute the expectations
of quantities that are dependent on unobserved factors, thereby enabling one to
determine such quantities as derivative prices, optimal portfolio strategies and
risk measures.

There is a growing literature in the area of filtering in finance. To mention
a few recent publications, let us list Elliott & van der Hoek (1997), Fischer,
Platen & Runggaldier (1999), Elliott, Fischer & Platen (1999), Fischer & Platen
(1999), Landen (2000), Gombani & Runggaldier (2001), Frey & Runggaldier
(1999, 2001), Elliott & Platen (2001), Bhar, Chiarella & Runggaldier (2002, 2004)
and Chiarella, Pasquali & Runggaldier (2001). These papers provide examples
where filter methods have been applied to dynamic asset allocation, interest rate
term structure calibration, risk premia estimation, volatility estimation and hedg-
ing under partial observation.

A key problem that arises in most filtering applications in finance is the iden-
tification of a suitable pricing measure. Results often depend significantly on
the assumptions made in choosing such a measure. Furthermore, it has been
demonstrated in Heath & Platen (2002b), Platen (2004b) and Breymann, Kelly
& Platen (2004) that any realistic parsimonious financial market model is unlikely
to have an equivalent risk neutral martingale measure. Moreover, in filtering it
is obvious that one has to deal with the real world probability measure in or-
der to extract estimates for the hidden factors from observations. It is therefore
very important to explore methods based purely on the real world probability
measure which allow for consistent filtering under partial information. Applica-
tions for such techniques include derivative pricing, portfolio optimization and
risk measurement among others.

In this paper we extend the benchmark approach proposed in Platen (2002, 2004a,
2004b) to filtering. There, as here, the benchmark or numeraire is chosen to be the
growth optimal portfolio (GOP). This extends work by Long (1990) and Bajeux-
Besnainou & Portait (1997) to the general case where no equivalent risk neutral
measure exists. The proposed setup is rich enough to accommodate jump diffu-
sion financial market models with hidden factors. We therefore provide results
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for the case of partial information in an incomplete market framework.

The GOP has the economic interpretation of being the portfolio that maximizes
expected logarithmic utility. It is highly relevant in portfolio optimization, see
Korn & Schäl (1999), but also for derivative pricing, as we will see below. By using
the GOP as numeraire or benchmark under a given information structure, one
naturally obtains a fair derivative price system, where benchmarked derivative
prices are martingales. This means that benchmarked derivative prices equal their
expected future benchmarked values. The delicate interaction between measures
and various information structures is avoided that has to be dealt with if a risk
neutral methodology is applied.

In the special case of a complete market with an equivalent risk neutral martin-
gale measure, it will be shown that fair prices coincide with risk neutral prices.
Furthermore, for an incomplete market with a minimal equivalent martingale
measure in the sense of Föllmer & Schweizer (1991), it will turn out that prices
arising from the use of this measure coincide with fair prices obtained under
the benchmark approach. For incomplete jump diffusion markets under partial
observation, a much wider range of models is covered in this paper than under
traditional approaches.

It will be shown that all portfolios, when expressed in units of the GOP, turn
out to be local martingales with respect to the given real world measure and
under partial information. The above mentioned difficulties that result from
measure transformations under various information structures cannot arise under
the proposed fair pricing and major risk management tasks, such as hedging,
portfolio optimization and risk measurement, can be performed consistently under
the real world measure. Moreover, in cases where no equivalent risk neutral
measure exists, the benchmark approach overcomes restrictions arising from the
risk neutral methodology, such as those described in Delbaen & Schachermayer
(1995, 1998), for instance.

The paper is structured in the following way. Section 2 summarizes the gen-
eral filtering methodology for multi-factor jump diffusion models under partial
observation. Section 3 describes the proposed filtered benchmark model. The
fair pricing of derivatives is then studied in Section 4. This section also quanti-
fies the reduction of variance for derivative prices when additional information is
available. Hedging under partial observation is subject of Section 5.
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2 Filtered Multi-Factor Models

2.1 Factor Model

To build a financial market model with a sufficiently rich structure and high com-
putational tractability we introduce a multi-factor model. We also aim to cover
market dynamics for which an equivalent risk neutral martingale measure does
not exist. This is important for practical reasons, since it has been highlighted
in Platen (2004d) that any realistic stock market model is unlikely to have an
equivalent risk neutral martingale measure. Detailed analysis of intraday data,
such as performed by Breymann, Kelly & Platen (2004), reveals that there exist
natural parameter processes that are only indirectly observable. The correla-
tion processes between the Wiener processes which drive different factors provide
a typical example of such hidden quantities. These correlations are extremely
important for fund management and derivative pricing.

We consider a multi-factor model with n ≥ 2 factors, which constitute the vector
process

z =
{

zt =
(
z1

t , . . . , z
n
t

)>
, t ∈ [0, T ]

}
, (2.1)

where T is a fixed time horizon. We assume that not all of the factors are
observed. More precisely, only the first k factors are directly observed, while the
remaining n − k are not. Later on the unobserved factors will be treated with
filtering methods. We refer to k as the degree of available information. Here k is
an integer with 1 ≤ k < n. We will assume that its value is fixed for most of this
paper. However, in Section 4.3 we discuss the implications of a varying k, that
is, of a varying degree of information.

For fixed k we consider the following subvectors of zt:

yt = (y1
t , . . . , y

k
t )> = (z1

t , . . . , z
k
t )> and xt = (x1

t , . . . , x
n−k
t )> = (zk+1

t , . . . , zn
t )>,
(2.2)

with yt representing the observed factors and xt the unobserved factors. To be
specific, we assume that yt includes the observed security prices as components.
These are given by d + 1 primary security account processes S(0), S(1), . . . , S(d),
d ∈ {1, 2, . . . , k − 1}. We set yj+1

t = S
(j)
t for j ∈ {0, 1, . . . , d} and t ∈ [0, T ]. We

assume that a primary security account holds only units of one security and that
the income or payments accrued from holding this security are always capitalized.
In the case of shares, this models the usual ownership of productive units. We
consider S(0) = {S(0)

t , t ∈ [0, T ]} to be the savings account process, where S
(0)
t =

exp{∫ t

0
rs ds}. This means that we consider the short rate rt to be observable.

Furthermore, the dynamics of yj
t for j ∈ {1, 2, . . . , d + 1} are assumed to be such

that these observed quantities always remain nonnegative. Note that the market
can be incomplete.

The following setup is relatively complex because we aim to provide a general
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framework covering Markovian jump diffusion market models with hidden factors
driven by a finite number of Wiener and Poisson processes. Assume the existence
of a filtered probability space (Ω,AT ,A, P ), where A = (At)t∈[0,T ] is a filtration to
which all the processes considered are adapted. We assume that the observed and
unobserved factors satisfy the system of stochastic differential equations (SDEs)

dxt = at(zt) dt + bt(zt) dwt + gt−(zt−) dmt

dyt = At(zt) dt + Bt(yt) dvt + Gt−(yt−) dNt

(2.3)

for t ∈ [0, T ], with given vector of initial values z0 = (y1
0, . . . , y

k
0 , x

1
0, . . . , x

n−k
0 )>.

