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Abstract 
 

 
The myoelectric pattern recognition (M-PR) for hand rehabilitation devices has shown 

its efficacy in the laboratory environment. However, the performance of the M-PR in the 

clinical application is very poor. There is a big gap between the success of the laboratory 

experiment and the clinical application. The researchers found that the major cause of the 

gap was the robustness of the M-PR. Many aspects influence the robustness of the M-PR 

including the limb position, skin humidity, muscle fatigue, improvement in the muscle 

function, electrode shifts, and other clinical reasons. The aim of this thesis is to introduce 

novel M-PRs dealing with the robustness issues in real-time implementation. The goal 

was accomplished through the following actions. 

1. Developing a new M-PR that can work well on the amputees and non-amputees. 

The proposed M-PR consists of time-domain and autoregressive features (TD-

AR), spectral regression discriminant analysis (SRDA) as a feature reducer, and 

radial basis function extreme learning (RBF-ELM) as a classifier. The 

experimental results showed that the proposed system was able to detect the user’s 

intention with accuracy of roughly 99% on the able-bodied subjects and around 

98% on the trans-radial amputees using six EMG channels.  

2. Introducing new classifiers. The first classifier is adaptive wavelet extreme 

machine learning (AW-ELM). AW-ELM is the node-based ELM that can adapt to 

the changes that occur in the input. In general, AW-ELM could classify ten finger 

movements from two EMG channels with a good accuracy of 94.84 %. The second 

classifier is swarm radial basis extreme learning machine (SRBF-ELM). SRBF-

ELM is a hybridization of particle swarm optimization (PSO) and the kernel-based 

ELM. The role of PSO is to optimize the kernel parameters. The last classifier is 

swarm wavelet extreme learning machine (SW-RBF-ELM). The role of the 

wavelet is to avoid PSO being trapped in local optima. The experiments have been 

done on the healthy subjects and amputees for both, SRBF-ELM and SW-RBF-

ELM. On the healthy subjects, the accuracy of SW-RBF-ELM is 95.62 % while 

SRBF-ELM is 95.53 %. On the amputees, the SW-RBF-ELM achieved the 

average accuracy of 94.27 %, while SRBF-ELM produced the average accuracy 

of 92.55 %.  
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3. Developing a new feature projection and feature reduction called spectral 

regression extreme learning (SR-ELM). SR-ELM can enhance the class 

separability of the features to improve the classification performance. The 

experimental results showed that SR-ELM can work well on different classifiers 

and various numbers of classes with an average accuracy ranging from 95.67 % to 

86.73 %  

4. Developing a robust M-PR by involving the transient state of EMG signal along 

with the steady state of it in the real-time experiment. The classification accuracy 

is 90.46 % and 89.19 % on the offline and online classification, respectively.  

5. Introducing a new myoelectric controller for the exoskeleton hand. The 

myoelectric controller consists of two main parts: the myoelectric pattern 

recognition (M-PR) and myoelectric non-pattern recognition (M-non-PR). In the 

system, RBF-ELM-R (radial basis extreme learning machine with a rejection 

mechanism) represents the M-PR, and the proportional controller represents the 

M-non-PR. The power actuated to the linear motors is proportional to the 

amplitude of the EMG signals. The experimental results showed that, in the offline 

experiment of 10 classes, the accuracy is around 90 % and 92 % for RBF-ELM 

and RBF-ELM-R, respectively. In the online experiment, the accuracy is about 

89.22 % and 89.73 % for RBF-ELM and RBF-ELM-R, respectively.  

6. Introducing an adaptive mechanism to the M-PR to adapt to changes in the 

characteristic of the electromyography (EMG) signal. The thesis proposes a new 

M-PR with online sequential extreme learning machine (OS-ELM) and OS-ELM 

with rejection (OS-ELM-R). The experimental results showed that the accuracy is 

around 89 % and 91 % for OS-ELM and OS-ELM-R on the first-day experiment. 

 

 



 

 

CHAPTER 1          

Introduction 

Bio-signal control systems based on surface electromyography (EMG) signal for the 

hand rehabilitation such as a hand prosthetic and exoskeleton hand have shown success 

in the laboratory environment. However, the acceptance rate of the rehabilitation device 

on the clinical application is very low. The gap between two sides, laboratory and real-

time environment should be removed or at least reduced to some extent. The research in 

this thesis will address this issue. As an introduction, this chapter will begin with the 

background of this doctoral research. The next two sections will discuss the problem 

statements and the objectives of the research.  The contributions and the organisation of 

this thesis will be presented afterward. The last section will provide some publications 

produced during the doctoral study.  

1.1 Background  
Many countries in the world have a significant number of people with a disability. The 

result of the Survey of Disability, Ageing and Carers (SDAC) in 2009 showed that four 

million people in Australia (18.5%) have a disability (Ewing, 2010). In the USA, 18.4 % 

or 54.4 million people are in some of level disability, and 12 % are in a severe disability 

(Brault, 2008).  The same situation happens in Britain. Over 10 million disabled people 

live in Britain (Farmer & Macleod, 2011). All of them are human being, and they have 

the same right as others to participate in a normal life. Therefore, many efforts have been 

made to provide many facilities to accommodate the disabled person needs in public 

areas. Globally, The world health organisation (WHO) encouraged its members to 

consider this issue seriously and made a report to evaluate how seriously these members 

are addressing this problem (WHO, 2001).  Those actions raise hopes for a bright future 

for disabled people around the globe. 
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The World Health Organisation (WHO) defines disability as “a great number of 

different functional limitations occurring in any population in any country of the world. 

People may be disabled by physical, intellectual or sensory impairment, medical 

conditions or mental illness. Such impairments, conditions or illnesses may be permanent 

or transitory in nature”(WHO, 2001). Based on SDAC, disability is defined as any 

limitation, restriction or impairment, which restricts everyday activities and has lasted or 

is likely to last for at least six months. This definition was set for SDAC purpose only. In 

the result of SDAC, the incidence of disability was classified into two groups, a disability 

caused by mental or behavioural disorders and by physical conditions. Over fifteen per 

cent of Australians had physical disabilities and the rest, about 3.4 % of them have mental 

disabilities (Ewing, 2010). Therefore, the physical disabilities have received more 

attention to be solved because they are in the majority. However, both of these types of 

disabilities need a different kind of therapy. The type of therapies will depend on the sort 

of disability and the conditions causing them. 

For recovering the ability of movement, rehabilitation is the best way to improve the 

condition of most clients. World Health Organization defines the term “rehabilitation “as 

a process aimed at enabling persons with disabilities to reach and maintain their optimal 

physical, sensory, intellectual, psychiatric and/or social functional levels, thus providing 

them with the tools to change their lives towards a higher level of independence. 

Rehabilitation may include measures to provide and/or restore functions, or compensate 

for the loss or absence of a function or a functional limitation. It includes a wide range of 

measures and activities from more basic and general rehabilitation to goal-oriented 

activities, for instance, vocational rehabilitation. The rehabilitation process does not, 

however, involve initial medical care (WHO, 2001). In other words, rehabilitation aims 

to return the patient’s physical, sensory, intellectual and mental capabilities that were lost 

because of injury, illness, and disease, and to help the patient to compensate for weakness 

that cannot be treated medically (Akdoğan & Adli, 2011). 

A hand disability is one of the most frequent disability problems that occur in the 

community. The hand disability can be caused by either amputation or motor function 

problem. The development of the perfect technology for hand rehabilitation is a 

challenging task. Various cutting-edge technologies have been developed to deal with the 

hand rehabilitation. For hand amputees, Touch Bionics Limited has introduced a 

revolutionary prosthetic hand named i-limb (TouchBionics, 2007). The i-limb looks like 
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a natural hand, and it is designed in such a way that it conforms around the shape of the 

object being grasped. The i-limb prosthetic hand has five fingers so that it can perform a 

large number of finger configurations. Another example of a bionic hand that is available 

in the market is a bebionic hand (TouchBionics, Accessed in 2015) by RSLSteeper (E. 

Scheme & Englehart, 2011). Thus, the hardware robotic hands that mimic the hand in the 

shape and functionality are available. These sophisticated prosthetic hands need a 

sophisticated control system that can be applied in the real-time application. In addition, 

the control system should work in agreement with a human’s desire to enhance the 

convenience of the wearer.  

In addition to the prosthetic hand, a rehabilitation device for recovering motor function 

has been developed recently. An example of the commercial rehabilitation devices is 

Hand of Hope from Rehab-robotics company (Hu et al., 2013). The Hand of Hope is an 

exoskeleton hand robot designed to help people after stroke and train their impaired hand 

function. Interestingly, this device is able to detect the user’s intention from the user’s 

muscle using electromyography (EMG) signal. Hu et al. (2013) shows the efficacy of 

EMG as a control source of the robot. However, the device can detect the user’s intention 

for opening and closing hand only. In reality, the motor function in the hand involves 

many movements encompassing individual and combined finger movements.  

Dealing with user’s intention using myoelectric signal is a challenging task, yet it gives 

many benefits. One of the major benefits is to create a smooth interaction between the 

human and the rehabilitation device. This interaction will enable the device as a natural 

extension of the human body. This mechanism can be done by capturing the message 

caught by muscles from the human brain and then conveying it to drive the device after 

processing with an appropriate method.  

EMG that records myoelectric signals from muscle activity has been widely used to 

detect the user’s intension beforehand (Roche et al., 2014). The EMG electrodes are 

located in the human’s limb either in an invasive or non-invasive way. The majority of 

people do not like to plant electrodes inside the body. Most people prefer to use surface 

EMG (sEMG) instead. However, the sEMG has several drawbacks such as the crosstalk 

problem from other muscles and the robustness issue. In addition, it is difficult to obtain 

a myoelectric signal from deeper muscles. As a result, myoelectric signal processing 

using sEMG is not easy to deal with.  



Chapter 1 Introduction 
 

4 
 

Another issue emerges dealing with muscles driving the finger movements. The 

extrinsic muscles that move the flexion, extension, abduction and adduction of digits are 

mostly not located in superficial layer, but in the middle (flexor digitorum superficialis 

muscle) and deep layer (flexor digitorum profundus muscle). Therefore, surface EMG 

will not provide the precise signal from the intended muscles. Fortunately, extension 

muscle is located in the superficial layer (extensor digitorium). Another problem exists 

due to the skeletal muscles of a human’s body. For instance, one muscle is responsible 

for moving all fingers either individually or in combination. Of course, this fact increases 

the difficulty of myoelectric control for hand or more specifically, finger rehabilitation.   

EMG signal for user’s intention detection can be implemented in two ways: non-

pattern recognition based and pattern recognition based. EMG-based non-pattern 

recognition (EMG-based non-PR) or myoelectric non-pattern recognition (M-non-PR) 

has been used widely in current exoskeleton hand to drive a movement or to take no 

action, based on the level of EMG signals. This control system can work on a maximum 

of two movements only, which are mostly hand opening and hand closing. In fact, the 

finger should be able to move in many motions, not only two motions. 

On the other hand, EMG-based pattern recognition (EMG-based PR) or myoelectric 

pattern recognition (M-PR) can deal with many limb movements. M-PR has been 

implemented in the finger motion recognitions for decades, and it shows the benefits over 

EMG-based non-pattern recognition. Uchida et al. (1992) extracted fast Fourier transform 

(FFT) features from two electromyography (EMG) channels. Using feed-forward neural 

networks (FF-NN), they were able to classify five-finger movements with the accuracy 

of 86%. The classical problems of the FF-NN, which needs a heuristic architecture 

process and takes much time, were the main shortcomings of this recognition system. 

Similar to Uchida et al., Tsenov et al. (2006) developed a recognition system of finger 

movement using multilayer perceptron (MLP). MLP classified four finger movements 

using time-domain (TD) features extraction and achieved the accuracy of 93% using 2 

EMG channels and 98% using four EMG channels.   

Instead of MLP, Cipriani et al. (2011) utilized k-nearest neighbour (kNN) as a 

classifier. The M-PR extracted features from 9 EMG channels using TD features acquired 

from five able-bodied and amputee subjects. The recognition system was implemented 

online and was able to classify seven finger movements with the accuracy of around 79 
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% on the amputee subjects and about 89% on the non-amputee subjects. The controller 

delay time was fast, approximately 50 ms, yet the accuracy was poor.  

Besides MLP/FF-NNs and kNN, the support vector machine (SVM), which is 

powerful and used extensively in many areas (R. N Khushaba et al., 2012; Oskoei & 

Huosheng, 2008), was also employed. R. N Khushaba et al. (2012) utilized the SVM to 

classify ten finger movements consisting of individual and combined movements. The 

M-PR extracted features using TD and autoregressive (AR) features from 2 EMG 

channels and then reduced the features dimension using linear discriminant analysis 

(LDA). Their system succeeded in obtaining accuracy of approximately 92% in the 

offline classification and about 90% in the online classification. In terms of accuracy, 

Khushaba et al.’s recognition system was promising, but the system contains a natural 

shortcoming of SVM in dealing with the multi-classification problem. In general, at least, 

the recognition system should use m SVMs to deal with m movement classes. Inevitably, 

this will add to the processing time of the system. 

The most recent study of a pattern-recognition system on finger movement 

classification was undertaken by Al-Timemy et al. (2013). The developed system 

extracted features from six EMG channels using TD, and AR features. Before being fed 

to the classifier, the features were reduced using orthogonal fuzzy neighbourhood 

discriminant analysis (OFNDA) (R. N. Khushaba et al., 2010). Finally, linear 

discriminant analysis (LDA) was used to classify 12 and 15 movement classes on six 

amputees and ten able-bodied subjects, respectively. The system succeeded in achieving 

an average accuracy of around 98% on the able-bodied subjects and approximately 90% 

on the amputee subjects. However, there was a significant gap in the performance 

between the able-bodied and amputee subjects.  

Until now, the success of M-PR for finger motion recognition is very promising and 

exciting. However, there is a big gap between the success of the laboratory environment 

and the clinical application. Farina et al. (2014) found that the major cause of the gap is 

related to the robustness of M-PR in the clinical applications. The performance of M-PR 

degrades when it works in the clinical applications.  

Ning et al. (2012) gave reasons that have hampered the clinical application of M-PR. 

They found that the existing M-PRs worked on limited limb movements. M-PR should 

provide a simultaneous and proportional controller that can handle the multi degrees of 

freedoms. The second reason for the failure of M-PR in the clinical application is the M-
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PRs do not have sensory feedback. Therefore, the user could not feel the real existence of 

the device. Another factor is the inability of M-PR to adapt to the changes of EMG signal 

characteristic. EMG signals can change easily due to many factors such as electrode shift, 

the humidity of the skin, the improvement in the muscle function and other clinical 

factors. The last, the existing M-PRs do not integrate with sensor modalities, so M-PR 

could not work on the complex actions.   

1.2 Problem statement 
Myoelectric controller or EMG-based controllers have been implemented in the hand 

rehabilitation devices either in the prosthetic or exoskeleton hand for decades. 

Myoelectric controller in a prosthetic hand is usually implemented using myoelectric 

pattern recognition (M-PR). The implementation of M-PR for the hand rehabilitation 

device is related to finger motion recognition.  Tenore et al. (2009) found that the 

performance of M-PR on amputee and non-amputee is not significantly different for 

individual finger recognition. However, Al-Timemy et al. (2013)  showed that there was 

a significant gap of M-PR on amputee and non-amputee when M-PR classified individual 

and combined finger movements together.  This fact raises questions in relation to a way 

to reduce the performance gap of M-PR on the amputee and non-amputee in classifying 

complex finger movements.  