Here
w =

{
wt =

(
w1

t , . . . , w
k
t , w

k+1
t , . . . , wn

t

)>
, t ∈ [0, T ]

}
(2.4)

is an n-dimensional (A, P )-Wiener process and

vt =
(
w1

t , . . . , w
k
t

)>
(2.5)

is the subvector of its first k components. The process m = {mt = (m1
t , . . . , m

k
t ,

mk+1
t , . . . ,mn

t )>, t ∈ [0, T ]} is an n-dimensional (A, P )-jump martingale de-
fined as follows. Consider n counting processes N1, . . . , Nn with no common
jumps. These are characterized by the corresponding vector of intensities λt(zt) =
(λ1

t (zt), . . . , λ
n
t (zt))

>, where
λi

t(zt) = λ̃i
t(yt) (2.6)

for t ∈ [0, T ] and i ∈ {1, 2, . . . , k}. This means that we assume, without loss of
generality, that the jump intensities of the first k counting processes are observed.
The ith (A, P )-jump martingale is then defined by the stochastic differential

dmi
t = dN i

t − λi
t(zt−) dt (2.7)

for t ∈ [0, T ] and i ∈ {1, 2, . . . , n}. In (2.3)

Nt =
(
N1

t , . . . , Nk
t

)>
(2.8)

denotes the vector of the first k counting processes at time t ∈ [0, T ]. Concerning
the coefficients in the SDE (2.3), we assume that the vectors at(zt), At(zt), λt(zt)
and the matrices bt(zt), Bt(yt), gt(zt) and Gt(yt) are such that a unique strong
solution of (2.3), which does not explode until time T , exists, see Protter (1990).

As mentioned before, the components y1
t , . . . , y

d+1
t are assumed to be nonnegative

for all t ∈ [0, T ]. We shall also assume that the k × k-matrix Bt(yt) is invertible
for all t ∈ [0, T ]. We assume further that At(zt) and Bt(yt) in (2.3) are such that

∫ T

0

E (|At(zt)|) dt < ∞ and

∫ T

0

∣∣Bt(yt) Bt(yt)
>∣∣ dt < ∞ (2.9)

P -a.s. Finally, gt(zt) may be any bounded function and the k × k-matrix Gt(yt)
is assumed to be an invertible matrix valued function of yt for each t ∈ [0, T ].
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The latter assumption implies that, since there are no common jumps among
the components of Nt, by observing a jump of yt we can establish which of the
processes N i, i ∈ {1, 2, . . . , k}, has jumped.

In addition to the filtration A, which represents complete information, we will
also consider the subfiltration

Ãk = (Ãk
t )t∈[0,T ] ⊆ A, (2.10)

where Ãk
t = σ{ys = (z1

s , . . . , z
k
s )>, s ≤ t} represents the observed information up

to time t ∈ [0, T ]. Thus Ãk provides the structure of the information actually
available in the market.

We shall be interested in the conditional distribution of xt given Ãk
t , which we call,

in accordance with standard terminology, the filter distribution at time t ∈ [0, T ].
There exist general filter equations for the dynamics described by the SDEs given
in (2.3), see Liptser & Shiryaev (1977). It turns out in our case that these filter
equations are SDEs which govern the conditional expectations, with respect to
Ãk

t , of integrable functions of the unobserved factors xt. Notice, in particular,
that exp{ıν xt} is, for given ν ∈ <n−k and with ı denoting the imaginary unit,
a bounded and thus integrable function of xt. Its conditional expectation with
respect to Ãk

t is the conditional characteristic function of the distribution of xt

given Ãk
t . This completely characterizes the entire filter distribution. Considering

conditional expectations of integrable functions of xt is thus not too restrictive
for the identification of filter distributions.

The general case of filter equations is beyond the scope of this paper. These
are, for instance, considered in Liptser & Shiryaev (1977). To keep the filter
reasonably tractable we assume that the SDEs given in (2.3) are such that the
corresponding filter distributions admit a representation of the form

Fzk+1
t ,...,zn

t

(
z1, . . . , zn−k

∣∣ ζ1
t , . . . , ζ

q
t

)
= P

(
zk+1

t ≤ z1, . . . , z
n
t ≤ zn−k

∣∣ Ãk
t

)
(2.11)

for all (z1, . . . , zn−k)
> ∈ <n−k and t ∈ [0, T ]. This means that we have a finite-

dimensional filter, characterized by the filter state process

ζ =
{

ζt =
(
ζ1
t , . . . , ζ

q
t

)>
, t ∈ [0, T ]

}
, (2.12)

which is an Ãk-adapted process with a certain finite dimension q ≥ 1. We shall
denote by z̃k

t the resulting (k + q)-vector of observables

z̃k
t =

(
y1

t , . . . , y
k
t , ζ

1
t , . . . , ζ

q
t

)>
, (2.13)

which consists of the k observed factors and the q components of the filter state
process. Furthermore, we assume that the filter state ζt satisfies an SDE of the
form

dζt = Ct(z̃
k
t ) dt + Dt−(z̃k

t−) dyt (2.14)
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for t ∈ [0, T ], with Ct(·) denoting a q-vector valued function and Dt(·) a (q× k)-
matrix valued function.

There are various models of the type (2.3) that admit a finite-dimensional filter
with ζt subject to an equation of the form (2.14). In the following two subsections
we recall two classical such models. These are the conditionally Gaussian model,
which leads to a generalized Kalman filter and the finite-state jump model for x,
which is related to hidden Markov chain filters. Various combinations of these
models have finite-dimensional filters and can be readily applied in finance, as
demonstrated in the literature mentioned in the introduction.

Example 2.1 : Conditionally Gaussian Filter Model

Assume in the system of SDEs (2.3) that the functions at(·) and At(·) are linear
in the factors, that bt(zt) = bt is deterministic and that gt(zt) = Gt(yt) = 0.
This means that (2.3) takes the form

dxt =
[
a0

t + a1
t xt + a2

t yt

]
dt + bt dwt

dyt =
[
A0

t + A1
t xt + A2

t yt

]
dt + Bt(yt) dvt

(2.15)

for t ∈ [0, T ], with given deterministic initial values x0 and y0. Here a0
t and A0

t

are column vectors of dimensions (n − k) and k, respectively, and a1
t , a2

t , bt,
A1

t , A2
t and Bt(yt) are matrices with appropriate dimensions. Recall that w is

an n-dimensional (A, P )-Wiener process and that v is the vector of its first k
components.

In this case the filter distribution is a Gaussian distribution with vector mean
µt = (µ1

t , . . . , µ
n−k
t )>, where

µi
t = E

(
xi

t

∣∣ Ãk
t

)
(2.16)

for t ∈ [0, T ]. Its covariance matrix is ct = [c`,i
t ]`,i∈{1,2,...,n−k}, where

c`,i
t = E

((
x`

t − µ`
t

) (
xi

t − µi
t

) ∣∣ Ãk
t

)
(2.17)

for t ∈ [0, T ]. The dependence of µt and ct on k is, for simplicity, suppressed
in our notation. The above filter can be obtained from a generalization of the
well-known Kalman filter, see Liptser & Shiryaev (1977), whose filter distribution
is characterized by

dµt =
[
a0

t + a1
t µt + a2

t yt

]
dt +

[
b̄t Bt(yt)

> + ct (A1
t )
>]

(Bt(yt) Bt(yt)
>)−1

· [
dyt −

(
A0

t + A1
t µt + A2

t yt

)
dt

]
(2.18)

dct =
(
a1

t ct + ct (a1
t )
> + (bt b

>
t )

− [
b̄t Bt(yt)

> + ct (A1
t )
>] (

Bt(yt) Bt(yt)
>)−1 [

b̄t Bt(yt)
> + ct (A1

t )
>]>)

dt,
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where b̄t is the (k × k)-upper left block of bt, t ∈ [0, T ]. We recall that Bt(yt) is
assumed to be invertible.

Notice that the computation of ct is contingent upon the knowledge of the coeffi-
cients in the second equation of (2.18). These coefficients are given deterministic
functions of time, except for Bt(yt), which also depends on observed factors. Al-
though ct is defined as a conditional expectation for t ∈ [0, T ], it follows from
(2.18) that if Bt(yt) does not depend on the observable factors yt, then ct can be
computed off-line. In general, the value of Bt(yt) becomes known only at time
t. However, this is sufficient to determine the solution of (2.18) at time t. The
model (2.15) is in fact of the type of a conditionally Gaussian filter model, where
the filter-state process ζ is given by the vector process µ = {µt, t ∈ [0, T ]} and
the upper triangular array of elements of the matrix process c = {ct, t ∈ [0, T ]}.
The dimension of the filter-state process is then q = (n − k) [3+(n−k)]

2
. Note by

(2.17) that the matrix ct is symmetric. Obviously, in the case when Bt(yt) does
not depend on yt, we have a Gaussian filter model.

Example 2.2 : Finite-State Jump Model

Here we assume that the unobserved factors form a continuous time, (n − k)-
dimensional jump process x = {xt = (x1

t , . . . , x
n−k
t )>, t ∈ [0, T ]}, which can take

a finite number M of values. More precisely, given an appropriate time t and zt-
dependent matrix gt(zt) and an intensity vector λt(zt) = (λ1

t (zt), . . . , λ
n
t (zt))

>
for

the vector counting process N̄ = {N̄t = (N1
t , . . . , Nn

t )>, t ∈ [0, T ]}, we consider
the particular case of the model equations (2.3), where in the xt-dynamics at(zt) =
gt(zt)λt(zt) and bt(zt) = 0. Thus, by (2.3) and (2.7) we have

dxt = gt−(zt−) dN̄t (2.19)

for t ∈ [0, T ]. Notice that the process x of unobserved factors is a pure jump
process and is therefore piecewise constant. On the other hand, we assume that
the vector yt satisfies the second equation in (2.3) with Gt(yt) = 0. This means
that the process of observed factors y is only perturbed by continuous noise and
does not jump.

In this example, the filter distribution is completely characterized by the vector of
conditional probabilities pt = (p1

t , . . . , p
M
t )>, where M is the number of possible

states η1, . . . , ηM of the vector xt and

pj
t = P

(
xt = ηj

∣∣ Ãk
t

)
(2.20)

for t ∈ [0, T ] and j ∈ {1, 2, . . . , M}. Let āi,j
t (y, ηh) denote the transition kernel

for x to jump from state i to state j, given that yt = y and xt = ηh at time t, see
Liptser & Shiryaev (1977). The components of the vector pt satisfy the following
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dynamics

dpj
t =

(
ãt(yt, pt)

> pt

)j
dt + pj

t

[
At(yt, η

j)− Ãt(yt, pt)
] (

Bt(yt) Bt(yt)
>)−1

·
[
dyt − Ãt(yt, pt) dt

]
, (2.21)

where

(
ãt(yt, pt)

> pt

)j
=

M∑
i=1

(
M∑

h=1

āi,j
t (yt, η

h) ph
t

)
pi

t

At(yt, η
j) = At(yt, xt)

∣∣
xt=ηj (2.22)

Ãt(yt, pt) =
M∑

j=1

At(yt, η
j) pj

t

for t ∈ [0, T ] and j ∈ {1, 2, . . . ,M}. The filter state process ζ = {ζt = (ζ1
t . . . , ζq

t )
>,

t ∈ [0, T ]} for the finite state jump model is thus given by the vector process
p = {pt = (p1

t , . . . , p
q
t )
>, t ∈ [0, T ]} with q = M − 1. Since the probabilities add

up to one, we need only M − 1 probabilities to characterize the filter.

2.2 Markovian Representation

As in the two previous examples, in general, we have to deal in our filter setup
with the quantity E(At(zt) | Ãk

t ), assuming that it exists. This is the conditional
expectation, with respect to the filter distribution at time t for the unobserved
factors, of the coefficient At(zt) = At(y

1
t , . . . , y

k
t , x

1
t , . . . , x

n−k
t ) that appears in

(2.3). Since the filter is characterized by the filter state process ζ, we obtain the
representation

Ãt(z̃
k
t ) = E

(
At(zt)

∣∣ Ãk
t

)
(2.23)

for this conditional expectation, where the vector z̃k
t is as defined in (2.13). Note

in our financial market context that we deal with conditional expectations under
the real world probability measure. This is an essential observation for under-
standing the theoretical and practical benefits of the benchmark approach that
we pursue later on.

Notice that, in the case of the conditionally Gaussian model in Example 2.1, the
expression Ãt(z̃

k
t ) takes the particular form

Ãt(z̃
k
t ) = A0

t + A1
t µt + A2

t yt. (2.24)

Furthermore, for the finite-state jump model of Example 2.2, Ãt(z̃
k
t ) can be rep-

resented as

Ãt(z̃
k
t ) = Ãt(yt, pt) =

M∑
j=1

At(yt, η
j) pj

t (2.25)
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for t ∈ [0, T ], see (2.22).

In Appendix A we prove the following generalization of Theorem 7.12 in Liptser
& Shiryaev (1977), which provides an important representation of the SDE for
the observed factors.

Proposition 2.3 Let At(zt) and the invertible matrix Bt(yt) in (2.3) satisfy
(2.9). Then there exists a k-dimensional Ãk-adapted Wiener process ṽ = {ṽt, t ∈
[0, T ]}, such that the process y = {yt, t ∈ [0, T ]} of observed factors in (2.3)
satisfies the SDE

dyt = Ãt(z̃
k
t ) dt + Bt(yt) dṽt + Gt−(yt−) dNt, (2.26)

with Ãt(z̃
k
t ) as in (2.23).

Instead of the original factors zt = (y1
t , . . . , y

k
t , x

1
t , . . . , x

n−k
t )> = (z1

t , . . . , z
n
t )>,

where xt = (x1
t , . . . , x

n−k
t )> is unobserved, we may now base our analysis on the

components of the vector z̃k
t = (y1

t , . . . , y
k
t , ζ

1
t , . . . , ζ

q
t )
>, see (2.13), which are all

observed. Just as was the case with z = {zt, t ∈ [0, T ]}, the vector process
z̃k = {z̃k

t , t ∈ [0, T ]} also has Markovian dynamics. In fact, substituting (2.26)
into (2.14), we obtain

dζt =
[
Ct(z̃

k
t ) + Dt(z̃

k
t ) Ãt(z̃

k
t )

]
dt + Dt(z̃

k
t ) Bt(yt) dṽt + Dt−(z̃k

t−) Gt−(yt−) dNt

= C̃t(z̃
k
t ) dt + D̃t(z̃

k
t ) dṽt + G̃t−(z̃k

t−) dNt, (2.27)

where the vector C̃t(z̃
k
t ) and the matrices D̃t(z̃

k
t ) and G̃t(z̃

k
t ) have been defined

implicitly for compact notation.

From equations (2.26) and (2.27) we immediately obtain the following result,
which indicates that the process z̃k = {z̃k

t , t ∈ [0, T ]} is Markovian.