 The users prefer to utilize a small number of channels. However, this will decrease 

the performance of M-PR as proven by Al-Timemy et al. (2013). To compensate the 

accuracy degradation, the enhancement in the recognition performance should be made.  

L.J. Hargrove et al. (2007) found that the recognition performance depends on the 

classifiers and the features. The problems exist in relation to ways to improve the 

performance of the classifiers and enhance the feature representation for the myoelectric 

pattern recognition using two EMG channels.  

Few researchers developed a myoelectric pattern recognition (M-PR) using two 

channels. R. N Khushaba et al. (2012) are an example. They classified ten finger 

movements using two EMG channels in both offline and online experiment with the 

accuracy of about 92 % and 89 % on the offline and online classification, respectively. 

Unfortunately, their M-PR neglected the transient state of EMG signals. In addition, the 

real-time experiment was tested on one subject only. Therefore, the robustness of the M-

PR in the real-time experiment is questioned. Thus, another issue arises about improving 
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the performance of M-PR for complex finger movements using two EMG channels in the 

real-time application.  

Myoelectric pattern recognition frequently attains very good performance in the 

laboratory experiment. However, the performance degrades sharply when it is applied to 

the real-time application. One of the reasons is because the system is trained with limited 

number of movements 10 or 15 finger movements, for instance. In reality, a human’s 

finger can do an unlimited number of movements. The majority of current M-PRs for 

finger recognitions could not handle this problem. Thus, other problems emerge in 

relation to the method to anticipate and ignore the movements that are not included in the 

training stage. 

The performance of myoelectric pattern recognition (M-PR) decreases due to changes 

in EMG signal. For instance, 2-cm electrode shift can downgrade the performance of the 

M-PR up to 25 – 30 % (Young et al., 2012). Furthermore, different environment of 

experiment may change the characteristic of EMG signals. For example, the experiment 

done today will have different setups with the experiment the day after or maybe a couple 

of days after it. This fact raises issues about the M-PR that can adapt to changes in EMG 

signals. 

The majority of exoskeleton hands employ EMG signals for actuating simple 

movement such as opening hand and closing hand. Wege and Zimmermann (2007) 

developed a blind source separation to decompose the individual finger motions from 10 

EMG channels. The goal was to increase the number of movements that could be handled 

by the myoelectric controller. However, the report indicates that they have not succeeded 

yet in doing so. Thus, a problem appears in relation to improving the number of 

movements that the exoskeleton hand can perform and its efficacy in the real time 

application. 

1.3 Objectives 
Considering problems associated with the myoelectric controller in the hand 

rehabilitation device, the main purpose of this research is to introduce novel myoelectric 

controllers for a hand rehabilitation device that can deal with issues appearing in the real-

time application.  

The main purpose of this research is supported by specific research objectives, which 

are: 



Chapter 1 Introduction 
 

8 
 

1. Develop an accurate myoelectric pattern recognition (M-PR) system that can work 

well in amputee and non-amputee subjects. 

2. Develop novel classifiers for acquiring effective, fast and powerful methods to 

classify finger movements using two EMG channels. 

3. Develop a novel feature projection / dimensionality reduction to improve the 

feature representations in the M-PR. This method is needed to reduce the features 

dimension and produce a small number of features that have high-class 

separability. 

4. Develop robust myoelectric pattern recognition for individual and combined finger 

movements using two channels over some subjects for real-time application.  

5. Develop a novel myoelectric pattern recognition that can reject the movements that 

are not included in the training stage. This is needed to increase the robustness of 

the myoelectric pattern recognition in the real-time application 

6. Develop a novel myoelectric pattern recognition (M-PR) that can adapt to changes 

in EMG signal characteristic. This method is needed to produce a M-PR that has 

stable performance regardless of changes in the environment 

7. Develop a novel myoelectric controller for the exoskeleton hand. The controller is 

needed to enable the exoskeleton hand to work with individual and combined 

finger movements.  

1.4 Contribution of the doctoral thesis 
This thesis contributes to knowledge theoretically and practically. The following are 

the main contributions from the work presented in this thesis: 

 The thesis develops novel myoelectric pattern recognition (M-PR) systems for 

recognizing individual and combined finger movements that can work well with the 

amputees and non-amputees. The proposed recognition system, which is an 

integration of SRDA and RBF-ELM, attained the accuracy of approximately 99% on 

able-bodied subjects and around 98% on the amputee subjects using six EMG 

channels when working on 15 and 12 finger movements, respectively. This 

contribution will be discussed in detail in Chapter 3. However, using less number of 

EMG channels can enhance the comfort of the subject as long as the accuracy is still 

good. R. N Khushaba et al. (2012) showed that the M-PR with two EMG channels 

could achieve the accuracy of up to about 92 %. Therefore, the experiments 
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conducted in following chapters will employ two EMG channels instead of six 

channels. The majority of the contents in Chapter 3 has been submitted in the Journal 

of Neural Networks, the official journal of the International Neural network society 

published in Elsevier. The title of the paper is Evaluation of Extreme Learning 

Machine for Classification of Individual and Combined Finger Movements using 

Electromyography on Amputees and Non-amputees. 

 Chapter 3 shows that the performance of the node-based ELM is less than the kernel-

based ELM, especially with RBF-ELM. The second section of Chapter 4, proposes 

the innovation in the node-based ELM to improve the performance of the node-based 

ELM. It constitutes an adaptive extreme learning machine (AW-ELM). AW-ELM 

has been tested on EMG dataset (in the M-PR case) and the UCI machine-learning 

repository. On the M-PR case, the integration of SRDA and AW-ELM achieved the 

accuracy of 94.84 % using two EMG channels. The results is better than the accuracy 

attained by R. N Khushaba et al. (2012), which is about 92% when recognizing the 

finger movements using two EMG channels.  In addition, AW-ELM is comparable 

to RBF-ELM and other well-known classifiers such as SVM, LDA, and kNN. As for 

UCI machine learning datasets, AW-ELM can work on a wide range of datasets. For 

the general case, AW-ELM offers some advantages over wavelet neural networks 

(WNN) and wavelet extreme learning (W-ELM). On WNN, AW-ELM offers fast 

training but comparable performance to WNN. Furthermore, on W-ELM, AW-ELM 

removes the initialization stages that should be performed in WNN and W-ELM. In 

summary, the aim to improve the node-based ELM AW-ELM was achieved. The 

content of this contribution has been presented at The 21st International Conference 

on Neural Information Processing (ICONIP) 2014 and was published in Neural 

Information Processing Vol. 8834 as a book section. The paper’s title is adaptive 

wavelet extreme learning machine (AW-ELM) for index finger recognition using two-

channel electromyography (Khairul Anam & Al-Jumaily, 2014a). 

 Development of a dimensionality reduction algorithm is the next contribution of this 

thesis. Spectral regression extreme learning machine (SR-ELM) is proposed to 

improve the performance of spectral regression discriminate analysis (SRDA). SR-

ELM has been tested on the EMG dataset and the UCI machine-learning repository. 

On the myoelectric finger motion recognition using two EMG channels, SR-ELM 

outperforms SRDA. However, SR-ELM and SRDA are comparable when they work 
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on a wide range of datasets from UCI machine learning datasets. Chapter 4 Section 

4.3 discusses this contribution. SR-ELM on myoelectric pattern recognition has been 

presented at the 7th International IEEE/EMBS Conference on Neural Engineering 

(NER), 2015. The paper entitled a novel extreme learning machine for dimensionality 

reduction on finger movement classification using sEMG was published online on 

IEEE Explore (K. Anam & A. Al-Jumaily, 2015).   

 The efficacy of the kernel-based ELM depends on the kernel parameters. Therefore, 

these parameters should be optimized properly. This thesis contributes to developing 

a new way to optimize kernel-based-ELM using particle swarm optimization (PSO). 

This leads to some new extreme learning machine designs such as swarm-radial-

basis-ELM (SRBF-ELM), swarm-linear ELM (SLIN-ELM), and swarm-polynomial 

ELM (SPOLY-ELM). Using only two EMG channels, the proposed myoelectric 

pattern recognition using the integration of SRDA and SRBF-ELM achieved an 

accuracy of about 94 % using two EMG channels. Chapter 4 Section 4.1 will address 

this contribution. This contribution was presented in the 2014 Middle East 

Conference on Biomedical Engineering (MECBME). The paper entitled Swarm-

based extreme learning machine for finger movement recognition was published 

online on the IEEE Explore (Khairul Anam & Al-Jumaily, 2014b). 

 Some enhancements have been done to improve previously proposed method to 

overcome the problem of PSO, which is easy to be trapped in local optima. Thus, a 

new ELM, swarm wavelet radial basis ELM (SW-RBF-ELM) is proposed. The 

experimental results showed that the integration of SRDA and SW-RBF-ELM could 

enhance the performance of M-PR. The accuracy is around 95 % and 94 % for able-

bodied subjects and amputees, respectively, using two EMG channels. Chapter 4 

Section 4.2 will discuss this contribution in detail. The idea of this contribution was 

presented at the 36th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC) 2014. The paper entitled Swarm-wavelet 

based extreme learning machine for finger movement classification on trans-radial 

amputees was published online on the IEEE Explore. 

 The real-time myoelectric pattern recognition on individual and combined finger 

movements using only two EMG channels has been developed and tested on eight 

able-bodied subjects. The achievement of this method is that it involves the transient 

and steady state in both the experiments, offline and online. Most M-PRs avoid 



Chapter 1 Introduction 

11 
  

including the transient state because it can downgrade the performance of the M-PR. 

Even so, the experiments in this thesis achieved a high accuracy of 90.46 % and 89.19 

% on the offline and online classification, respectively. Chapter 5 Section 5.2 

addresses this contribution. The initial results of this chapter has been presented in 

International Congress on Neurotechnology, Electronics and Informatics 

(NEUROTECHNIX) 2014 (K Anam & Al-jumaily, 2013).  

 A novel myoelectric controller that consists of myoelectric pattern recognition with 

rejection mechanism and the proportional controller has been designed and tested on 

the exoskeleton hand. The myoelectric controller enables the exoskeleton to move 

five individual fingers and five combined fingers. A single subject participated in the 

experiment and repeated the exercises four times. The M-PR achieved an accuracy 

of 89.72%. The contribution in this section lies in two things. The first contribution 

lies in the motion rejection. The motion rejection enables the M-PR to focus on the 

movements that were included in the training stage and reject movements that were 

not involved in the training. This mechanism improves the robustness of the 

myoelectric controller. The second contribution lies on the capability of the 

exoskeleton hand dealing with more than two movements. Chapter 5 Section 5.3 

discusses this contribution. 

 The performance of myoelectric pattern recognition (M-PR) will decrease if it is used 

for long use, for days or months, due to its inability to adapt to changes that occur in 

EMG signals. This thesis proposes an adaptation mechanism in M-PR, by employing 

online sequential extreme learning machine (OS-ELM). Not only that, a motion 

rejection is included as well. The experimental results show a stable performance of 

M-PR over three different days of experiments. This section will be discussed in 

Chapter 5 Section 5.4. This contribution has been presented at the 37th Annual 

International Conference of the IEEE Engineering in Medicine and Biology Society 

(EMBC) 2015. The paper entitled a robust myoelectric pattern recognition using 

online sequential extreme learning machine for finger movement classification was 

published online on IEEE Explore (Khairul Anam & Adel Al-Jumaily, 2015). 

1.5 Organization of the thesis 
The thesis contains six chapters, appendix, and references The contents are organized 

sequentially from one chapter until the references.  



Chapter 1 Introduction 
 

12 
 

 Chapter I presents the introduction. 

 Chapter II presents the literature reviews. 

 Chapter III presents extreme learning machine-based classification of finger 

movements using surface electromyography for amputees and non-amputees 

 Chapter IV discusses some novel methods of ELM-Based Classification for 

myoelectric finger recognition using two EMG channels 

 Chapter V presents some efforts toward robust myoelectric pattern recognition 

for real-time finger movement classification 

 Chapter VI presents summary, conclusion, and future work 

1.6 Publication outcomes of the doctoral research 
The publications published during the doctoral studies are as follows: 

Submitted Journal 

 Anam, K, Al-Jumaily, A,” Evaluation of Extreme Learning Machine for 

Classification of Individual and Combined Finger Movements using 

Electromyography on Amputees and Non-amputees”, Neural Networks. The first 

revision 

 Anam, K, Al-Jumaily, A,” Improved Myoelectric Control System Using 

Rejection-Based Extreme Learning Machine for a Hand Exoskeleton” IEEE 

Transaction on Industrial Electronics 

 

Journal: 

 Anam, K., Al Jumaily, A., Maali, Y., (2014). Index finger motion recognition 

using self-advice support vector machine. International Journal on Smart Sensing 

and Intelligent Systems, 7(2), 644-657. 

 

Book section: 

 Anwar, T., Anam, K, Al-Jumaily, A (2015). EMG Signal Based Knee Joint Angle 

Estimation of Flexion and Extension with Extreme Learning Machine (ELM) for 

Enhancement of Patient-Robotic Exoskeleton Interaction. Neural Information 

Processing (Vol. 9489, pp. 583-590):  Springer International Publishing 

 Anam, K., & Al-Jumaily, A. (2014). Adaptive Wavelet Extreme Learning 

Machine (AW-ELM) for Index Finger Recognition Using Two-Channel 
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Electromyography. In C. Loo, K. Yap, K. Wong, A. Teoh & K. Huang (Eds.), 

Neural Information Processing (Vol. 8834, pp. 471-478): Springer International 

Publishing. 

 

Conference: 

 Anam, K. and A. Al-Jumaily (2015). A robust myoelectric pattern recognition 

using online sequential extreme learning machine for finger movement 

classification. 37th Annual International Conference of the IEEE Engineering in 

Medicine and Biology Society (EMBC), Milan, Italy 

 Anam, K., & Al-Jumaily, A. (2015, 22-24 April 2015). A novel extreme learning 

machine for dimensionality reduction on finger movement classification using 

sEMG. Paper presented at the 7th International IEEE/EMBS Conference on 

Neural Engineering (NER), Montpellier, France 

 Yee Mon, A., Anam, K., & Al-Jumaily, A. (2015, 22-24 April 2015). Continuous 

prediction of shoulder joint angle in real-time. Paper presented at the 7th 

International IEEE/EMBS Conference on Neural Engineering (NER), 

Montpellier, France 

 Anam, K., & Al-Jumaily, A. (2014, 26-30 Aug. 2014). Swarm-wavelet based 

extreme learning machine for finger movement classification on transradial 

amputees. Paper presented at the 2014 36th Annual International Conference of 

the IEEE Engineering in Medicine and Biology Society (EMBC), Chicago, USA 

 Aung, Y. M., Al-Jumaily, A., & Anam, K. (2014). A novel upper limb 

rehabilitation system with self-driven virtual arm illusion. The 2014 36th Annual 

International Conference of the IEEE. Engineering in Medicine and Biology 

Society (EMBC), Chicago, USA 

 Anam, K., & Al-Jumaily, A. A. (2014, 17-20 Feb. 2014). Swarm-based extreme 

learning machine for finger movement recognition. Paper presented at the 2014 

Middle East Conference on Biomedical Engineering (MECBME), Doha, Qatar. 

 Anam, K., & Al-Jumaily, A. (2013). Real-time Classification of Finger 

Movements using Two-channel Surface Electromyography. Proceedings of the 

International Congress on Neurotechnology, Electronics and Informatics 

(NEUROTECHNIX), Portugal 
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 Anam, K., Khushaba, R. N., & Al-Jumaily, A. (2013, Aug). Two-channel surface 

electromyography for individual and combined finger movements. Paper 

presented at the Proc. 35th Ann. Int. Conf. IEEE-EMBS Eng. Med. Biol. Soc. 