Corollary 2.4 The dynamics of the vector z̃k
t = (yt, ζt)

> can be expressed by
the system of SDEs

dyt = Ãt(z̃
k
t ) dt + Bt(yt) dṽt + Gt−(yt−) dNt

dζt = C̃t(z̃
k
t ) dt + D̃t(z̃

k
t ) dṽt + G̃t−(z̃k

t−) dNt.
(2.28)

Due to the existence of Markovian filter dynamics, our original Markovian factor
model, given by (2.3), can be projected onto a Markovian model which features
only observed quantities. Here the driving observable noise ṽ is an (Ãk, P )-
Wiener process and the observable counting process N is generated by the first
k components N1, N2, . . . , Nk of the n counting processes.
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For efficient notation, we express the system of SDEs for the vector of observables
z̃k

t = z̄t = (z̄1
t , z̄

2
t , . . . , z̄k+q

t )> as

dz̄`
t = α`(t, z̄1

t , z̄
2
t , . . . , z̄

k+q
t ) dt +

k∑
r=1

β`,r(t, z̄1
t , z̄

2
t , . . . , z̄

k+q
t ) dṽr

t

+
k∑

r=1

γ`,r
(
t−, z̄1

t−, z̄2
t−, . . . , z̄k+q

t−
)

dN r
t (2.29)

for t ∈ [0, T ] and ` ∈ {1, 2, . . . , k + q}. The functions α`, β`,r and γ`,r follow
directly from Ã, B, G, C̃, D̃ and G̃, appearing in (2.28). As an immediate
consequence of the Markovianity of z̃k = z̄, as well as property (2.11), we obtain
the following result.

Corollary 2.5 Suppose for t ∈ [0, T ] that E(u(t, zt) | Ãk
t ) < ∞ for a given

function u : [0, T ] × <n → < and k ∈ {1, 2, . . . , n − 1}. This Expectation can
then be expressed as

E
(
u(t, zt)

∣∣ Ãk
t

)
= ũk(t, z̃k

t ) = ũk(t, z̄t) (2.30)

for a suitable function ũk : [0, T ]×<k+q → <.

Relation (2.30) in Corollary 2.5 is of significant practical importance, in particu-
lar, for contingent claim pricing, as we shall see later on.

3 Benchmark Model

3.1 Primary Security Accounts and Portfolios

Recall from Section 2.1 that in our Markovian jump-diffusion market model with
observable and hidden factors we have d + 1 primary security account processes
S(0), . . . , S(d), d < k, all of which are observable. This means that the vector
process S = {St = (S

(0)
t , . . . , S

(d)
t )>, t ∈ [0, T ]} is Ãk-adapted. In Section 2.1 we

set
yj

t = z̄j
t = S

(j−1)
t

for j ∈ {1, 2, . . . , d + 1} and t ∈ [0, T ].

Since the d + 1 primary security account processes coincide with the observable
factors y1, . . . , yd+1, we can write their dynamics in a form corresponding to (2.29).
To this effect, by analogy to (2.7), let

dm̃i
t =

1√
λ̃i

t−(z̄t−)

(
dN i

t − λ̃i
t−(z̄t−) dt

)
(3.1)

11



for i ∈ {1, 2, . . . , k} be the normalized compensated ith (Ãk, P )-jump martingale
relative to the filtration Ãk. Here, with some abuse of notation, we have denoted
by λ̃i

t(z̄t) the compensating jump intensity for N i with respect to Ãk. For sim-
plicity of notation, in what follows we shall often use z̄t for z̃k

t , see (2.29). Let us
now rewrite (2.29) more concisely in vector form as

dz̄t = ᾱ(t, z̄t) dt + β(t, z̄t) dṽt + γ(t−, z̄t−)

√
λ̃t−(z̄t−) dm̃t (3.2)

with

ᾱ(t, z̄t) = α(t, z̄t) + γ(t−, z̄t−)

√
λ̃t−(z̄t−), (3.3)

where m̃t = (m̃1
t , . . . , m̃

k
t )
> and

√
λ̃t =

(√
λ̃1

t , . . . ,

√
λ̃k

t

)>
. Here α(t, z̄t) is a

(k + q)-column vector and β(t, z̄t) as well as γ(t, z̄t) are ((k + q)× k)-matrices.

Since we have assumed that the number d of risky securities is strictly less than
the degree k of available information, d < k, the primary security accounts do
not necessarily span the entire observable uncertainty of the market. Think, for
instance, of asset price models which incorporate stochastic volatility, where the
volatilities are driven by stochastic processes that are independent from those
driving directly the fluctuations of the asset prices. It is therefore reasonable to
assume that among the driving random processes ṽi and m̃`, i, ` ∈ {1, 2, . . . , k},
those that directly drive the fluctuations of the risky primary security accounts
S

(j)
t , j ∈ {1, 2, . . . , d}, are exactly d in number. We shall thus assume that for

any j ∈ {0, 1, . . . , d} the dynamics of the jth primary security account is given
by the SDE

dS
(j)
t = ᾱj(t, z̄t) dt +

h1∑
i=1

βj,i(t, z̄t) dṽi
t +

h2∑

`=1

γj,`(t−, z̄t−)

√
λ̃`

t−(z̄t−) dm̃`
t (3.4)

for t ∈ [0, T ], where h1 + h2 = d.

We assume that all model specifications are such that a unique strong solution
of the system of SDEs (3.2) exists, see Protter (1990). For efficient and more
transparent notation we now rewrite the SDE (3.4) in the form

dS
(j)
t = S

(j)
t−

(
rt dt +

h1∑
i=1

bj,i
t

(
dṽi

t + θi
t dt

)
+

d∑

`=h1+1

bj,`
t−

(
dm̃`−h1

t + θ`
t− dt

)
)

(3.5)

for t ∈ [0, T ], with S
(j)
t > 0 and j ∈ {0, 1, . . . , d}. Here we set S

(0)
0 = 1 and

b0,i
t = 0 for t ∈ [0, T ] and i ∈ {0, 1, . . . , d}, where rt is again the short rate. For

the generalized volatility bj,i
t in (3.5), if i ∈ {1, 2, . . . , h1}, then

bj,i
t =

βj,i(t, z̄t)

S
(j)
t

(3.6)

12



is a volatility and if i ∈ {h1 + 1, . . . , d}, then

bj,i
t− =

γj,i−h1(t−, z̄t−)
√

λ̃i−h1
t− (z̄t−)

S
(j)
t−

(3.7)

is a jump coefficient for t ∈ [0, T ] and j ∈ {1, 2, . . . , d}. We assume that the
generalized volatility matrix bt = [bj,i

t ]dj,i=1 is invertible for all t ∈ [0, T ]. This
allows us to write the market price for risk vector θt = (θ1

t , . . . , θ
d
t )
> in the form

θt = b−1
t [at − rt 1] (3.8)

for t ∈ [0, T ]. Here 1 = (1, . . . , 1)> and at = (a1
t , . . . , a

d
t )
> is the appreciation rate

vector with

aj
t =

ᾱj(t, z̄t)

S
(j)
t

(3.9)

for t ∈ [0, T ] and j ∈ {1, 2, . . . , d}. Notice that in the dynamics (3.5) all the
coefficients can be determined on the basis of the observables z̄t. The interest
rate rt was in fact observable with y1

t and, by (3.6)–(3.9), the generalized volatility
matrix bt and the market price for risk vector θt are functions of observables.

Let us form portfolios of primary security accounts. We say that an Ãk-predictable
stochastic process δ = {δt = (δ0

t , . . . , δ
d
t )
>, t ∈ [0, T ]} is a self-financing strategy,

if δ is S-integrable, see Protter (1990), and the corresponding portfolio value

Vδ(t) =
d∑

j=0

δj
t Sj

t (3.10)

at time t satisfies the SDE

dVδ(t) =
d∑

j=0

δj
t dSj

t (3.11)

for all t ∈ [0, T ]. The jth component δj
t , j ∈ {0, 1, . . . , d}, of the self-financing

strategy δ expresses the number of units of the jth primary security account
held at time t in the corresponding portfolio. Under a self-financing strategy no
outflow or inflow of funds occurs for all changes in the value of the portfolio are
due to gains from trade in the primary security accounts. Since we will only deal
with self-financing portfolios and strategies, we omit the phrase “self-financing”
in the sequel.