 Anam, K., & Al-Jumaily, A. A. (2012). Active exoskeleton control systems: State 

of the art. Procedia Engineering, 41, 988-994. 

 

Publication to support other works  

 Masood, A., Al-Jumaily, A., & Anam, K. (2015, 22-24 April 2015). Self-

supervised learning model for skin cancer diagnosis. Paper presented at the 7th 

International IEEE/EMBS Conference on Neural Engineering (NER), 

Montpellier, France 

 Masood, A., Al-Jumaily, A., & Anam, K. (2014). Texture Analysis Based 

Automated Decision Support System for Classification of Skin Cancer Using SA-

SVM. In C. Loo, K. Yap, K. Wong, A. Teoh & K. Huang (Eds.), Neural 

Information Processing (Vol. 8835, pp. 101-109): Springer International 

Publishing.  

 Mahmoud, M. K. A., Al-Jumaily, A., Maali, Y., & Anam, K. (2013). 

Classification of Malignant Melanoma and Benign Nevi from Skin Lesions Based 

on Support Vector Machine. Paper presented at the 2013 Fifth International 

Conference on Computational Intelligence, Modelling and Simulation (CIMSim). 
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CHAPTER 2          

Literature review 

2.1 Introduction 
This chapter covers an essential theory of the anatomy of the hand to understand the 

hand structure that the rehabilitation device hand will work on. Then, it is followed by 

the muscles involved in the digit movements. A basic knowledge about the biological 

concept of electromyography (EMG) or myoelectric signal (MES) will be presented in 

the following section. Furthermore, different myoelectric controller methods will be 

addressed as well. Afterward, the chapter presents a literature review on the hand 

rehabilitation devices utilizing EMG/MES as the control source. Finally, the chapter will 

highlight the shortcomings of the existing myoelectric controller that this thesis aims to 

overcome. 

2.2 The hand anatomy and bio-signal  

2.2.1 The hand anatomy 
The anatomy of the hand is needed to understand the structure of the hand and the 

related muscles so that the controller for the hand rehabilitation device is designed 

properly. Firstly, this section discusses the bones and joints of the hand. The muscles 

driving the hand are discussed afterward.  

2.2.1.1 Bones and joints 
The bones of hand have multiple articulations to the eight carpal bones that form the 

wrist (Figure 2.1). The eight carpal bones are grouped into the proximal and distal row. 

The bones in the proximal row from radius to ulna are the scaphoid, lunate and triquetrum. 

These bones are mobile bones. As for the rest of the bones, which are in the distal row, 

they are the trapezium, trapezoid, capitate, and hamate (Nordin & Frankel, 2012). The 

bones in the distal row fit tightly against each other. These bones become the root of the 

hand and the digits (Heo et al., 2012).  
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The thumb and fingers are the main components of the hand. The thumb is composed 

of one metacarpal and two phalanges while each finger is composed of one metacarpal 

and three phalanges. The finger rays are numbered and named from the radial to ulnar 

side: I(thumb), II (index finger), III (middle finger), IV (ring finger) and V (little finger). 

Each finger ray proximally articulates with a carpal bone. This articulation forms the 

carpometacarpal (CMC) joint. The next joint in each ray is the metatarsophalangeal 

(MCP) joint. The MCP joint connects the metacarpal bone to the proximal phalanx. The 

interphalangeal (IP) joint links the phalanges of the fingers. In each finger, they are two 

IP joints: a proximal (PIP) and a distal (DIP) interphalangeal joints. As for the thumb, it 

has only one IP joint. In total, there are 19 bones and 14 joints in the hand, as shown in 

Figure 2.1. 

 

Figure 2.1 Right hand, proximal view (Doyle & Botte, 2002) 

The shape variation of the joints of the thumb and the fingers results in the variation 

of the degree of freedom at these joints. The unique orientation and configuration of the 

CMC joint of the thumb give the digit large mobility and great flexibility (Nordin & 

Frankel, 2012). The second (the index finger) and the third (the middle finger) CMC joints 

are an immobile unit of the hand because they are connected to the trapezoid and capitate 

bone that are immobile bones. The fourth (the ring finger) and the fifth (the little finger) 

I (Thumb)

II (Index)
III (Middle)

IV (Ring)

V (Little)
DIP

PIP

MCP

CMC
Carpal

JOINTSBONES

MCP

IP
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CMC joint are able to move 10 o to 15 o and 20 o to 30 o of flexion and extension, 

respectively.  

The MCP joints of the four fingers are unicondylar diarthrodial joints, providing three 

degrees of freedom: flexion-extension, abduction-adduction, and slight pronation-

supination. The range of flexion of the MCP joints is from zero to approximately 90 o 

(Figure 2.2), but it differs among the fingers. For example, the fifth finger is able to move 

until 95 o while the second finger can move until 70 o only. Likewise, the extension 

movement beyond zero position varies among the fingers. 

 
Figure 2.2 Flexion of three joint of the fingers. A. Flexion of the MCP joint. B. Flexion of 

the PIP joint. C. Flexion of DIP joint (Nordin & Frankel, 2012) 

The PIP and DIP joints of the fingers are bicondylar hinge joints allowing only flexion-

extension motion. The range of flexion in the PIP joints measured from zero position is 

maximum 110o or more. Zero position is measured when the finger is in the plane of the 

hand. In the DIP joints, the range of flexion is approximately 9 o.   

The CMC joint of the thumb is a saddle joint allowing the thumb metacarpal to move 

in a wide range of motion in two degrees of freedom: flexion-extension and abduction-

adduction. The MCP joint of the thumb is similar to the MCP joints of the fingers. The 

range of flexion from zero position varies from person to person from 30 o to 90 o; 

extension from zero position is about 15 o (Nordin & Frankel, 2012). The IP joint of the 

thumb is similar to the distal joint of the fingers. 
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2.2.1.2 Muscles 
The coordination of the extrinsic and intrinsic muscles contributes in performing 

dexterous movements of the hand. The term extrinsic shows that the muscle is mostly 

located outside the hand. They originate from the arm and forearm and end up within the 

hand. These muscles control the flexion and the extensions of the digits. Different from 

the extrinsic muscles, the intrinsic muscles are located inside the hand. They can perform 

independent actions of each digit (Heo et al., 2012). 

According to the functionality, the extrinsic muscles are mostly classified into flexor 

and extensor muscles. The flexor muscles lay on several layers starting from a superficial 

layer to a deeper one, as shown in Figure 2.3. According to Muscolino (2014), there are 

three muscles that move the digits. Two muscles are located in the middle layer: flexor 

digitorum superficialis (FDS) and flexor policis longus (FPL), and one muscle is located 

in the deepest layer: flexor digitorum profundus (FDP). Similarly, the extensor muscles 

are located in some regions from the superficial to deeper layer, as shown in Figure 2.4.  

Four muscles are responsible for the extensions of the digits: extensor digitorum (ED), 

extensor digiti minimi (EDM), extensor pollicis longus (EPL), and extensor indicis (EI). 

Table 2.1 presents the function of the muscles mentioned above. 

 

 
Figure 2.3 Flexor Muscles (Marieb, 2009) 

 

 

(FPL) 

(FDS) 

(FDP) 

(FPL) 

(FDP) 



Chapter 2 Literature review

19 

 
Figure 2.4 Extensor muscles (Marieb, 2009) 

Table 2.1 Extrinsic muscles for digit movements (Muscolino, 2014) 
Muscle Action 

Flexor digitorum 
superficialis (FDS) 

1. Flexion of the second to fifth fingers at PIP joint, and MCP 
joint.  

2. Flexion of the hand at the wrist joint 

Flexor digitorum profundus 
(FDP) 

1. Flexion of the second to fifth fingers at DIP, PIP, and MCP 
joints 

2. Flexion of the hand at the wrist joint 

Flexor policis longus 
(FPL) 

1. Flexion of the thumb at the CMC, MCP and IP joints, and 
adduction at the CMC joint. 

2. Flexion of the hand at the wrist joint 

Extensor digitorum (ED) 1. Extension of the second to fifth fingers at the MCP, PIP, 
and DIP joints 

2. Extension of the hand at the wrist joint 

Extensor digiti minimi 
(EDM) 

1. Extension of the little finger at the MCP, PIP, and DIP 
joints 

2. Extension of the hand at the wrist joint 

Abductor pollicis longus 
(APL)  

1. Abduction of the thumb at the CMC joint  
2. Extension of the thumb at the CMC joint  

Extensor pollicis longus 
(EPL) 

Extension of the thumb at the CMC, MCP, and IP joints  

Extensor indicis (EI) 
 

1. Extends the index finger at the MCP, PIP, and DIP joints  
2. Extends the hand at the wrist joint  

2.2.2 Electromyography as a bio-signal 
The extrinsic and intrinsic muscles drive the fingers and the thumb. These muscles 

generate electrical signals called electromyography (EMG) or myoelectric signal (MES). 

This section will discuss the anatomy and physiology of the muscle contraction. The 

(ED) 

(EDM) 

(EI) 

(EPL) 

(ED)(ED) 

(APL) 
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characteristic of the EMG signals and the method to record this signal are presented 

afterward. 

2.2.2.1 Anatomy and physiology of muscle contraction 
Electromyography is a process of the detection, analysis, and use of the electrical 

signal that originates from contracting muscles (C. De Luca, 2006). The signal is called 

an electromyogram (EMG) or myoelectric signal (MES) (R. Khushaba, 2010). Figure 2.5 

shows the generation of the EMG signal. 

The generation of the electric signal in the muscle relates to the concept of a motor 

unit (MU). The concept of MU in the central nervous system (CNS) is simply presented 

in Figure 2.5. The CNS is arranged in a hierarchical style. The human cortex produces 

signals that have a powerful influence on the motoneurons of the spinal cord. A motor 

unit (MU) consists of a motoneuron in the spinal cord. Because the motorneuron is 

activated, the muscle fibres are innervated. The number of MUs per muscle may range 

from approximately 100 to 1000 or more for small hand muscle to large limb muscle. 

Furthermore, the force generation of MUs varies greatly until 100-fold or more difference 

(Moritani et al., 2005). 

 
Figure 2.5 The basic motor control mechanism (Moritani et al., 2005)  

2.2.2.2 The characteristics of the electromyography signal  
The EMG signal is a stochastic or random signal whose amplitude can range from 0 

to 1.5 mV (root mean square) or 0 to 10 mV (peak-to-peak). The energy above the 

electrical noise level is in the range of frequency 0 – 500 Hz and the dominant energy of 

the noise is in the range of 50-150 Hz (C. J. De Luca, 2002). The noise may emanate from 

many sources such as inherent noise in the electronic components, motion artefacts, the 
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inherent instability of the signal, and ambient noise. The energy under the noise level is 

not reasonable for analysis. Figure 2.6 shows the example of EMG signal and its power 

or energy collected from the Tibialis anterior muscle during constant force isometric 

contraction at 50% of voluntary maximum. 

 
Figure 2.6 The example of the EMG signal (top) and its energy (bottom) (C. J. De Luca, 

2002) 

2.2.2.3 The detection of EMG signal 
The EMG signal may be collected in two ways, either invasive or non-invasive. L.J. 

Hargrove et al. (2007) shows that the control system using surface EMG is not too much 

different from invasive one. For further discussion, this thesis considers only surface 

EMG. Surface EMG electrodes are located on the subject’s skin, as described in Figure 

2.7. Meanwhile, Figure 2.8 describes the stages in the acquisition of the EMG signal. The 

source of EMG or myoelectric signal is the motor unit action potential (MUAP), the 

action potential generated by each of the motor units activated during a contraction. The 

populations of motor units activated are asynchronous to allow smooth movements. The 

electrodes pick up the conducted signals generated by all activities involved (Criswell, 

2010). 

 
Figure 2.7 EMG signal generation and collection (Farina et al., 2014) 



Chapter 2 Literature review
 

22 
 

 

Figure 2.8 Data instrumentation of the EMG signal (Criswell, 2010) 

The noise may happen in all steps of the signal acquisition, as shown in Figure 2.8. In 

fact, it is desirable to collect the EMG signal containing the maximum amount of 

information and the minimum amount of noise contamination. One way to overcome the 

noise existence, especially from the power line radiation (50 or 60 Hz), is to use a 

differential amplifier from two electrodes sites (C. J. De Luca, 2002). In the differential 

amplification concepts, the electronic circuit will remove the common signal of two 

electrode sites and amplify the difference. The common signal represents any signal that 

originates far away from the detection sites whereas the difference represents the 

immediate vicinity of the detection surfaces. Thus, the local EMG signals will be 

amplified, and the distant power line noise will be removed.   

The noise caused by motion artefacts most probably happen during the data recording. 

There are two main sources of this noise: one from the cable movement linking the 

electrode to the amplifier, and the other from the junction of the detection surface of the 

electrode and the skin. The energy of the noise is in the frequency range from 0 to 20 Hz. 

These noise sources can be attenuated by proper design of the electronic circuits.   

2.3 Myoelectric control system 
The EMG signal can be used in the control system of the hand rehabilitation devices 

either in EMG-based pattern recognition or non-pattern recognition system (Gopura et 

al., 2013). The EMG-based pattern recognition (EMG-PR) or myoelectric pattern 
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recognition (M-PR) consists of several steps, as shown in Figure 2.9. The goal of M-PR 

is to recognise and classify the EMG patterns into classes or limb movements. On the 

other hand, the EMG-based non-pattern recognition (EMG-non-PR) system does not 

classify any limb movement (Figure 2.10). It may estimate human physical parameters 

such as the angle of the elbow or the force exerted by the hand according to the EMG 

signals collected. Moreover, the EMG-non-PR may use EMG signals as a threshold 

control system or proportional control system. The following sections will explain M-PR 

and EMG-non-PR in detail. 

Pre-processing:
Filtering and data 

segmentation

Feature 
Extraction

Dimensionality 
reduction ClassificationRaw EMG 

signals
Post-

Processing
The intended 

movement

 

Figure 2.9 The myoelectric pattern recognition system   

Pre-processing:
Filtering and data 

segmentation

Non-pattern 
recognition based

Raw EMG 
signals The action

 

Figure 2.10 The EMG-based non-pattern recognition 

2.3.1 Myoelectric pattern recognition (M-PR) 
This section addresses the stages of myoelectric pattern recognition (M-PR) in detail 

by describing each component of M-PR as presented in Figure 2.9. 

2.3.1.1 Pre-processing 
 Filtering 

The aim of filtering is to reduce the unwanted noises. We can apply a band-pass filter 

between 20-500 Hz. The filter can have the upper bandwidth cut-off of 400 Hz if a stricter 

filter is needed. The power line noise 50 Hz or 60 Hz may be removed using a notch filter 

of 50 or 60 Hz. However, the filter possibly removes the information of the EMG signal. 

Therefore, it is not advisable to use the notch filter. Instead, the differential amplification 

is used. 

 Data segmentation 
The classification process lasts for a certain period called a window. In this window, 

the system extracts valuable information from the row of myoelectric signals. This 

information is called a feature. The quality of features greatly determines the performance 
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of the finger recognition system (L.J. Hargrove et al., 2007). The feature is extracted in a 

data sequence bounded in this time slot or window. Based on the data in this window, the 

whole stages of the recognition system are performed. 

  
                         (a)                                                                          (b) 

Figure 2.11 The data segmentation: disjoint windowing (a) and                                 
overlapped windowing (b) (Kevin Englehart & Hudgins, 2003)  

In general, the data or signal can be segmented in two ways: either as a disjoint or 

overlapped windowing (Kevin Englehart & Hudgins, 2003; Oskoei & Huosheng, 2008), 

as shown in Figure 2.11. The disjoint windowing is only associated with the window 

length. On the other hand, the overlapped windowing is associated with the window 

length and window increment. The window increment is a period between two 

consecutive windows. In general, the disjoint windowing is overlapped windowing in a 

condition where the window increment is equal to the window length.  

 Transient and steady-state response 
Transient and steady state of the EMG signals is one of the common issues in the area 

of myoelectric pattern recognition. Transient state of myoelectric signals is related to a 

signal state when a person produces a contraction from rest while the steady state of the 

myoelectric signal indicates the signal state when the person maintains the contraction in 

a certain level (R. Khushaba, 2010). Hudgins et al. (1993) were the first researchers who 

employed both the transient and the steady state of the myoelectric signals in experiments. 

Kevin Englehart et al. (2001) found that the classification performance of the steady state 

outperforms that of the transient state. Therefore, to increase the accuracy, the majority 

of the myoelectric control only considers the steady state response. However, the system 

that only considers steady state response in the training stage will not be robust with 

changes that present in the real-time application. 

 



Chapter 2 Literature review 

25 
  

 Controller delay 
The controller delay is a period required to acquire the myoelectric signal and process 

the acquired signal to produce an output. The first part is known as a segment length while 

the second is the processing time of the myoelectric controller. Hudgins et al. (1993) 

suggested that the controller time should be less than 300 ms to ensure the myoelectric 

controller responds to the user’s command in a quick and accurate manner. Furthermore, 

T. R. Farrell and Weir (2007) have different suggestions based on their experiments. They 

recommended an optimal controller delay that lies between 100 and 175 ms for the 

average users and between 100 and 125 ms for the 90th percentile users. To combine both 

results, we can say that the acceptable controller delay is less than 300 ms while the 

optimal controller delay lies between 100 and 175 ms.    

2.3.1.2 Feature extraction 
The next step of the myoelectric pattern recognition after pre-processing is the feature 

extraction.  The feature extraction is a process that converts patterns to features. In the 

case of EMG signals, it means a process that converts the pattern of EMG signals, in 

particular, segments to a set of features that contains salient features of the signals (R. 

Khushaba, 2010).  

Boostani and Moradi (2003) suggested some conditions that the features should have. 

Firstly, the feature should have maximum class separability to ensure the 

misclassification rate is as low as possible. The second condition is robustness. The 

robustness means that the feature space can preserve its class separability in a noisy and 

real-time environment. The last condition is the complexity of the features should be kept 

as low as possible to be easily implemented in the real-time environment with reasonable 

hardware. Another interesting fact in the feature extraction is a feature may be not relevant 

individually, but it becomes relevant when it joins other features (Oskoei & Huosheng, 

2008).  

In general, the feature extraction in EMG signal consists of three groups: time domain 

features, frequency domain features and time-frequency domain or time-scale domain 

(Phinyomark et al., 2012). The following sections will describe each group in detail. 

 Time domain (TD) features 
Time domain features have been used widely in EMG pattern recognition system (Al-

Timemy et al., 2013; L.J. Hargrove et al., 2007; Oskoei & Huosheng, 2008). The 

advantages of the TD features are quick, easy implementation, low computational 



Chapter 2 Literature review 
 

26 
 

complexity and having good performance in low noise environment (Phinyomark et al., 

2012). However, it has a major disadvantage in dealing with non-stationary signals such 

EMG signals. This thesis will provide some of most used TD features.  

1. Mean absolute value (MAV) 

MAV is an average of the absolute value of the amplitude of the EMG signal in a 

particular segment. It is defined as: 

  2.1 

2. Mean absolute value slope (MAVS)  

MAVS is a difference between the current MAV and the previous one (Hudgins et al., 

1993), as defined as: 

  2.2 

3. Zero crossings (ZC) 

Zero crossing is a feature obtained by counting the number of times the signals crosses 

the zero (Hudgins et al., 1993). A threshold is included to attenuate the noise about the 

zero crossing. It is defined as: 

  2.3 

4. Slope sign changes (SSC) 

Slope sign changes is a feature that counts the number of times the slope of the signal 

changes its sign (Hudgins et al., 1993). It is defined as: 

 
 

2.4 

5. Waveform length (WL) 

Waveform length is a feature of the cumulative length of the EMG signal over a 
segment.  

  2.5 
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6. Root mean square (RMS) 

Root mean square is a square root of the mean of the squares of a segment. In the EMG 

signals, it is an amplitude modulated Gaussian random process that relates to constant 

force and non-fatiguing contraction (Phinyomark et al., 2012). RMS can be calculated as: 

  2.6 

7. Autoregressive (AR) features 

The myoelectric signal is a non-stationary signal.  However, it can be regarded as a 

stationary Gaussian process in a short time or a segment (Zecca et al., 2002). Therefore, 

the EMG signal can modelled as: 

  2.7 

8. Hjorth parameters 

Hjorth proposed three time-domain features for EEG activity: activity, mobility, and 

complexity.  These features can be extended to the EMG signals as well (Mouzé-Amady 

& Horwat, 1996)  (R. N Khushaba et al., 2012). The formulation of the features is as 

follow. 

  2.8 

  2.9 

  2.10 

 Frequency domain (FD) features 
Frequency or spectral domain features are frequently used in fatigue analysis. The 

features are mostly obtained from power spectral density (PSD).  

1. Mean frequency (MNF) 

Mean frequency is an average frequency that is obtained from the sum of the product 

of the frequency and its power spectrum divided by the total sum of the power spectrum, 

as defined by: 

  2.11 
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where fk is the frequency of the spectrum and Pk is the power spectrum at frequency fk. 

2. Median frequency (MDF) 

MDF is the frequency when the power spectrum is divided into two regions with equal 

amplitudes. It is formulated as: 

  2.12 

 Time-frequency domain 
Time-frequency (TFD) domain features provide more accurate description of the 

physical phenomenon than the time domain and frequency domain features separately. 

The reason is that TFD can localize the energy of the EMG signals both in time and in 

frequency (K. Englehart et al., 1999). However, the TFD transformation needs heavy 

computation; somehow, it will not be reasonable for real-time application.  

Kevin Englehart et al. (2001) tested three different TFD features in the myoelectric 

pattern recognition system. It included short-time Fourier transform (STFT), wavelet 

transform (WT) and wavelet packet transform (WPT).  They are different in how they 

partition the time-frequency plane, as shown in Figure 2.12. The STFT has a fixed tilling 

while the WT has a variable tilling. In the WT, the aspect ratio of the tilling is proportional 

to the centre frequency. As for WPT, it has an adaptable tilling, which can be the best for 

most application. However, it is computationally heavy and time costly.  

 
Figure 2.12 The time-frequency tilling of three different TFD features: a. SFFT b. WT and 

c. WPT (Kevin Englehart et al., 2001) 

2.3.1.3 Dimensionality Reduction 
Features extracted from all EMG channels are joined to form a large feature set. As a 

result, the dimension of the feature set is large and should be reduced without 

compromising the main features. In general, there are two methods of dimensionality 

reductions: feature selection (FS) and feature projection (FP) (K. Englehart et al., 1999). 

The FS tries to reduce the dimension of the input feature space by selecting a subset of 
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features from the original features. On the other hand, the FP reduces the dimension of 

the feature space by transforming the original feature space to a new feature space with 

smaller dimension. In the EMG signals cases, the feature projection is more favourable 

than the feature selection due to the large variance of the EMG signals K. Englehart et al. 

(1999). The projection-based method can consolidate the information contained in EMG 

signals more effectively than the selection-based method (R. N. Khushaba et al., 2010). 

K. Englehart et al. (1999) proved it in their experiment. In the following section, this 

thesis will focus on the feature projection only. In other words, the term of a 

dimensionality reduction refers to the feature projection. 

The feature projection can be classified into an unsupervised and supervised method. 

The unsupervised method simply projects the feature space into a new space without any 

class information. Principle component analysis (PCA) (Martínez & Kak, 2001) is an 

example. On the other hand, the supervised method includes the class knowledge into the 

projection. Linear discriminant analysis (LDA) (D. Cai et al., 2008) is as an instance. 

Inevitably, the class inclusion can enhance the accuracy of the myoelectric pattern 

recognition (Al-Timemy et al., 2013). One of the drawbacks of the LDA is a singularity 

problem that happens when the number of classes is larger than the number of samples. 

Some methods have been proposed to overcome the singularity problem. Examples are 

uncorrelated LDA (ULDA) (Ye et al., 2006), spectral regression discriminant analysis 

(SRDA) (D. Cai et al., 2008), and orthogonal fuzzy neighbourhood discriminant analysis 

(OFNDA) (R. N. Khushaba et al., 2010). 

Furthermore, the feature projection can also be grouped into linear and non-linear 

feature projection. PCA and LDA are examples of the linear feature projection.  As for 

the non-linear method, the non-linear version of PCA is as an example. It is a kernel PCA 

that employ a kernel instead of a linear function in the process. Another example of the 

non-linear method is a neural-network based feature projection such as  unsupervised 

extreme learning machine (USELM) and Autoencoder (Hinton & Salakhutdinov, 2006).  

2.3.1.3.1 Principle component analysis (PCA) 

The main aim of principle component analysis (PCA) is to compress the size of the 

dataset by extracting the most important information and maintaining only this important 

information (Abdi & Williams, 2010). To achieve this goal, PCA calculates principal 

components computed from the linear combination of the original data.  
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Let consider a feature set  in which N is the number of samples and x 

is a matrix with t-dimensional space. PCA can be used to find a linear transformation that 

transform t-dimensional space of features onto m-dimensional space of features. Let P 

represents the linear transformation that maps the features from t to m-dimensional space 

with m << t. Then, the new features yi  m are defined by: 

  2.13 

where xi  t and P consists of columns that are the eigenvectors ei. The eigenvalues are 

computed by solving the singular value decomposition (SVD): 

  2.14 

  2.15 

where Q is the covariance matrix and i is the eigenvalue associated with the eigenvector 

ei.   

2.3.1.3.2 Linear discriminant analysis (LDA) 
The main goal of the linear discriminant is to search for vectors that best discriminate 

among classes instead of searching for those that best describe the feature data (Martínez 

& Kak, 2001). In other words, the goal of LDA is to maximize the between-class scatter 

matrix while minimizing the within-class scatter matrix. The within-class scatter matrix 

is given by: 

  2.16 

where   is the ith sample of class j, j is the mean of the class j, c is the number of 

classes and Nj is the number of samples in class j. The between-class scatter matrix is 

defined by: 

  2.17 

One way to achieve the goal of LDA is by maximizing the objective function of LDA, as 

given by: 

  2.18 
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If the matrix Sw is non-singular, then the objective function will be a maximum when 

the column vectors of the projection matrix P are the eigenvectors of  . As a note, 

there are at most c-1 non-zero generalized eigenvectors. In order words, the dimension of 

the new features will be at a most c-1 number of features. 

The singularity problem that exists in the LDA raises various methods to overcome it 

for example by employing PCA before LDA (PCA+LDA) or utilizing SVD before LDA 

(D. Cai et al., 2008). In addition, different concepts were also used such as spectral 

regression (SR) that results in the spectral regression discriminant analysis (SRDA) (D. 

Cai et al., 2008) or fuzzy logic that yields orthogonal fuzzy neighbourhood discriminant 

analysis (OFNDA)  (R. N. Khushaba et al., 2010). 

2.3.1.3.3 Spectral regression discriminant analysis 

SRDA is an improvement of LDA, which is better than LDA in the computational 

aspect and the ability to cope with a large dataset (D. Cai et al., 2008). Let eigen problem 

of LDA be 

T TXWX a XX a  2.19 

where X (1 x c) is centred data matrix, W is eigenvector matrix (m x m),  = eigenvalue, 

a = transformation vector,   c = the number of classes, and m = the number of total training 

data points. Modification of the Eq. 2.19 gives: 

Wy y  2.20 

where 

TX ya  2.21 

The solution of LDA problem by SRDA is to get y by solving Eq. 2.21 and then use 

the y obtained to find a.  To solve a, the least square sense could be employed by using: 

2

1

arg min
m

T
i i

a i
a a x y  2.22 

Regularize least square problem of SRDA, we get: 

1

arg min
TT T T

m

a i
X a y X a y a aa  2.23 

Derivative of Eq. 2.23 gives: 

TXX XyI  2.24 
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1
TXX Xya I  2.25 

2.3.1.4 Classification  
The classifier is one of the main components of the myoelectric pattern recognition 

(M-PR) system. It classifies the extracted and reduced features into particular classes. In 

the early stage of M-PR system, multilayer perceptron (MLP) (Tsenov et al., 2006) or 

feed-forward neural networks (FNN) was frequently used as a classifier (Hiraiwa et al., 

1989). The FNNs is a powerful classifier, but the training process is time-consuming. 

Therefore, some researchers preferred using linear discriminant analysis (LDA) than 

MLP because LDA is fast and performs as accurately as FNNs (L.J. Hargrove et al., 

2007). In addition to MLP and LDA, a few researchers employed k-nearest neighbour 

(kNN) (Cipriani et al., 2011) and hidden markov model (HMM) (A. D. Chan & Englehart, 

2005).  

Recently, support vector machine (SVM), which is used in many applications, 

promises better performance than LDA, FNNs, k-nearest neighbour (kNN) as long as the 

SVM parameters are optimized properly (R. N Khushaba et al., 2012). However, SVM is 

originally developed for binary classification. The recognition system should use several 

SVMs to deal with multi-class classification. Inevitably, this will add to the processing 

time of the system. Recently, a new machine learning originated from the artificial neural 

network was proposed and called extreme learning machine (ELM) (G. B. Huang et al., 

2012). Not like FNNs, ELM omits iterative learning and does not need to tune the hidden-

node parameters. Nevertheless, ELM is superior to F-NNNs (G. B. Huang et al., 2012). 

G. B. Huang et al. (2012) have introduced two kinds ELM, the kernel-based ELM and 

node-based ELM. The kernel-based ELM behaves like SVM in which the performance is 

extremely dependant on the parameters of the kernel. 

2.3.1.4.1 Extreme learning machine (ELM) 
G. B. Huang et al. (2012) introduced extreme learning machine (ELM) as a 

generalization of single-hidden-layer feed-forward networks (SLFNs) that avoids 

iterative tuning in the determination of weights in both the hidden and output weights. 

Especially for the hidden layer, the weight is independent of the training data. Moreover, 

in training mode, the aim of the ELM is to reach the smallest training error and the 

smallest norm of output weights, which is different from the traditional learning algorithm 

of SLFNs. Using least square method, eventually the output weight can be calculated by 
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applying Moore-Penrose inverse to the matrix of the hidden layer output. As a result, the 

training speed is much faster compared to normal SLFNs. 

Randomization in the weight of artificial neural networks is not a new idea. Pao and 

Takefji (1992) proposed the randomness in an artificial neural network prior to the work 

of Huang. Firstly, they proposed a functional-link net (FLN). FLN is originally an SLFN 

whose hidden layer is pulled back and added to the input layer. As a result, the dimension 

of the new input is the dimension of the original input plus the dimension of the hidden 

layer, and it does not have the hidden layer anymore. A special case of FLN is a 

randomization of FLN named a random vector functional-link net (RVFLN) (Pao et al., 

1994). In the RVFLN, the weights of the hidden layer that have been moved to the input 

layer are determined randomly. The learning goal is to train the output weight by 

considering the new input using quadratic optimization. If the matrix inverse using a 

pseudo-inverse is feasible, the output weight can be calculated instantly.  