As is shown in Platen (2004b), to avoid portfolios with infinite growth potential,
we need to assume that √

λ̃`−h1
t (z̄t) > θ`

t (3.12)

for all t ∈ [0, T ] and ` ∈ {h1 + 1, . . . , d}.
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3.2 Growth Optimal Portfolio

In a financial market model it is advantageous for derivative pricing and other
risk management tasks to choose an appropriate reference unit, called a numeraire
or benchmark. Under the benchmark approach, see Platen (2002, 2004a, 2004b,
2004d), we use the growth optimal portfolio (GOP) as benchmark. This is the
self-financing portfolio Vδ = {Vδ(t), t ∈ [0, T ]} with the strategy δ that achieves
maximum expected logarithmic utility from terminal wealth. It has been shown
in Platen (2004a, 2004c) that, under realistic assumptions, a global diversified
portfolio is a good proxy for the GOP. This makes it a readily observable financial
quantity, which can be used in various ways for risk management.

For the diffusion case without jumps, the SDE for the GOP is well known, see for
instance, Long (1990) or Karatzas & Shreve (1998). In the case with jumps, the
derivation of the SDE for the GOP is more involved, using first order conditions
for maximizing the drift of the logarithm of the portfolio. These lead to the SDE

dVδ(t) = Vδ(t−)

(
rt dt +

h1∑
i=1

θi
t (θi

t dt + dṽi
t)

+
d∑

i=h1+1

θi
t−

1− θi
t−√

λ̃
i−h1
t− (z̄t−)

(
θi

t− dt + dm̃i−h1
t

)

 (3.13)

for t ∈ [0, T ], with Vδ(0) = 1, as demonstrated in Platen (2004b).

In what follows, we will call prices, which are expressed in units of the GOP,
benchmarked prices. This means that the jth benchmarked primary security
account Ŝ(j) = {Ŝ(j)

t , t ∈ [0, T ]} has the value

Ŝ
(j)
t =

Sj
t

Vδ(t)
(3.14)

at time t ∈ [0, T ] for j ∈ {0, 1, . . . , d}. By (3.5), (3.13) and an application of the

Itô formula the benchmarked primary security account Ŝ
(j)
t satisfies the SDE

dŜ
(j)
t = Ŝ

(j)
t−

(
h1∑
i=1

(bj,i
t − θi

t) dṽi
t

+
d∑

i=h1+1


bj,i

t−


1− θi

t−√
λ̃i−h1

t− (z̄t−)


− θi

t−


 dm̃i−h1

t


 (3.15)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}, see Platen (2004b). Similarly, by application
of the Itô formula again, it can be shown that the value of any benchmarked
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portfolio V̂δ = {V̂δ(t), t ∈ [0, T ]}, where

V̂δ(t) =
Vδ(t)

Vδ(t)
, (3.16)

satisfies the SDE

dV̂δ(t) = V̂δ(t−)

(
h1∑
i=1

[
d∑

j=1

δj
t Ŝ

(j)
t

V̂δ(t)
bj,i
t − θi

t

]
dṽi

t

+
d∑

i=h1+1



(

d∑
j=1

δj
t− Ŝ

(j)
t−

V̂δ(t−)
bj,i
t−

)
1− θi

t−√
λ̃i−h1

t− (z̄t−)


− θi

t−


 dm̃i−h1

t




(3.17)

for t ∈ [0, T ], see Platen (2004b). Notice that all the coefficients in (3.17) are
functions of observables.

Note furthermore that the jth benchmarked primary security account Ŝ(j), as
well as all benchmarked portfolios, are driftless and are thus (Ãk, P )-local martin-
gales. Therefore, any nonnegative benchmarked portfolio process is an (Ãk, P )-
supermartingale. This means that it is impossible for a nonnegative portfolio
to generate, with strictly positive probability, strictly positive wealth from zero
initial capital. Consequently, the benchmark framework outlined here does not
permit arbitrage in the sense of Platen (2004a).

In the literature there exist various mathematical definitions of arbitrage. The
benchmark approach allows us to consider a more general class of models than
is possible, for instance, under the no free lunch with vanishing risk concept de-
veloped in Delbaen & Schachermayer (1995, 1998). The latter links no-arbitrage
directly to the existence of an equivalent risk neutral measure. Such a measure
need not exist in our framework. In the given benchmark framework, a free lunch
with vanishing risk arises, for example, when the benchmarked savings account
forms a strict (Ãk, P )-local martingale. Instances of this are described in Heath
& Platen (2002a, 2002c) and Breymann, Kelly & Platen (2004).

4 Fair Pricing of Derivatives

4.1 Derivative Price Processes as Martingales

We emphasize that benchmarked security prices are, in general, not (Ãk, P )-
martingales in our framework. However, we assume that any benchmarked deriva-
tive price process is fair, which means that it is an (Ãk, P )-martingale. By choos-
ing the GOP as numeraire, the real world probability measure becomes the unique
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pricing measure for derivatives. We stress the fact that, even if there does not ex-
ist an equivalent martingale measure, it is still possible to operate with the GOP
as numeraire and with the real world probability measure as pricing measure.
This will be explained in what follows.

Above, we called a price process V = {V (t), t ∈ [0, T ]} fair if its benchmarked

value V̂ (t) = V (t)
Vδ(t)

forms an (Ãk, P )-martingale under the available information

represented by Ãk. Recall that benchmarked nonnegative portfolios are (Ã, P )-
supermartingales and that benchmarked primary security accounts can be strict
supermartingales. The fact that benchmarked derivative prices are fair puts buy-
ers and sellers in comparable positions and generalizes the risk neutral approach,
as we shall see below.

Note that Ãk
t describes the information available at time t, whereas At is the

complete information at time t which determines the original model dynamics,
including also the unobserved factors. Consequently, observed derivative prices
may not be (A, P )-martingales, in general.

To provide an intuitive link between the general concept of fair pricing and stan-
dard risk neutral pricing as a special case, let us consider a candidate risk neu-
tral probability measure P k. This measure can be characterized by its Radon-
Nikodym derivative process Λ = {Λt, t ∈ [0, T ]}, which can be shown to be the
benchmarked savings account

Λt =
dP k

dP

∣∣∣∣
At

=
S

(0)
t

Vδ(t)
= Ŝ

(0)
t (4.1)

for t ∈ [0, T ]. If P k is an equivalent risk neutral martingale measure, then the
standard risk neutral pricing methodology and (4.1) yield for any portfolio Vδ the
sequence of relations

Vδ(t) = S
(0)
t EP k

(
Vδ(τ)

S
(0)
τ

∣∣∣∣At

)
= S

(0)
t

E
(
Λτ

Vδ(τ)

S
(0)
τ

∣∣∣At

)

E
(
Λτ

∣∣At

)

= S
(0)
t

E
(

Vδ(τ)
Vδ(τ)

∣∣∣At

)

S0
t

Vδ(t)

= Vδ(t) E

(
Vδ(τ)

Vδ(τ)

∣∣∣∣At

)
(4.2)

for τ ∈ [0, T ], t ∈ [0, τ ]. Here EP k
denotes expectation with respect to P k. From

(4.2) it follows by (3.14) that

V̂δ(t) = E
(
V̂δ(τ)

∣∣∣At

)
(4.3)

for τ ∈ [0, T ], t ∈ [0, τ ] and j ∈ {0, 1, . . . , d}. This expresses the fact that Vδ is
a fair price process and its discounted values form an (Ã, P k)-martingale in the
standard risk neutral setup.
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It turns out that the measure P k above is the minimal equivalent martingale
measure in the sense of Föllmer & Schweizer (1991), under appropriate assump-
tions, see Platen (2004e). However, since we do not assume that Λ is an (Ã, P )-
martingale and P k may not be equivalent to P , the first and second equalities in
(4.2) may break down in our general benchmark framework.