Generally speaking, RVFLN and ELM have similarity in the randomization of the 

weight of the hidden layer and in some cases in the output weight as well. However, 

firstly, they are different in the structure. ELM preserves the architecture of SLFN while 

RVFLN changes its architecture by removing the hidden layer to the input layer. 

Secondly, RVFLN is a new type of artificial neural networks with its own learning while 

ELM is a type of learning for SLFN. Lastly, the preservation of the architecture of ELM 

gives benefits to ELM. For instance, the replacement of kernel system to the hidden layer 

node produces a kernel based ELM. 

2.3.1.4.2 Basic concept of ELM 
The basic concept of ELM is as follows. Essentially, it is single feed-forward networks 

as shown in Figure 2.13.  

 

Figure 2.13 Single feed-forward networks for extreme learning machine 
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For N samples (xj,yj) where input xj = [xj1, xj2,…, xjm]T  Rm  and target yj= [yj1, yj2,…, 

yjn]T  Rn,  the output of a standard SLFN with L hidden neurons is 

  2.26 

where wi = [wi1, wi2,…, wim]T  denotes the vector of the weight linking the ith hidden 

neuron and the input neurons, βj = [βj1, βj2,…, βjL]T  defines the weight vector of the ith 

hidden neuron and the output neuron, bi is the threshold of the ith hidden neuron and g(x) 

is the activation function of the hidden node. The right part of (Eq. 2.26) is the compact 

form of the SLFN output where G is the hidden layer output matrix: 

  2.27 

and 

  2.28 

Different from SLFNs, the aim of the ELM is not only to minimize the training error 

but also to minimize the norm of the output weights, that is: 

  2.29 

where T is the target. 

  2.30 

In the ELM, the input weights wi and biases bi are assigned randomly. Thus Eq. 2.29 

becomes: 

  2.31 

The least-square solution of Eq. 2.31 with minimum norm is indicated by: 

  2.32 

where  is the Moore–Penrose generalized inverse of the matrix G. 

Based on Eq. 2.31, the formulation the optimization of the ELM training is as follows. 
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2.33 

where   is the vector of output error m with respect to input xi.  

Based on the Karush-Khun-Tucker (KKT) theorem (Fletcher, 2013), the training of 

ELM is the solution of the dual optimization problem of Eq. 2.33. Hence: 

  2.34 

where is the output weight connecting the hidden layer and the jth output node and 

 . Differentiation of Eq. 2.34 will give: 

  2.35 

  2.36 

  2.37 

where and  . 

By substituting Eq. 2.36 and 2.37 to Eq. 2.35, we obtain: 

  2.38 

where 

  2.39 

Substituting Eq. 2.38 to Eq. 2.32 produces: 

  2.40 

where C is a user-specified parameter. Eventually, the output functions of SLFN in 2.26 

could be modified to be: 

  2.41 

If the training data is very large, as it has been proven in (G. B. Huang et al., 2012), the 

output of the ELM becomes 
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  2.42 

where C is a user-specified parameter and g(x) is a feature mapping (hidden layer output 

vector) which can be: 

  2.43 

where Q is a non-linear piecewise continuous function, such as a sigmoid, hard limit, 

Gaussian, and multi-quadratic functions. The mathematical formula of those functions 

can be as follows. 

1. Gaussian function 

  2.44 

2. Sigmoid function 

  2.45 

3. Hard-limit function 

  2.46 

4. Multi-quadratic function 

  2.47 

2.3.1.4.3 Kernel-based ELM 
In ELM, the feature mapping in the hidden layer g(x) can be replaced by a kernel function. 

Kernel matrix for ELM is defined as follows: 

  2.48 

Then, Eq. 2.41 would be: 

 
 

2.49 

where and K is a kernel function as shown in Eq. 2.50 –2.52. 

 Radial basis function:  2.50 

 Linear:   2.51 
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 Polynomial:  2.52 

2.3.1.5 Post-processing 
The aim of post-processing is to smoothen and refine the classification results. The 

majority vote (Kevin Englehart et al., 2003) is one of the most frequent methods in this 

area. It utilizes the results from the present state and n previous states and makes a new 

classification result based on the class that appears most frequently. This procedure 

produces the finger movement class that removes fake misclassifications. However, the 

number of n votes will increase the delay time taken to generate the class output as 

mentioned in (T. Farrell & Weir, 2008). Besides, we should make sure that the delay time 

will not exceed the optimal delay time of real-time application in the range of 100 – 125 

ms as recommended by T. R. Farrell and Weir (2007) or acceptable time delay 

recommended by Kevin Englehart et al. (2001), which is 300 ms. 

2.3.2 Myoelectric non-pattern recognition (M-non- PR) 
system 

The previous sections have discussed the myoelectric pattern recognition (M-PR). In 

this section, the myoelectric non-pattern recognition (M-non-PR) will be addressed. The 

M-non-PR system has similar steps as the M-PR except in the classification stage. The 

M-non-PR does not have it. Instead, it has different processes. Among examples of EMG-

based non-pattern recognition are the threshold myoelectric control, proportional 

myoelectric control, simultaneous and propositional myoelectric control and finite state 

machine (FSM) control (Oskoei & Huosheng, 2007).  

2.3.2.1 The threshold myoelectric control 
The threshold myoelectric control is a control system that utilizes a threshold value 

from the contraction level of EMG signal as a control source to activate or deactivate an 

action. It is also known as a binary on/off myoelectric control because the threshold value 

determines the on or off state of the assistive device (Simon et al., 2011). The early stage 

of EMG controller in the prosthetic device employed this controller (Popov, 1965). 

Besides, the majority of the current exoskeleton hands utilize the threshold controller 

instead of EMG based pattern recognition (Ho et al., 2011; Mulas et al., 2005).  
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2.3.2.2 Finite state machine 
Finite state machine control consists of some states that the device should perform. 

The switching between states can be triggered by a timer or based on the level contraction 

of the EMG signals (Fougner et al., 2012; Oskoei & Huosheng, 2007).  

2.3.2.3 The proportional myoelectric control 
The proportional myoelectric control gives a more advanced control scheme than the 

threshold myoelectric control. In this myoelectric control, the control signal for the 

rehabilitation device is proportional to the contraction level of the EMG signal. The 

control system utilizes the EMG signal to estimate a specific physical parameter such as 

force or angle. Afterward, the control system treats those biofeedback values as the target 

that the device should achieve. Figure 2.14 shows an example of the proportional 

controller.   

 
Figure 2.14 The proportional myoelectric control of Neuroexos exoskeleton (Lenzi et al., 

2012) 

2.3.2.4 The simultaneous and proportional myoelectric control 
The simultaneous and propositional myoelectric control is more advanced than the 

proportional one. This control system controls all joints proportionally and 

simultaneously from the EMG signal. To train the system, the amputees need a help form 

their healthy hand to produce target movement, as shown in Figure 2.15. The control 

system should estimate all physical parameters recorded from the raw EMG signal. 

Therefore, this control system is also known as regression based myoelectric system 

(Farina et al., 2014).   
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Figure 2.15 Regression based myoelectric control (Farina et al., 2014) 

2.4 EMG signal for hand rehabilitation devices 
This thesis investigates the use of EMG signal in hand rehabilitation devices. The hand 

rehabilitation device considered in this thesis is a wearable robot including the prosthetic 

and orthotic hand devices. The prosthetic hand device is a wearable hand robot that can 

replace the missing hand and have the functionality of the hand replaced. Nowadays, few 

dexterous and commercial prosthetic hands are available. For instance, i-limb ultra by 

Touch Bionic. Inc and a bebionic (TouchBionics, Accessed in 2015) hand by RSLSteeper 

(E. Scheme & Englehart, 2011) (Figure 2.16). Furthermore, a few low-cost prosthetic 

hands are available as well. They are prosthetic hands from www.openbionic.org 

(Kontoudis et al., 2014) (Figure 2.16c) and www.openhandproject.org (Figure 2.16d).  

The second rehabilitation hand device discussed in this thesis is the orthotic hand. 

Different form the prosthetic hand, the orthotic hand resembles the user’s hand. It 

augments or assists the hand to perform some activities. The orthotic hand is often known 

as an exoskeleton hand and it is a part of an active exoskeleton (Khairul Anam & Al-

Jumaily, 2012). Figure 2.17 shows a “hand of hope”, a commercial exoskeleton hand by 

rehab-robotics (http://www.rehab-robotics.com/).   
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Figure 2.16 The high-cost prosthetic hands : i-limb ultra (a) and bebionic (b) and the low-

cost prosthetic hands: openbionic’s hand (c) and openhandproject’s hand (d) 

 
Figure 2.17 The hand of hope: a commercial exoskeleton hand  

This section presents a discussion on the use of EMG in the prosthetic and 

exoskeleton hand. The discussion will be started with the EMG-based prosthetic hand and 

then followed by the EMG-based exoskeleton hand. 

2.4.1 EMG-based prosthetic hand 
This sub-section provides a review of prosthetic hands controlled by EMG signal. The 

discussion is focused on the hand movement excluding the arm movements such as 

shoulder, elbow and wrist movements.   

2.4.1.1 The Russian EMG controlled hand 
Historically, Rieter was the first person who developed an EMG controlled hand in 

1948 (Jacobson et al., 1982). In 1957, B Popov, a Russian researcher, began to develop a 

bioelectricity controlled prosthetic hand (Popov, 1965), as shown in Figure 2.18.  The 

(a) (b) 

(d) (c) 



Chapter 2 Literature review 

41 
  

possibility of the use of bioelectricity for controlling a prosthetic was initiated in (Battye 

et al., 1955). This prosthetic is designated for the upper extremity. The electrodes were 

located in the stump. There are two movements: grasp and release. The EMG signals were 

collected from two opposing muscles. The hand will grasp if the exerted voltage of the 

flexion muscle exceeds 30-40 mV. To release or open the hand, the system will detect the 

opposing flexing muscle. If the recorded voltage was more than the threshold value, then 

the hand will open. The prosthetic hand is controlled with a threshold control system. 

This is a very basic myoelectric control system. 

 
 Figure 2.18 The Russian EMG controlled hand (Popov, 1965) 

2.4.1.2 Suzuki ‘s system (Suzuki & Suematsu, 1969) 
In 1969, Suzuki and Suematsu (1969) developed a more complex control system using 

EMG signals. They called it pattern recognition of multichannel myoelectric signals. The 

system classified seven kinds of hand motions using a spatial pattern collected from three 

EMG channels on the forearm. The system learned the pattern or the classes using the 

learning discrimination mechanism (Suzuki & Suematsu, 1969). Compared to the Russian 

EMG controller, the EMG controller is more advanced. The indication is shown by 

involving more motions and employing a learning mechanism to learn the pattern of EMG 

signals.      

2.4.1.3 Uchida’s system (Uchida et al., 1992) 
Hiraiwa et al. (1989) employed a single channel EMG to classify five hand motions. 

They utilized the neural network to analyse and classify the EMG pattern to control a 

prosthetic hand. The work of Hiraiwa was continued and developed by Uchida et al. 

(1992) to deal with multichannel EMG. In their work, the electrodes were located on the 

forearm especially on the flexor digitorium superficialis (FDS) muscle. Five motions 

involved were the flexion of all fingers (A), the flexion of the index finger (B), the flexion 
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of the middle finger (M), the flexion of the thumb (T) and relaxation of all fingers (N). 

Signal was collected for 20 sec of a particular motion. They extracted fast Fourier 

transform (FFT) features from two electromyography (EMG) channels. The FFT of the 

EMG signals became the inputs of the feed-forward neural networks (FF-NN).  

Using only one channel, they were able to classify five-finger movements with an 

accuracy of 67%. In the case of 2 EMG channels, by adding another electrode on the 

extensor digitorium muscle, they could improve the accuracy up to 86%. Furthermore, in 

order to adapt to dynamical finger movements, they conducted an additional experiment 

by estimating the angles of finger joints, as shown Figure 2.19. The target angles were 

collected from the glove worn on the hand where the electrodes were located. The results 

were the root mean square error that was less than 25 degrees. 

 
Figure 2.19 Myoelectric pattern recognition for a prosthetic hand using FFT and Artifical 

neural network (Uchida et al., 1992) 

2.4.1.4 Tsenov’s system (Tsenov et al., 2006) 
Similar to Uchida et al. (1992), Tsenov et al. (2006) developed a recognition system 

of finger movement using multilayer perceptron (MLP). MLP classified four finger 

movements: thumb, pointer, middle and hand closure. The electrodes were located on two 

groups of muscles, planaris longus (PL) and extensor digitorum(ED). They extracted 

time-domain (TD) features from EMG signals and put them on the input of the MLP. In 

the offline experiment, they achieved an accuracy of 93% using two EMG channels and 

98% using four EMG channels. Meanwhile, in the online classification, the system 

showed a promising performance by making 30 errors of 250 tested movements.  
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2.4.1.5 Tenore’s system (Tenore et al., 2009) 
Tenore et al. (2009), researchers from John Hopkins University developed a pattern 

recognition system using EMG signals to decode individual finger movements. The 

movements consisted of the flexion and extension of all individual fingers and the middle, 

ring, little fingers as a group. There are 12 classes involved in the experiment. The work 

involved five able-bodied subjects and one transradial amputee.  

Thirty-two electrodes were located in the forearm of the subject. They were divided 

into five different levels comprising of 32, 28, 24, 19, and 12 electrodes, as shown in 

Figure 2.20. The EMG pattern recognition system comprised some stages. The first stage 

is filtering. The EMG signals were bandpass filtered between 10 and 500 Hz. Then the 

EMG signals were segmented using sliding time windows of 200 ms every 25 ms. The 

system employed time domain (TD) feature extraction to extract features from EMG 

signals including the mean of the absolute value (MAV), variance, waveform length 

(WL), and Willson amplitude (W). Feed-forward multilayer perceptrons (MLPs) 

classified the features into twelve classes.  

 
Figure 2.20 The experimental procedure (left) and the electrode positions (right) (Tenore 

et al., 2009) 

The experiments results show that the system achieved a high level of classification 

accuracy (approximately 90 %). Another interesting result was that the accuracy between 

the able-bodied subjects and the transradial amputee was not significantly different. 

2.4.1.6 Cipriani 
Cipriani et al. (2011) developed EMG pattern recognition for a prosthetic hand. 

Different from the previous researcher who employed MLPs or ANN, they utilized k-

nearest neighbour (kNN). The system extracted features from nine EMG channels using 

TD features acquired from five able-bodied and amputee subjects. There are seven hand 



Chapter 2 Literature review 
 

44 
 

movements classified including thumb flexion (A), index finger flexion (B), thumb 

opposition (C) middle, ring, and little finger flexion (D), long fingers flexion (E), tri-

digital grasp (F) and lateral grip/key grip (G), as shown in Figure 2.21. 

 
 Figure 2.21 The EMG pattern recognition of Cipriani (Cipriani et al., 2011) 

The experiment involved 10 participants, five trans-radial amputees, and five able-

bodied subjects. Eight bipolar EMG electrodes were placed on the right arm of 

participants or the residual limbs. For both amputees and able-bodied subjects, six 

electrodes were put on superficial flexor muscles, and the last two were placed on 

superficial extensor muscles. 
The recognition system was implemented online and able to classify seven finger 

movements with the accuracy of around 79 % on the amputee subjects and about 89% on 

the non-amputee subjects.  

2.4.1.7 Khushaba 
R. N Khushaba et al. (2012) developed a new EMG pattern recognition system for 

finger movements using support vector machine (SVM) (Oskoei & Huosheng, 2008). 

There are ten finger movements involved, as shown in Figure 2.22. Those movements 

consist of the individual and combined finger movements consisting of the flexion of each 

of the individuated fingers, i.e., Thumb (T), Index (I), Middle (M), Ring (R), Little (L) 

and the pinching of combined Thumb–Index (T–I), Thumb–Middle (T–M), Thumb–Ring 

(T–R), Thumb–Little (T–L), and eventually the hand close (HC).   

 
Figure 2.22 Ten finger movement involved in the experiment 
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The myoelectric pattern recognition employed in the experiment comprised some 

stages, as shown in Figure 2.23. There were eight healthy subjects involved. In the data 

collection, the subjects performed a finger posture, which was started from a relaxation 

state and then this was followed by holding a certain posture for 5 s. The subject repeated 

the same movement six times with 3 to 5 s resting period between trials. The collected 

data from six trials were divided into two groups, the training data, and the testing data. 

The four trials were used as the training data and the remaining trials were used as test 

data.  

 
Figure 2.23 The stages of the EMG pattern recognition 

Different sets of time-domain features were used (Tkach et al., 2010). There were six 

time-domain features involved, i.e. number of zero crossings (ZC), waveform length 

(WL), slope sign changes (SSC), Hjorth time domain parameters (HTD), sample 

skewness (SS), and autoregressive (AR) model parameters. Then, the dimension of the 

extracted features was reduced using linear discriminant analysis (LDA). 

The experimental results indicated that the system achieved an accuracy of 

approximately 92% in the offline classification and about 90% in the online classification. 

Regarding accuracy, Khushaba et al.’s recognition system was promising, but the system 

contains a natural shortcoming of SVM in dealing with the multi-classification problem. 

At least, the recognition system should use m SVMs to deal with m movement classes. 

Inevitably, this will add to the processing time of the system. 

2.4.1.8 Al-Timemy 
The most recent study of a pattern-recognition system on finger movement 

classification was undertaken by Al-Timemy et al. (2013). They investigated several 

schemes for the EMG pattern recognition, as shown in Figure 2.24. The developed system 

extracted features from six up to twelve EMG channels using TD and AR features. There 

were four combinations of dimensionality reductions and classifiers employed. They are 
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principal component analysis (PCA)-linear discriminant analysis (LDA), PCA-SVM, 

orthogonal fuzzy neighbourhood discriminant analysis (R. N. Khushaba et al., 2010) 

(OFNDA)-LDA and OFNDA-SVM. Those systems classified 12 and 15 movement 

classes on six amputees and ten able-bodied subjects, respectively.  

 
Figure 2.24 Various schemes of the myoelectric pattern recognition investigated 

The most accurate of the four combinations was the system with OFNDA-LDA. The 

system succeeded in achieving an average accuracy of around 98% on the able-bodied 

subjects and approximately 90% on the amputee subjects. However, there was a 

significant accuracy gap between the able-bodied and amputee subjects. 

2.4.2 EMG-based exoskeleton hand 
This section presents a review on the current EMG-based exoskeleton hand. 

2.4.2.1 Mulas’s exoskeleton (Mulas et al., 2005) 
Mulas’s exoskeleton is a exoskeleton hand that is designed for the hand recovery of a 

patient after a stroke or other motor diseases, as depicted in Figure 2.25. The EMG signals 

obtained from the subject’s forearm are used to predict the user’s intention to perform a 

certain task or activity. The exoskeleton is composed of a glove with plastic support to 

guide the fingers to accomplish a natural movement and avoid getting an excessive load 

on the tips. It is actuated by two electric motors that are hitec servos HS-8-5BB. One 

actuator is used to flex the thumb while the other is used to flex the four fingers 

simultaneously. Two springs on the dorsal side were put in to allow extension movements. 
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Figure 2.25 The Mulas’s exoskeleton hand 

The main controller runs on the personal computer (PC) using MALTAB. The PC 

obtains the user’s intention from the EMG signals acquired from two electrodes that 

capture the signals from the Flexor Digitorum Superficialis and the Flexor Flexor Pollicis 

Longus as shown in Figure 2.26. Then the output control from the PC was fed to the 

microcontroller to control the finger movements according to the intended position. In 

the hierarchical structure, the microcontroller behaves as a low-level controller while the 

PC behaves as a high-level controller. 

 
Figure 2.26 The placement of the electrodes 

The EMG signals were sampled at 500 Hz and rectified and filtered using the second-

order filter. The threshold of 50 mV was applied to the rectified EMG signal to distinguish 

the real electrical activity from the noise. If the signals exceed the threshold value, the 

actuator will start to flex the fingers of the exoskeleton. The speed of the finger 

movements depends on the angle of the fingers that goes to zero when the finger fully 

flexed and proportionally increases while the fingers are opening.  

Some shortcomings could be noticed from this exoskeleton. Firstly, the four fingers 

are controlled simultaneously. The individual finger should be able to be controlled 

separately to allow more comprehensive therapy. Even the finger combination movement 

should be involved to achieve better therapies. In other words, the control system only 

deals with a simple functional task and it is not able to work on more complex movements.  
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2.4.2.2 Wege’s exoskeleton hand (Wege & Zimmermann, 2007) 
This exoskeleton hand was developed to support the rehabilitation process for the 

patient after a stroke or hand injuries. It has four degrees of freedom in each finger, the 

flexion and extension of the metacarpophalangeal (MCP) joint, proximal interphalangeal 

(PIP) joint, and distal interphalangeal (DIP) joint; and abduction/adduction in the MCP 

joint, as depicted in Figure 2.27. The thumb can move in four degrees of freedom. The 

carpometacarpal joint (CM) is supported in flexion/extension and abduction/adduction 

movement, metacarpophalangeal (MC), and the interphalangeal (IP) joint are supported 

in their flexion movement. Therefore, in total, it supports up to 20 finger joints. 

 
Figure 2.27 The wege’s exoskeleton hand 

The system is equipped with some sensors such as hall sensors to measure joint angles, 

optical encoders to measure angles of motor axes, and force sensors to measure the force 

between human and machine. These force sensors were placed between the finger 

attachments and the levers. Other sensors are surface Electromyography sensors at the 

forearm. Electromyography (EMG) electrodes can measure the electrical activity in the 

skin of up to sixteen muscles. The control system of the hand is described in Figure 2.28. 
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Figure 2.28 Control diagram of the Wege’s exoskeleton 

This exoskeleton hand employed the blind source separation, as shown in Figure 2.28, 

to separate the information contained in the high-density surface EMG signals at the 

forearm into several signals related to specific finger movement. Ten electrodes were 

located in the forearm, as shown in Figure 2.29, such that it acquired the signals from: 

- Flexor digitorium superficialis which is responsible for finger flexion at MCP 

and PIP joints 

- Flexor policis longus which is partly responsible for the flexion of the thumb 

- Extensor digitorum which is responsible for the extension of all digits 

- Extensor pollicis which is responsible for the extension of the thumb 

- Extensor indicis which is only responsible for the extension of the index finger. 

 
Figure 2.29 The electrode placement for the wege’s exoskeleton hand 

Some drawbacks are apparent in this exoskeleton. The control scheme is not very 

practical (as mentioned by the authors) because of the following reasons. Firstly, the 

placement of the electrodes was the major issue and was critical. In addition, the wrist 

should be fixed to avoid any wrist movement including pronation and supination. 

Secondly, the blind source separation was not working properly. More EMG sensors were 

needed to achieve a more promising blind separation result. 
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2.4.2.3 Tong’s exoskeleton (Ho et al., 2011) 
This exoskeleton was designed as a hand robotic training device to help people after 

stroke to train their impaired hand function. This device is able to detect the user’s 

intention from the user’s muscles in the hand opening and closing training. The 

exoskeleton’s structure fits the different finger lengths and aligns the virtual centre of 

rotation of the metacarpophalangeal (MCP) and the proximal interphalangeal (PIP) as 

shown in the Figure 2.30 and Figure 2.31. It consists of 5 linear actuators, the palm 

support platform, and 2 degrees of freedom that are able to rotate 55 degrees and 65 

degree range of motion for the MCP and PIP, respectively. 

 
Figure 2.30 Mechanical design of Tong’s exoskeleton hand 

 
Figure 2.31 The Tong’s exoskeleton hand 

The embedded controller is built to accompany the hand module that drives the linear 

actuator and detect the user’s intention by interpreting the surface EMG signals that are 

acquired from the abductor pollicis brevis (APB) and the extensor digitorum (ED) from 

the impaired hand, as shown in Figure 2.32. The signals from APB and ED that were 

sampled at 1 kHz were used to predict the hand closing and hand opening task 

respectively. The embedded controller was equipped with a wireless module to enable 

the therapist to configure the exoskeleton and the training module. 
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Figure 2.32 The electrode placement for the Tong’s exoskeleton hand 

The training module in this exoskeleton was an EMG-triggered training mode. The 

hand opening and the hand closing action were obtained by applying the threshold of 20 

% of the maximum voluntary contraction (MVC) from the APB and ED muscle 

respectively. When the hand closing intention was detected, the hand started closing until 

the EMG muscle from the APB muscle exceeded the 20 % of its MVC value. Likewise, 

the exoskeleton hand opened the hand when the EMG signals from the ED exceeded the 

20 % of its MVC value. 

Different control systems were implemented on this exoskeleton (Tong et al., 2010) 

such as the continuous passive motion (CPM), the EMG-triggered motion (TRIG), the 

continuous EMG-driven motion (CONT), and the Free-running mode (FREE).  In the 

CPM mode, the hand opening or closing tasks were passively done and did not require 

any voluntary effort from the user.  

In the TRIG mode, the hand opening and the hand closing action were initiated when 

the measured EMG signals were above the threshold of 20 % of the maximum voluntary 

contraction (MVC) from the APB and ED muscle respectively. When the hand closing 

intention was detected, the hand started closing until the EMG muscle from the APB 

muscle exceeded the 20 % of its MVC value. Likewise, the exoskeleton hand opened the 

hand when the EMG signals from the ED exceeded the 20 % of its MVC value. 

In the CONT mode, the user’s effort is needed to complete the full range of the 

function task because the exoskeleton hand performs the task step by step. If it is the hand 

closing, for example, the exoskeleton will close the hand step by step every time the 

measured EMG signal from the APB is above the threshold.  

Meanwhile, the FREE mode is implemented on the user who has better motor control 

and coordination. The strength of EMG signal from APD and ED will be compared to 
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initiate the functional motion task. If the APB is stronger than the ED, then a hand closing 

is initiated. On the other hand, if the ED is stronger than the APB, then a hand opening is 

initiated. Therefore, this mode enables the user to use their own intentions in doing the 

functional tasks. 

The diversity of the EMG control modes in this exoskeleton improves the efficacy of 

its implementation. However, a significant drawback still exists. All fingers are actuated 

and moved simultaneously. Even though it is comprised of 5 linear actuators for each 

finger, the control strategies did not allow each finger to move individually.  

2.4.2.4 Ngeo’s finger exoskeleton (Ngeo et al., 2013) 
This finger exoskeleton is constructed of a four-bar linkage structure that is able to 

actuate the movement at MCP, PIP and DIP joints, as depicted in Figure 2.33. The 

Arduino Mega micro-controller was used to control the movement of the exoskeleton 

based on the motor command obtained from the processed EMG signals. The surface 

EMG from the Flexor Digitorum Superficialis (FDS), Flexor Digitorum Profundus 

(FDP), Extensor Digitorium (ED) and Extensor Indicies (EI) muscles were acquired and 

processed to predict the motor intention of the continuously moving fingers that was 

represented by the angle of the index finger. 

 
Figure 2.33 Finger exoskeleton 

Each surface EMG signal was converted to a muscle activation by using the so-called 

EMG-to-muscle activation model proposed by Buchanan et al. (2004). The muscle 

activations from each muscle were fed to the artificial neural network (ANN) to predict 

the intended finger joint angle. The feed-forward neural networks composed of three 

layers: an input layer with four nodes from four targeted muscles, a single hidden layer 

and a single linear output with 3 to 6 nodes, were used. 
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The experimental result was good and promising even though it was only tested on a 

healthy subject. The drawback of this system is obviously working on one finger only. 

The complexity and density of the muscles in the forearm have not been considered yet. 

Another example of EMG controller for index finger was proposed by Khairul Anam et 

al. (2014) 

2.5 Summary 
Basic theory of the physiology of the hand, the muscle controlling the hand and the 

electric signal generated by the muscle activities have been presented in detail in this 

chapter. In addition, this chapter addressed different methods used to take benefit of the 

bio-signals of muscles or electromyography or myoelectric signal on different hand 

rehabilitation devices.    

Myoelectric pattern recognition (M-PR) for finger movement is used in most current 

prosthetic hands. The major issue emerging in the M-PR for a prosthetic hand is the big 

gap between the real success of the laboratory experiments and the clinical applications. 

Farina et al. (2014) noted that the primary causes of the gap are related to the robustness 

of M-PR in the clinical applications. Ning et al. (2012) explained that the robustness of 

M-PR can be achieved by fulfilling four conditions. Firstly, major M-PRs should provide 

the simultaneous and proportional controller that can handle multi-degrees of freedom. 

Secondly, M-PR has to have sensory feedback. Thirdly, M-PR should adapt to the 

changes of EMG signal characteristic, and the last, M-PR should integrate with sensor 

modalities to allow complex actions. 

As for the exoskeleton hand, myoelectric non-pattern recognition (M-non-PR) is 

widely used instead of M-PR. Most of the exoskeleton hands employ a myoelectric 

threshold controller. As a result, the hand or finger actions involved are very limited. Most 

of them are the hand opening and hand closing only. In reality, the finger movements are 

not limited to two of those actions only. The exoskeleton hand should consider more 

finger motions instead of just two fingers.  

The research conducted in this thesis will consider the robustness issue in M-PR. The 

limitation of myoelectric control in the exoskeleton hand will be discussed as well. In 

myoelectric pattern recognition (M-PR), this thesis proposes various methods to improve 

the performance of M-PR by proposing classifiers and a feature projection method that 

will be discussed in Chapter 3 and Chapter 4. Meanwhile, Chapter 5 provides efforts 
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to improve the robustness of M-PR by developing an M-PR that adapts to the changes of 

the characteristic of EMG signals. Furthermore, this thesis develops a new myoelectric 

controller for an exoskeleton hand that could work on five individual fingers and five-

finger combinations, as will be discussed in Chapter 5. 

The main metric to measure the success of the M-PR in the laboratory and clinical 

application is either an error or accuracy of the classification result. These measurements 

(error or accuracy) is used to judge the efficacy of the proposed M-PR as an attempt to 

reduce the gap between the laboratory experiment and clinical application. To the best of 

the author’s knowledge, the majority of researchers have used this metric for years. 

Nevertheless, there is little improvement in the error metric by proposing incorrect active 

decisions instead of using wrong decision only, as proposed by E. J. Scheme et al. (2011). 

Therefore, the error or accuracy are the primary measurement used to verify the efficacy 

of the M-PR. This thesis employs accuracy as the primary metric to measure the efficacy 

of all proposed methods. 

     

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 3          

Extreme Learning Machine-Based 
Classification of Finger Movements 
Using Surface Electromyography 

3.1 Introduction 
The main aim of the research in this doctoral thesis is to develop a robust myoelectric 

controller for a hand rehabilitation device in a real-time application. Before considering 

real-time implementation, the research investigates a novel myoelectric pattern 

recognition that is highly accurate and can work well in amputees and non-amputees. 