Notice that at any instant t ∈ [0, T ], the value Vδ(t) of the GOP represents that of

a tradable portfolio, see (3.10), with the Ãk-predictable strategy δ. This portfolio
invests in the primary security accounts, which are all observable. It follows, as
already mentioned, that the GOP value Vδ(t) is Ãk

t -measurable. This implies
that the Radon-Nikodym derivative Λt, see (4.1), is observable at time t and so,
for the special case when P k is an equivalent risk neutral martingale measure,
Λ = {Λt, t ∈ [0, T ]} is not only an (A, P )- but also an (Ãk, P )-martingale.
Relation (4.2) then holds, with Ãk

t replacing At. That is,

Vδ(t) = Vδ(t) E

(
Vδ(τ)

Vδ(τ)

∣∣∣∣ Ãk
t

)
(4.4)

for t ∈ [0, T ] and j ∈ {0, 1, . . . , d}. In this special case, it follows from (4.2)
and the corresponding relation (4.4), with Ãk

t instead of At, that the triplets
(S(0), P k,A) and (Vδ, P,A) as well as (S(0), P k, Ãk) and (Vδ, P, Ãk) define the
same respective pricing systems. In our general situation this is not always the
case. However, as we will show below, filtering and derivative pricing are still
possible in a consistent manner under the benchmark approach, even when P k is
not an equivalent martingale measure.

4.2 Derivative Prices

In what follows, denote by Tt,T the set of stopping times with values in [t, T ].
For a given maturity date τ , which is assumed to be an Ãk-stopping time, we
consider a contingent claim U(τ, yτ ) to be a nonnegative function of τ and the
corresponding values of the observed factors yτ . We also assume that

E

(
U(τ, yτ )

Vδ(τ)

∣∣∣∣ Ãk
t

)
< ∞ (4.5)

for all τ ∈ Tt,T and t ∈ [0, T ]. There is no point in letting the payoff function
depend on any other factors, otherwise it would be indeterminable at time τ on
the basis of available information.

Since, as mentioned in Section 4.1, Vδ(τ) is Ãk
τ -measurable, it can be considered

as a function of zs for s ≤ τ . Furthermore, since yτ is a subvector of zτ and z =
{zt, t ∈ [0, T ]} is a Markov process, we can define the process u = {u(t, zt), t ∈
[0, T ]} as

u(t, zt) = E

(
Vδ(t)

Vδ(τ)
U(τ, yτ )

∣∣∣At

)
(4.6)
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for τ ∈ Tt,T and t ∈ [0, T ], which at time t exploits the complete information
characterized by the σ-algebra At. Next, we consider

ũk(t, z̃k
t ) = E

(
u(t, zt)

∣∣ Ãk
t

)
(4.7)

for t ∈ [0, T ]. By Corollary 2.5, this can be computed on the basis of the filtering
results of Section 2. Combining (4.6) with (4.7) and using the fact that Vδ(t) is

Ãk
t -measurable, we obtain

ũk(t, z̃k
t )

Vδ(t)
= E

(
U(τ, yτ )

Vδ(τ)

∣∣∣∣ Ãk
t

)
(4.8)

for τ ∈ Tt,T and t ∈ [0, T ]. This means that the benchmarked value
ũk(t,z̃k

t )

Vδ(t)
,

stopped at the maturity τ , forms a (P, Ãk)-martingale for t ∈ [0, T ]. Obviously

it is the only (P, Ãk)-martingale that coincides at time τ with U(τ,yτ )
Vδ(τ)

. Thus,

ũk(t, z̃k
t ) is the fair price at time t ≤ τ of the claim U(τ, yτ ) on the basis of the

information represented by Ãk
t .

The above concept of fair pricing, which can be applied generally, see Platen
(2004a), extends the well-known concept of risk neutral pricing and avoids not
only the assumption of the existence of an equivalent risk neutral measure, see
Platen (2002), but also some delicate issues that arise from measure changes under
different filtrations in filtering applications, see Bhar, Chiarella & Runggaldier
(2002). Therefore, under the benchmark approach, we enter not only a richer
modeling world, but also avoid a number of technical issues that typically require
special technical assumptions.

To illustrate again the special case when there exists an equivalent martingale
measure P k, we have, corresponding to (4.2) and using (4.6), that

S
(0)
t EP k

(
U(τ, yτ )

S
(0)
τ

∣∣∣∣At

)
= Vδ(t) E

(
U(τ, yτ )

Vδ(τ)

∣∣∣∣At

)
= u(t, zt) (4.9)

for τ ∈ Tt,T and t ∈ [0, T ]. In this special case, the same arguments as for relation
(4.4), with Ãk

t replacing At, then lead to

S
(0)
t EP k

(
U(τ, yτ )

S
(0)
τ

∣∣∣∣ Ãk
t

)
= Vδ(t) E

(
U(τ, yτ )

Vδ(τ)

∣∣∣∣ Ãk
t

)
= ũk(t, z̃k

t ) (4.10)

for τ ∈ Tt,T and t ∈ [0, T ], using (4.6) and (4.7). Therefore, if there exists an
equivalent martingale measure P k, this implies that corresponding to (4.8), we
have

ũk(t, z̃k
t )

S
(0)
t

= EP k

(
U(τ, yτ )

S
(0)
τ

∣∣∣∣ Ãk
t

)
= EP k

(
u(t, zt)

S
(0)
t

∣∣∣∣ Ãk
t

)
(4.11)

for τ ∈ Tt,T and t ∈ [0, T ]. This means that the discounted derivative price

process
ũk(t,z̃k

t )

S
(0)
t

, stopped at the maturity τ , forms a (P k, Ãk)-martingale, in this
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particular case. Furthermore, the last equality in (4.11) implies, just as in (4.7),
that we also have

ũk(t, z̃k
t ) = EP k

(
u(t, zt)

∣∣ Ãk
t

)
(4.12)

for t ∈ [0, T ], if an equivalent risk neutral martingale measure exists. We em-
phasize in this case that the expectations under different measures, in (4.7) and
(4.12), lead to the same result, due to the fact that Λ is a martingale, not only
with respect to the filtration A, but also with respect to Ãk. In general, this does
not hold under the benchmark framework.

Notice that if we did not consider fair pricing using the GOP and could use
an equivalent risk neutral martingale measure, then we could try to perform
the computations on the basis of formula (4.12). Although similar to the right
hand side of (4.7), the right hand side of (4.12) is considerably more difficult
to compute. This is due to the fact that in order to filter the process zt on the
basis of the information contained in Ãk

t , we have to work under the real world
probability measure P in any case. Fortunately, since by (4.10) the quantity
ũk(t, z̃k

t ) computed according to (4.12) is the same as that in (4.7), we can perform
the computations according to fair pricing, using (4.6) and (4.7). We thereby
obtain the derivative price ũk(t, z̃k

t ) under the information represented by Ãk
t .