In this chapter, the proposed myoelectric pattern recognition system will be based on 

the state-of-the-art of the pattern recognition system. The success of myoelectric pattern 

recognition mostly depends on two factors, i.e. feature, and classification. In the feature 

extraction, the focus will be on finding the best feature set of time domain features and 

autoregressive features. As for the classification, the investigation will be on the efficacy, 

and feasibility of single layer feedforward networks (SLFNs) named extreme learning 

machine (ELM) as a classifier in the myoelectric pattern recognition system. Therefore, 

Chapter 3 will focus on the classifier and features as it has been introduced at the end of 

Chapter 2. 

Some experiments will be involved to figure out the optimal myoelectric pattern 

recognition for finger movements. Following the state-of-the-art of myoelectric pattern 

recognition system, this chapter will be started with the discussion of the proposed 

recognition system as discussed in section 3.2. Then, the experiments and the results are 

discussed in section 3.3. Finally, this chapter will end with discussion and summary in 

section 3.4 and section 3.5, respectively. 
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The contribution of this chapter is in providing an accurate and optimal M-PR system 

for recognizing complex finger movements consisting of individual and combined finger 

movements that can work well on amputees and non-amputees. 

3.2 Evaluation of ELM-based myoelectric finger 
recognition for amputees and non-amputees 

In this section, the classification of the finger movements utilizes a state-of-the-art of 

pattern recognition system for myoelectric (MES) or electromyography (EMG) signals 

as shown in Figure 3.1. The following sections will describe the stages involved in the 

figure.  In addition, this section will involve different kinds of ELM. In general, there are 

two groups of ELM based on the structure of the network, the node-based ELM, and 

kernel-based ELM. This chapter will discuss two node-based ELMs (sigmoid ELM and 

radial basis ELM), and three kernel-based ELMs (linear ELM, polynomial ELM and 

radial-basis-function ELM). Moreover, this chapter will compare the performance of 

ELMs with other famous classifiers such as the SVM, least square SVM (LS-SVM), 

linear discriminant analysis (LDA), and k-nearest neighbour (KNN).  

 

 
Figure 3.1 The proposed pattern recognition for classifying finger movements 

3.2.1 Data acquisition and processing 
3.2.1.1 Subjects 

EMG signals employed in this proposed system were collected by Al-Timemy et al. 

(2013). Nine able-bodied subjects, six males and three females aged 21–35 years and five 

traumatic below-elbow amputees aged 25–35 years participated in the data collection. 

Table 3.1 presents the demographics of the amputees. The electromyography signals 

came from twelve pairs of self-adhesive Ag-AgCl electrodes forming twelve EMG 

channels that were located on the right forearms of the intact-limbed subjects. Meantime, 

the amputees used eleven electrode pairs placed on the forearms by considering different 

levels of trans-radial amputation. Figure 3.2 depicts the placement of the electrodes. 
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Table 3.1. Demographics of the amputees involved in the experiment 

ID Age 
(year) 

Missing 
hand 

Dominant 
hand 

Stump 
length (cm) 

Stump 
circumference 

(cm) 

Time since 
amputation 

(year) 
A1 25 Left Right 13 27 4 
A2 33 Left Right 18 24 6 
A3 27 Left Right 16 23 4 
A4 35 Left Right 23 26 8 
A5 29 Left Right 24 26 7 

 

 
Figure 3.2 Electrode’s position of an intact-limbed subject and an amputee subject 

3.2.1.2 Acquisition Device 
A custom-built multichannel EMG acquisition device developed by Al-Timemy et al. 

(2013) was used to record the EMG signals. It consists of a 1000-gain factor amplifier for 

each channel and two analogue filters (a fourth-order Butterworth low-pass filter with 

cut-off frequency of 450 Hz and a second-order Butterworth high-pass filter with cut-off 

frequency of 10 Hz). Also, it is equipped with a USB data acquisition device (National 

Instruments USB-6210) with a sample rate of 2000 Hz and 16-bit resolution. 

Furthermore, the device has two digital filters, a pass-band frequency 20–450 Hz and a 

fifth-order Butterworth notch filter at 50 Hz. The acquired EMG signals were displayed 

and stored in the PC(personal computer) using National Instruments LABVIEW. The 

EMG signals collected were down-sampled to 1000 Hz.   

3.2.1.3 Acquisition Protocol 
The non-amputee subjects were instructed to perform fifteen (15) actual finger 

movements. As for the amputee subjects, they were asked to imagine moving their fingers 

representing twelve (12) finger movements. The fifteen finger movements consisted of 

eleven individual finger movements, three combined ones, and one rest state. Different 

from the able-bodied subjects, the amputee subjects were asked to perform eleven (11) 

individual finger movements, as on the able-bodied subjects, and one rest state (R). The 
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individual finger movements comprise a thumb abduction (Ta), thumb flexion (Tf), index 

flexion (If), and middle flexion (Mf). Then ring flexion (Rf), and little flexion (Lf). 

Moreover, it involved thumb extension (Te), index extension (Ie), middle extension (Me), 

ring extension (Re), and little extension (Le). As for the combined movements, they 

consisted of little and ring flexion (LRf), index, middle and ring flexion (IMRf), and 

middle, ring and little flexion (IMRLf). The normal subjects performed these combined 

movements only. 

During the data recording, the users were sitting on a chair in front of a personal 

computer. The subjects put their arms on a pillow and produced distinct finger movements 

subsequently. They had a rest of 5-10 seconds between two consecutive movements. The 

final movement took 8–12 seconds for normal-limbed subjects and 5–10 seconds for 

amputees. As a note, Amputees A1 and A2 performed movements of 3–4 seconds shorter 

than the rest of the amputees. Moreover, each movement was repeated six times. All trials 

in a movement were combined and labeled with a class related to the movement. 

3.2.1.4 The Channel Number 
The number of channels utilized in myoelectric pattern recognition influences the 

performance of the system. This subsection would like to investigate its influence and 

observe the feasibility of using fewer channels for finger movement recognition. In this 

chapter, the electrode locations were positioned on the limb in such a way that the number 

of electrodes on extension and flexion muscles is the same or similar. This method is 

similar to symmetrical channel reduction used in (L.J. Hargrove et al., 2007). Other 

techniques can be utilized to choose the best channel combination when considering 

channel reduction. Examples are the straightforward exhaustive search algorithm (Li et 

al., 2010) which explores all possible electrode combinations, and the channel elimination 

(Al-Timemy et al., 2013) which eliminates the least contribution channel in each 

elimination iteration. 

3.2.1.5 Data Segmentation 
In general, the data or signal can be segmented in two ways: either as a disjoint or 

overlapped windowing. The disjoint windowing only associates with the window length. 

On the other hand, the overlapped windowing is associated with the window length and 

window increment. The window increment is a period between two consecutive windows. 

In general, the disjoint windowing is overlapped windowing in a condition where the 
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window increment is equal to the window length. Also, the window increment should not 

be more than the window length (Oskoei & Huosheng, 2008). Moreover, it should not be 

greater than the total time of the recognition system (Oskoei & Huosheng, 2007).  

The determination of window length should consider the optimal delay time of a 

myoelectric control system (MCS), as defined by Farrell and Weir (T. Farrell & Weir, 

2008) as: 

  3.1 

where D is the MCS delay time, and Twl is the length of the window. Meanwhile Tinc is 

the increment of the window, n is the number of votes in the post-processing stage and  

is the processing time taken by a pattern-recognition system.  

In addition to the segmentation method, the features are extracted from the signal on 

the steady state of the muscle contraction excluding the transient state. The classification 

process on the transient state necessitates muscle contraction from the rest state. In fact, 

in a real-time application, the switching happens from one movement to another, not from 

the rest state. Moreover, Kevin Englehart et al. (2001) found that the classification 

performance of the steady state outperforms that of the transient state. However, ignoring 

the transient state will reduce the robustness of the pattern recognition.  

3.2.2 Feature Extraction 
Time domain (TD) and autoregressive (AR) features provide a robust feature set for 

an EMG signal recognition system (L.J. Hargrove et al., 2007; Tkach et al., 2010). A 

single TD feature does not offer enough features for the classifier to identify the intended 

movement properly (Oskoei & Huosheng, 2008). Therefore, the combination of several 

TDs and AR should be considered in designing an effective classification system. 

This chapter combines a new feature set consisted of SSC (slope sign changes), ZC 

(zero crossing), WL (waveform length), HTD (Hjorth time-domain parameters), SS 

(sample skewness), MAV (mean absolute value), MAVS (mean absolute value slope), 

RMS (root mean square), and sixth order of autoregressive model (AR6). The new feature 

set was tested on ten different window lengths. Then, its performance was compared to 

other well-known feature sets, such as the feature set of Hudgin 

(MAV+MAVS+SSC+ZC+WL) (Hudgins et al., 1993), Englehart (MAV+ZC+SSC+WL) 

(Kevin Englehart & Hudgins, 2003), Khushaba (SSC+ZC+WL+HTD+SKW+ 
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AR5+MAV) (R. N Khushaba et al., 2012) and Hargrove (MAV+MAVS+SSC+ 

ZC+Wl+RMS+AR5) (L.J. Hargrove et al., 2007). As for the theoretical explanation of 

these features, the reader can refer to section 2.3.1.2. 

3.2.3 Dimensionality Reduction 
All features extracted from all EMG channels are concatenated to form a large feature 

set. As a result, the dimension of the feature set is enormous and needs to be reduced 

without compromising the information contained in the original features. To reduce the 

feature dimension, the experiments in this chapter employed supervised feature 

projections that is linear discriminant analysis (LDA) (Fukunaga, 2013). Besides, this 

chapter employed the extension of LDA, which are spectral regression discriminant 

analysis (SRDA) (D. Cai et al., 2008), and orthogonal fuzzy neighbourhood discriminant 

analysis (OFNDA) (R. N. Khushaba et al., 2010). In LDA, the feature sets are reduced 

and projected to c-1 features where c is the number of classes. As for the basic theory, the 

reader can refer to section 2.3.1.3. 

3.2.4 Classification using Extreme Learning Machine 
(ELM) 

This work investigates the performance of extreme learning machine (ELM) (see 

section 2.3.1.4.1 for the ELM’s theory) in finger movement classification. In general, the 

ELM can be divided into two groups, node-based ELM and kernel-based ELM. They are 

different in the feature mapping. The node-based ELM utilizes hidden layer nodes to map 

the features while the kernel-based ELM employs the kernel function. The work in this 

chapter used a sigmoid-additive hidden node (Sig-ELM) and a multi-quadratic radial-

basis-function hidden node (Rad-ELM) for the node-based ELM. As for the kernel-based 

ELM, the work employed linear (Lin-EM), polynomial (Poly-ELM), and RBF kernels 

(RBF-ELM). 

Some experiments were performed to compare classification performances among 

different types of ELMs with respect to the classification accuracy. Besides, comparison 

with other well-known classifiers, such as the SVM, LS-SVM, kNN and LDA, was also 

carried out. Also, except for kNN and LDA, the SVM, and the kernel-based ELM require 

parameter optimization. The RBF kernel, for example, consists of the cost parameter C 

and kernel parameter . G. B. Huang et al. (2012) noted that the combination of (C, ) 

greatly affects the performance of the SVM and ELM. 
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In this work, the parameter adjustments were selected using a coarse grid-search 

method (Chang & Lin, 2011). The parameter ranges of C and  are mostly dissimilar 

between one classifier and another. For the SVM and LS-SVM, the C and  ranges were 

the same, that is (2-9, 2-8,…, 29,210). Meanwhile, the parameter ranges of the other kernel-

based ELMs were as follows: the linear kernel C = (2-4, 2-3, … , 24,25); the polynomial 

kernel C = (2-4, 2-3, … , 24,25) and d = (2-5, 2-4, … , 28,29), and the RBF kernel  C = (2-9, 

2-8, … , 29,210) and  = (2-19, 2-18, … , 27,28). 

Different from the kernel-based ELM, the non-kernel-based ELM does not strictly 

depend on specific parameters. In the ELM, the hidden layer parameters were randomly 

generated based on uniform distribution. Nevertheless, the user needs to select C and the 

number of hidden layers L. Fortunately, the combination of (L,C) does not affect the 

generalization performance as long as the number of hidden nodes L is large enough (G. 

B. Huang et al., 2012). In this work, L = 2000 was chosen. As for the range parameter of 

C, it was varied among (2-9, 2-8,…, 229,230), and it was selected using the coarse grid 

search method. 

In the offline mode, the classification employs the aforementioned optimal parameters. 

The classification process was verified using a four-fold cross-validation in all 

experiments. The accuracy formulated in Eq. 3.2 was used to measure the performance 

of the classifier in recognizing the finger movements. Furthermore, the analysis of 

variance test (ANOVA) was used to statistically examine the significance of the proposed 

system. 

  3.2 

3.2.5 Post-processing 
The myoelectric pattern recognition (M-PR) system can employ a majority vote to 

refine the classification result and reduce the misclassification rate. However, the use of 

the majority vote produces delay time that should be kept under the acceptable delay 

which is 300 ms (Kevin Englehart & Hudgins, 2003). Alternatively, the M-PR can design 

the system to comply with the optimal delay of the myoelectric control system, which is 

100-125 ms for the 90-percent of users or 100-175 ms for the average users (T. R. Farrell 

& Weir, 2007). In this work, the optimal number of n votes was determined by varying 

the number of n from 0 to the maximum allowable n that can be calculated using: 
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  3.3 

where nmax = n maximum votes, Tinc = window increment (ms), Twl = window length (ms), 

 = processing time taken to generate the output (ms), and Dmax = maximum delay time 

(ms). 

3.2.6 Simulation Environment 
The collected data were huge and took much time and computing power to process. 

Therefore, the pattern-recognition systems of the finger movements on the non-amputee 

and amputee subjects were carried out using a high-performance computer with a nine 

core Intel Xeon, 3.47-GHz CPU with 94.5-GB RAM running MATLAB 8.20 64-bit. The 

recognition system code was implemented in m-file MATLAB. The codes involved some 

libraries from myoelectric toolbox (A. D. C. Chan & Green, 2007), BioSig toolbox 

(Schlogl & Brunner, 2008), and the ELM source code (G. B. Huang et al., 2012). 

Meanwhile, the codes of other classifiers for comparisons, such as LDA, the SVM, LS-

SVM, and kNN, were obtained from the MATLAB package. 

3.3 Experiments and Results 
In this section, the results of several experiments are presented and analysed. The first 

part is the examination of the number of channels. A four-fold cross-validation method 

was used to validate the classification performance in all experiments. 

3.3.1 The Number of channels 
This section aims to investigate the classification performance based on the number of 

channels from one up to twelve (12) channels across nine normal-limbed subjects. It also 

investigates the performance of an eleven-channel experiment across five amputees. The 

goal is to classify fifteen (15) and twelve (12) finger movements from nine normal-limbed 

subjects and five amputees, respectively. In this section, the myoelectric pattern 

recognition (M-PR) system employed Khusaba’s feature set 

(SSC+ZC+WL+HTD+SKW+AR5+MAV) (R. N Khushaba et al., 2012) with 200 ms 

window length shifted by 50 ms window increment. SRDA (spectral regression 

discriminant analysis) is used to reduce the feature dimension while RBF-ELM (ELM 

with radial basis kernel) is used as the classifier. No post-processing was involved after 
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classification. The classification performances are assessed using average classification 

accuracy as described in Figure 3.3. 