This shows that when it comes to actual computations, the real world measure
plays a crucial and dominant role. Therefore, we suggest in this paper that
filtering in finance should take place preferably under the real world measure.
Most importantly, our approach is still applicable in the case where (4.12) fails
to hold, which could be the result of wanting to use a realistic market model for
which no equivalent martingale measure exists, for example.

Note that the expression in (4.7) perfectly matches the one for the filtered factor
model given in (2.30). The actual computation of the conditional expectation
in (4.7) is therefore equivalent to the solution of the filtering problem for the
unobserved factors.

4.3 Variance of Benchmarked Prices

From a financial modeling point of view it is important to be able to model and
understand different degrees of available information. This concerns issues such
as insider trading, as well as the valuation of information. As already mentioned
in Section 2.1, the degree of available information is indexed by the parameter k.
A larger value for k means that more factors are observed, thus providing more
information in Ãk.

Let us now investigate the impact of varying degrees of information about the
factors zt = (z1

t , . . . , z
n
t )> that underly our model dynamics, see (2.2)–(2.3). We

use the notation z̃k
t , introduced in (2.13), for the vector of observables. We stress

its dependence on k and recall that, by (2.28), this process is Markovian. Consider
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now a contingent claim

U(τ, yτ ) = U(τ, y1
τ , y

2
τ , . . . , y

r
τ ) (4.13)

for some fixed r ∈ {1, 2, . . . , n−1}, where we assume that the number of observed
factors that influence the claim equals r. For k ∈ {r, r+1, . . . , n−1}, let ũk(t, z̃k

t )
be the corresponding fair price at time t under the information Ãk

t , as given by
(4.7). Recall that, by (4.7), ũk(t, z̃k

t ) is the conditional expectation, with respect
to the real world measure, of u(t, zt) given Ãk

t . This implies that the corresponding
conditional variance

Vark
t (u) = E

((
u(t, zt)− ũk(t, z̃k

t )
)2 ∣∣ Ãk

t

)
(4.14)

at time t ∈ [0, T ) is the minimal mean square difference between u(t, zt) and any
Ãk

t -measurable random variable, conditional on Ãk
t . This conditional variance is

computed under the real world measure. It would not make sense if computed
under any other measure, since market participants are affected by the real dif-
ference between u(t, zt) and ũk(t, z̃k

t ).

Note that the larger the value of K, the more information is available. Increasing
k should then naturally reduce the above conditional variance. The following
practically relevant proposition quantifies this reduction in conditional variance.
It can also be seen as a generalization of the celebrated Rao-Blackwell theorem,
see Rao (1973), applied to filtering in incomplete markets under the benchmark
approach.

Proposition 4.1 For k ∈ {r, r + 1, . . . , n − 1} and m ∈ {0, 1, . . . , n − k}, we
have

E
(
Vark+m

t (u)
∣∣ Ãk

t

)
= Vark

t (u)−Rk+m
t , (4.15)

where
Rk+m

t = E
((

ũk+m(t, z̃k+m
t )− ũk(t, z̃k

t )
)2 ∣∣ Ãk

t

)
(4.16)

for t ∈ [0, T ).

Proof: For t ∈ [0, T ) and k ∈ {r, r + 1, . . . , n− 1}, we have

(
u(t, zt)− ũk(t, z̃k

t )
)2

=
(
u(t, zt)− ũk+m(t, z̃k+m

t )
)2

+
(
ũk+m(t, z̃k+m

t )− ũk(t, z̃k
t )

)2

+ 2
(
u(t, zt)− ũk+m(t, z̃k+m

t )
)(

ũk+m(t, z̃k+m
t )− ũk(t, z̃k

t )
)
.

(4.17)

By taking conditional expectations with respect to Ãk
t on both sides of this equa-

tion, it follows that
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Vark
t (u) = E

(
Vark+m

t (u)
∣∣ Ãk

t

)
+ Rk+m

t + 2 E
( (

ũk+m(t, z̃k+m
t )− ũk(t, z̃k

t )
)

·E
((

u(t, zt)− ũk+m(t, z̃k+m
t )

) ∣∣ Ãk+m
t

) ∣∣∣ Ãk
t

)
. (4.18)

Since the last term on the right hand side is equal to zero by definition, we obtain
(4.15).

5 Hedging Under Partial Observation

To determine a hedging strategy in an incomplete market, we have to use a hedg-
ing criterion. It turns out that the fair pricing and hedging concept, developed in
Platen (2004b), can be generalized to our situation. Already, when assuming the
existence of an equivalent risk neutral martingale measure, it is known that there
exist various hedging possibilities. In Platen (2004b) it has been pointed out
that under the general benchmark approach, even in a complete market setting,
there may exist different self-financing hedge portfolios that replicate a contin-
gent claim. In general, under the benchmark approach, nonnegative benchmarked
portfolios are (Ãk, P )-supermartingales, see (3.17). The smallest possible super-
martingale, which replicates the hedgable part of a contingent claim, is known
to be a martingale. Therefore, among possible hedge portfolios, the fair portfolio
process that replicates the hedgable part turns out to be special. It is the mini-
mal portfolio replicating the hedgable part of the claim, because its benchmarked
value is a martingale. To see this in more detail, let us introduce the benchmarked
pricing function

û(t, z̃k
t ) =

ũk(t, z̃k
t )

Vδ(t)
(5.1)

for t ∈ [0, T ]. We introduce the differential operator

Li û(t, z̃k
t ) =

k+q∑

`=1

β`,i(t, z̄1
t , . . . , z̄

k+q
t )

∂û(t, z̃k
t )

∂z̄`
(5.2)

and the jump operator

∆i
û

(
t−, z̃k

t−
)

= û
(
t, z̄1

t− + γ1,i
(
t−, z̄1

t−, . . . , z̄k+q
t−

)
, . . . ,

z̄k+q
t− + γk+q,i

(
t−, z̄t−, . . . , z̄k+q

t−
))

−û
(
t−, z̄1

t−, . . . , z̄k+q
t−

)
(5.3)

for i ∈ {1, 2, . . . , k}, where β`,i and γ`,i are as in (2.29). Here, we assume that
the benchmarked pricing function û(·, ·) in (5.1) is differentiable with respect to
time and twice differentiable with respect to the observables. Then we obtain
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from (2.29), (5.2) and (5.3), by the Itô formula for the (Ãk, P )-martingale û =
{û(t, z̃k

t ), t ∈ [0, τ ]}, where τ ∈ Tt,T and t ∈ [0, T ], the following representation
for the benchmarked price of the contingent claim (4.13)

U(τ, yτ )

Vδ(τ)
= û(τ, z̃k

τ )

= û(t, z̃k
t ) + Ît,τ + R̂t,τ . (5.4)

Inspection of (3.4) reveals that (5.4) represents a decomposition of the bench-
marked value of the claim into a hedgable part

Ît,τ =

h1∑

`=1

∫ τ

t

L` û(s, z̃k
s ) dṽ`

s +

h2∑

`=1

∫ τ

t

∆`
û(s−, z̃k

s−)

√
λ̃`

s−(z̄s−) dm̃`
s (5.5)

and an unhedgable part

R̂t,τ =
k∑

`=h1+1

∫ τ

t

L` û(s, z̃k
s ) dṽ`

s +
k∑

`=h2+1

∫ τ

t

∆`
û(s−, z̃k

s−)

√
λ̃`

s−(z̄s−) dm̃`
s. (5.6)

Note that (5.4) is an (Ãk, P )-martingale representation for the benchmarked con-
tingent claim. Obviously, there is no way to hedge fluctuations that arise in the
unhedgable part with tradable securities.

One can now search for a fair benchmarked portfolio process V̂δU
, with self-

financing hedging strategy δU = {δU(t) = (δ0
U(t), δ1

U(t), . . . , δd
U(t))>, t ∈ [0, τ ]},

that replicates the hedgable exposure Ît,τ . To do this, we compare the SDE

(3.17) for V̂δU
(t) with that for the hedgable part Ît,τ of the claim, see (5.5). Let

us write

πj
δU

(t) =
δj
U(t) Ŝ

(j)
t

V̂δU
(t)

(5.7)

for the proportion of the value of the hedge portfolio to be invested in the jth
primary security account at time t ∈ [0, τ ] for j ∈ {0, 1, . . . , d}. By the above
comparison, it follows that one needs to satisfy the equation

d∑
j=1

πj
δU

(t) bj,i
t − θi

t =
Li û(t, z̃k

t )

V̂δU
(t)

(5.8)

for i ∈ {1, 2, . . . , h1}, as well as the equation

(
d∑

j=1

πj
δU

(t−) bj,i
t−

)
1− θi

t−√
λ̃i−h1

t− (z̄t−)


− θi

t− =
∆i

û(t−, z̃k
t−)

V̂δU
(t−)

(5.9)
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for i ∈ {1, . . . , h2}. Given the vectors eU(t) = (e1
U(t), . . . , ed

U(t))>, where

e`
U(t−) =





L` û(t−,z̃k
t−)

V̂δU
(t−)

+ θ`
t− for ` ∈ {1, 2, . . . , h1}

√
λ̃

i−h1
t− (z̄t−)

(
∆i

û(t−,z̃k
t−)

V̂δU
(t−)

+θi
t−

)

√
λ̃

i−h1
t− (z̄t−)−θi

t−
for ` = h1 + i ∈ {h1 + 1, . . . , d}

(5.10)
and πδU

(t) = (π1
δU

(t), . . . , πd
δU

(t))>, equations (5.8) and (5.9) yield the condition

eU(t−) =
(
π>δU

(t−) bt−
)>

. (5.11)

Consequently, we can formulate the following result.

Proposition 5.1 The hedgable part of the contingent claim U can be replicated
by the portfolio VδU

whose proportions are

πδU
(t) =

(
eU(t)> b−1

t

)>
(5.12)

for t ∈ [0, T ] and τ ∈ Tt,T .

Notice that the elements of the vector eU(t) and of the matrix bt are functions
of observables. Since part of the latter are the results of filtering, this shows the
usefulness of filtering for hedging under partial observation.

Note furthermore that the driving martingales in the unhedgable part R̂t,τ , see
(5.6), are orthogonal to those that drive the primary security accounts and thus
orthogonal to the hedgable part Ît,τ , see (5.5). The above fair hedging strategy
minimizes the quadratic variation of the resulting benchmarked profit and loss
process under the real world measure. In Platen (2004e) it is derived as fluctuation
minimization hedge. Obviously, to perform the fair hedge, the corresponding
initial capital at time t needs to equal the fair price ũk(t, z̃k

t ), see (4.7), of the
contingent claim.

In the special case when an equivalent risk neutral martingale measure exists, the
resulting hedging strategy equals the local risk minimizing strategy in the sense
of Föllmer & Schweizer (1991) and the pricing measure is the minimal equivalent
martingale measure, see Hofmann, Platen & Schweizer (1992). The martingale
representation (5.4) is in this special case the corresponding benchmarked version
of the Föllmer-Schweizer decomposition. We want to point out that, to the best
of our knowledge, the literature concerning local risk minimization under partial
information, see Schweizer (1994), Fischer, Platen & Runggaldier (1999) and Frey
& Runggaldier (1999), assumes from the outset that everything is defined under
a risk neutral measure. This unpleasant and restrictive assumption is avoided in
our approach, which makes filtering more practicable.
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Conclusions

We constructed a jump-diffusion financial market model with hidden variables
and specified as benchmark the growth optimal portfolio. The random driving
processes are Wiener and Poisson jump processes. For this incomplete market
model with partial observation a consistent price system has been established
without assuming the existence of an equivalent risk neutral martingale measure.
Benchmarked fair derivative prices are obtained as martingales under the real
world probability measure. Filtering has been described as an essential method
for implementing fair pricing and hedging under partial information in the given
incomplete market. The reduction of the conditional variance of fair derivative
prices, when the available information increases, is quantified via a generalization
of the Rao-Blackwell theorem.

A Appendix

Proof of Proposition 2.3

Denote by yc the continuous part of the observation process y, that is

yc
t = yt −

∑
τj≤t

Gτj−(yτj−) ∆ Nτj
, (A.1)

where the τj denote the jump times of N = {Nt, t ∈ [0, T ]} and ∆ Nτj
= Nτj

−
Nτj− is the vector (∆ N1

τj−, . . . , ∆ Nk
τj−)>. Let us now define the k-dimensional

Ãk-adapted process ṽ = {ṽt, t ∈ [0, T ]} by

Bt(yt) dṽt = dyc
t − Ãt(z̃

k
t ) dt. (A.2)

From (2.3), (A.1) and (A.2) it follows that

dṽt = dvt + Bt(yt)
−1

[
At(zt)− Ãt(z̃

k
t )

]
dt. (A.3)

From this we find, by the multi-variate Itô formula with ν ∈ <k a row vector and
ı the imaginary unit, that

exp [ıν (ṽt − ṽs)] = 1 + ıν

∫ t

s

exp [ıν (ṽu − ṽs)] dvu

+ ıν

∫ t

s

exp [ıν (ṽu − ṽs)] B−1
u (yu)

(
Au(zu)− Ãu(z̃

k
u)

)
du

− ν ν>

2

∫ t

s

exp [ıν (ṽu − ṽs)] du. (A.4)
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Recalling that v is an Ãk-measurable Wiener process, notice that

E

(∫ t

s

exp [ıν (ṽu − ṽs)] dvu

∣∣ Ãk
s

)
= 0 (A.5)

and that, by our assumptions, the boundedness of exp [ıν (ṽu − ṽs)] and the Ãk
t -

measurability of B−1
u (yn)

E

(∫ t

s

exp [ıν (ṽu − ṽs)] B−1
u (yu)

(
Au(zu)− Ãu(z̃

k
u)

)
du

∣∣ Ãk
s

)
=

E

(∫ t

s

exp [ıν (ṽu − ṽs)] B
−1
u (yu)E

((
Au(zu)− Ãu(z̃

k
u)

) ∣∣ Ãk
u

)
du

∣∣∣ Ãk
s

)
= 0.

(A.6)

Taking conditional expectations on the left and the right hand sides of (A.4) we
end up with the equation

E
(
exp (ıν [(ṽt − ṽs)])

∣∣ Ãk
s

)
= 1− ν ν ′

2

∫ t

s

E
(
exp [ıν (ṽu − ṽs)]

∣∣ Ãk
s

)
du, (A.7)

which has the solution

E
(
exp [ıν (ṽt − ṽs)]

∣∣ Ãk
s

)
= exp

[
−ν ν>

2
(t− s)

]
(A.8)

for 0 ≤ s ≤ t ≤ T . We can conclude that (ṽt − ṽs) is a k-dimensional vector
of independent Ãk

t -measurable Gaussian random variables, each with variance
(t − s) and independent of Ãk

s . By Levy’s theorem, ṽ is thus a k-dimensional
Ãk-adapted standard Wiener process.
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