Figure 3.3 shows the performance comparison of the channel-number experiments 

across nine non-amputee subjects and five amputee subjects. The figure presents an 

interesting finding in the non-amputee subjects. The accuracy is very low when the 

system employed the small channel numbers, but it increased rapidly as the channel 

number rose up to six channels. Interestingly, the accuracy stayed constant at roughly 98 

% on the number of channels more than six. Similarly, on the amputee subjects, the 

accuracy swiftly increased up to six channels at about 96%. However, it increased 

insignificantly on the number of channels more than six and reached the maximum 

accuracy when using 11 channels at roughly 97% 

 
Figure 3.3 Accuracy of the number of channel experiments across nine able-bodied 

subjects and five amputees using four-fold cross validation 

A statistical test using one-way ANOVA with a significance level set at p = 0.05 was 

conducted on the classification accuracy across all subjects. It shows that on the non-

amputee and amputee people, the accuracy of six-channel trial and more than six-channel 

trials are not significantly different (p > 0.05). Based on these results, the subsequent 

experiments will explore the classification performances of the six-channel case and 11-

channel case for the non-amputee and amputee subjects.  

3.3.2 Window Length 
The goal of this experiment is to find the optimal window length for finger 

classification by varying the window length from 50 to 500 milliseconds (ms) with fixed 

window increment of 50 ms. In this trial, the M-PR system employed six EMG channels 

from able-bodied and amputee subjects. Besides, the work utilized the feature set of 

Khushaba (SSC+ZC+WL+HTD+SKW+AR5+MAV) (R. N Khushaba et al., 2012). The 

dimension of the extracted features was reduced using SRDA. RBF-ELM was utilized to 
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identify ten finger movements. No post-processing was involved after classification. The 

experiment results are presented in Figure 3.4. 

Figure 3.4 shows that the average accuracy increases as the window length increases. 

Thus, the experiment using maximum window length achieves the best accuracy. 

However, the maximum window length does not always determine it as the optimum 

window length. Smith et al. (2011) advised that the optimal window length should be 

between 150 ms and 250 ms. As shown in Figure 3.4, in this range, the average accuracy 

is 96 – 98% and 92 – 94% in non-amputee and amputee subjects, respectively.  

 
Figure 3.4 Average classification accuracy across 10 different window lengths 

The window length and the window increment along with the processing time of the 

recognition system influence the delay time of the myoelectric control system (MCS), as 

shown in Eq. 3.1. T. R. Farrell and Weir (2007) urged that the optimal delay time should 

be between 100 – 125 ms. Figure 3.5 shows the processing time of the system. The longest 

processing time is 2.2 ms when the window length is 500 ms. By considering the Farrel’s 

suggestions and the maximum processing time, there are many allowable combinations 

of window length and window increments. If the longest window, which is 200 ms in 

Figure 3.4, is chosen then using Eq. 3.1 the window increment is 25 ms. 

 
Figure 3.5 Averaged processing time of the finger recognition 
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3.3.3 Feature Extraction 
There are six feature sets examined in this work. Six-order autoregressive (AR6) and 

Hjorth Time Domain (HTD) parameters are the first and second feature set. Other feature 

sets are combinations of features introduced and employed by researchers, and they are 

named according to the researchers proposing it. Hudgins’s feature set consists of MAV, 

MAVS, ZC, SSC, and WL. Englehart’s set excludes MAVS from Hudgins set. 

Meanwhile, Hargrove’s set is composed of Hudgins’s set plus AR6 and RMS. Different 

from Hargrove's set, Khusaba's set is constructed from Englehart's set plus HTD, SS, and 

AR. This work introduces a new combination of features, which is a concatenation of 

Hargrove's and Khusaba's set. It comprises MAV, MAVS, ZC, SSC, SS, WL, RMS, AR6, 

and HTD that forms 16 features in each channel. The experimental results are shown in 

Figure 3.6 and Table 3.2. 

  
(a)                                                                                    (b) 

Figure 3.6 Average classification accuracy of different feature extraction on nine able-
limbed subjects (a) and five amputee subjects (b) using 4-fold cross validation 

Figure 3.6 presents the accuracy of different feature sets across window lengths from 

50 to 500 ms on nine able-bodied subjects (a) and five amputee subjects (b). All feature 

sets have similar behaviour i.e. the accuracy increases along with the increase of the 

window length. In the able-bodied subjects, the individual feature sets including AR6 

(six-order Autoregressive) and HTD (Hjorth parameters) are less accurate than the 

combined feature sets. This fact supports the results of Oskoei and Huosheng (2008) that 

a single features is less accurate than a combination one. Among combined feature sets, 

the proposed feature is significantly better than some other methods but does not change 

too much from two other methods (Hargrove’s and Khushaba’s feature) for different 

window lengths. 
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Table 3.2 Averaged classification accuracy of the system using different features across all 
subjects using four-cross validation 

Features(#) Amputee (%) Intact-limbed (%) Time (ms) 
AR6 (#6) 82.29±12.99 89.25 ± 12.48 0.27 ± 0.07 
HTD (#3) 87.12±9.38 93.90 ± 6.86 0.17 ± 0.01 
Englehart  (#4) 
(Kevin Englehart & Hudgins, 
2003) 90.74±6.53 94.89 ± 6.03 0.52 ± 0.20 
Hudgins (#5) 
(Hudgins et al., 1993)  91.43±5.08 96.60 ± 2.55 0.58 ± 0.19 
Khushaba (#14) 
(R. N Khushaba et al., 2012) 93.01±5.57 97.16 ± 2.82 1.14 ± 0.28 
Hargrove (#12) 
(L.J. Hargrove et al., 2007)  93.19±4.86 97.39 ± 2.15 0.94 ± 0.26 
This thesis (#16) 93.60±4.48 97.59 ± 1.86 1.39 ± 0.33 
 

In contrast, on the amputee subjects, the proposed feature set is far more accurate than 

other sets except Khushaba's and Hargrove's set. Those two sets are as accurate as the 

proposed one. Statistical test using one-way ANOVA with p = 0.05 showed that there are 

no significant differences between them (p>0.05). Nonetheless, the proposed one still 

outperforms the others as shown in Table 3.2. As for the time, the processing time of the 

proposed one and Khushaba’s set is not significantly different (p>0.05). However, the 

time difference is significant compared to Hargrove’s set (p<0.05). 

3.3.4 Feature Reduction 
Three dimensionality reduction methods were examined in this experiment. The 

primary goal was to investigate the performance of different types of LDA variances i.e. 

original LDA (linear discriminant analysis), SRDA (spectral regression discriminant 

analysis) and OFNDA (orthogonal fuzzy neighbourhood discriminant analysis). As 

mentioned in section 3.3.3, the feature set used in this experiment comprises MAV, 

MAVS, ZC, SSC, SS, WL, RMS, AR6, and HTD.  It produces 16 features in each 

channel. In other words, the feature set produced 96 (16x6) features of the six-channel 

EMG signals and 176 (16x11) features of the 11-channel EMG. The dimensionality 

reduction methods reduced these features into 14 and 11 features of the non-amputee and 

amputee subjects, respectively. No majority vote was used after RBF-ELM classifier. The 

results are depicted in Figure 3.7 and Figure 3.8. 

Figure 3.7 indicates that on the amputee subjects, the recognition system using SRDA 

outperformed LDA and OFNDA for both cases, the six-channel and 11-channel cases. 



Chapter 3 Extreme Learning Machine-Based Classification of Finger Movements Using Surface Electromyography 

67 
  

On the other hand, on the able-bodied subjects, OFNDA is the most accurate method of 

the six-channel trials, while LDA is the best method in the 11-channel experiments. 

Besides, in all cases, standard deviations of the performance of OFNDA are large 

compared to the other two. In other words, its performance varies across different 

subjects, especially on the amputee subjects. OFNDA seems to be less stable than the 

other two methods. 

 
Figure 3.7 Averaged classification accuracy of different reduction dimensionality methods 

across nine and five non-amputee and amputee subjects, respectively  

In terms of processing time of three methods tested, SRDA is the fastest method 

(Figure 3.8). In contrast, the longest processing time was OFNDA. Another interesting 

finding is in the comparison of LDA and SRDA. In the 6-channel amputee, the time 

difference between LDA and SRDA is not significant; however, it becomes double on the 

11-channel amputee. A similar trend occurred in the non-amputee subjects. The LDA’s 

reduction time is roughly twice of the SRDA's reduction time in 11-channel non-

amputees. Therefore, based on these results, SRDA is the best option for the 

dimensionality reduction. 

 
Figure 3.8 Averaged reduction time of different reduction dimensionality methods across 

nine and five non-amputee and amputee subjects respectively 

3.3.5 Majority Vote 
This subsection examines one of the post-processing methods called a majority vote. 

This experiment was done to observe the optimal vote number for the classification 
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enhancement. The majority vote can smoothen and enhance the classification results, as 

explained in section 3.2.5. In this experiment, the M-PR system employs SRDA to reduce 

the feature dimension and RBF-ELM to classify the finger movements. In addition, the 

number of votes tested is from one until six votes. Figure 3.9 presents the results.  

 
Figure 3.9 The results of the majority vote experiment using RBF-ELM classifer validated by 

four-fold cross validation 

The figure shows that, in amputee subjects, the greater the number of the votes, the 

more accurate the system. On the other hand, in the non-amputee subjects, an opposite 

trend occurred, the greater the number of the votes, the less accurate the system. 

Therefore, no-majority vote is the best option for the able-bodied subjects, but on the 

contrary, six votes is the best vote number for the amputee subjects. 

As shown in Eq. 3.3, the majority vote increases the delay time of a pattern recognition 

system. In the literature, there are two delay times. Firstly, it is the acceptable delay time 

proposed by Kevin Englehart and Hudgins (2003). It should be less than 300 ms. The 

second one is the optimal delay time proposed by T. R. Farrell and Weir (2007), which is 

100 - 125 ms. As discussed in section 3.3.2, the window length is 200 ms and the window 

increment is 25 ms. If it is desired that the delay time should comply with the optimum 

delay time then, by using Eq. 3.3, then the number of votes is one. In Figure 3.9, the no-

majority vote was better than the one-majority vote. Therefore, no majority vote was the 

best option for the next experiments. 

3.3.6 Classification 
In this section, the performances of various types of ELM for finger movement 

classification on amputee and able-bodied subjects are investigated. As presented in 

section 3.2.4, ELM consists of two types, the node ELM and kernel-based ELM. The M-

PR system in the experiments utilized two node ELMs: a sigmoid-additive hidden-node 

(Sig-ELM) and multi-quadratic RBF hidden-node (Rad-ELM). As for the kernel-based 
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ELM, the work employed three kernel-based ELMs: linear (Lin-ELM), polynomial (Poly-

ELM), and RBF kernels (RBF-ELM). Furthermore, the performances of these ELMs 

were compared with other famous classifiers such as sequential minimal optimization 

SVM (SM-SVM), least-square SVM (LS-SVM), LDA, and kNN. Moreover, multi-class 

SVM problem is implemented using one-against-all (OAA). The kernel-based ELM and 

SVM need the optimal kernel parameters to have good performance. Table 3.3 presents 

the optimized parameters of some classifiers computed using a grid search method.  

Table 3.3 The optimum parameters of the classifiers used in the experiment 
Classifier C  d L 
Sig-ELM 230 - - 2000 
Rad-ELM 224 - - 2000 
Lin-ELM 2-1 - - - 
Poly-ELM 2-1 - 26 - 
RBF-ELM 26 2-10 - - 

SVM 22 20 - - 
LS-SVM 210 20 - - 

Besides relying on the optimized parameters, the experiments in the following section 

consider all results done previously.  The system will classify 15 finger motion classes of 

the able-bodied subjects and 12 finger movement classes of the amputees. The proposed 

system employs nine feature extraction methods (MAV, MAVS, ZC, SSC, SS, WL, 

RMS, AR6, and HTD) that constitute sixteen (16) features per channel. They are extracted 

using overlapping windowing with the window length of 200 ms and window increment 

of 25 ms.  

Furthermore, the system is applied to two channel groups, i.e., six-channel and 11-

channel group that produces 96 features and 176 features, respectively. Then, SRDA (see 

section 3.3.4) is used to reduce the feature's dimension into 14 and 11 features of the able-

bodied and amputee subjects, respectively. Finally, ELM classifiers are utilized to classify 

and recognize the finger movement classes without using majority vote. As a note, the 

recognition systems for amputee and non-amputee subjects are alike in structure, 

composition and parameters. A trial using only two channels will be investigated at the 

end of experiments. 

3.3.6.1 ELM Performances 
In this experiment, five types of ELM consisting of two non-kernel based ELMs (Sig-

ELM and Rad-ELM) and three kernel-based ELMs (Lin-ELM, Poly-ELM, and RBF-

ELM) are examined. The results are described in Figure 3.10. Figure 3.10 shows that, on 
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the amputee subjects, RBF-ELM outperforms other classifiers in two cases, a six-channel 

case by average accuracy of 98.55 % and an 11-channel case by the average accuracy of 

99.50 %. The worst classifier is Lin-ELM especially in the 6-channel condition with 

average accuracy of 90%.  

 
Figure 3.10 Average accuracy of various ELMs across five amputees and nine able-bodied 

subjects using four-fold cross validation 

Furthermore, RBF-ELM is the only classifier that achieved average accuracy more 

than 98% in the 6-channel experiment. On the contrary, in the 11-channel trial, all 

classifiers attained average accuracy higher than 98 % except Lin-ELM. Likewise, on the 

non-amputee subjects, RBF-ELM is superior to other ELMs. It achieved classification 

accuracy up to 99.71 % on the 6-channel case and 99.88% on the 11-channel case. 

Interestingly, all classifiers exceeded the average accuracy of 98 % in both cases, 6-

channel and 11-channel cases except Lin-ELM. It can be concluded that RBF-ELM is the 

best classifier on both the amputee and non-amputee subjects. The significance of RBF-

ELM over other classifiers is also indicated by the results of ANOVA test as shown in 

Table 3.4. 

Table 3.4 p-values from a pair-wise comparison of various ELM classifiers on Five 
Amputee Subjects 

 

6-channel condition 11-channel condition 
Non-kernel Kernel Non-kernel Kernel 

Rad- 
ELM 

Lin- 
ELM 

Poly- 
ELM 

RBF- 
ELM 

Rad- 
ELM 

Lin- 
ELM 

Poly- 
ELM 

RBF- 
ELM 

Sig-ELM 0.726 0.000 0.927 0.015 0.821 0.011 0.823 0.080 
Rad-ELM  0.000 0.668 0.026  0.006 0.650 0.089 
Lin-ELM   0.001 0.000   0.019 0.000 
Poly-ELM    0.017    0.060 
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A one-way ANOVA test with a significance level set at p = 0.05 was applied to the 

amputee subjects. Table 3.4 shows the results of ANOVA test for the amputee subjects. 

The result indicates that when using six channels, the accuracy of RBF-ELM was 

significantly different from other ELM classifiers (p = 0.015). However, in the 11-channel 

experiment, there was no significant difference in the classification accuracy between 

RBF-ELM and other classifiers (p = 0.076) except Lin-ELM (p=0.19e-3). Moreover, the 

ANOVA test on the non-amputee subjects (Table 3.5) highlights that RBF-ELM was 

statistically superior to other ELM classifiers (p<0.001). In addition, Sig-ELM, Rad-

ELM, and Poly-ELM significantly obtained no different accuracy (p>0.05). In general, 

these facts confirm the classification superiority of RBF-ELM over other ELM classifiers. 

Table 3.5 p-values from a pair-wise comparison of various ELM classifiers on Nine Able-
bodied Subjects 

 

6-channel condition 11-channel condition 
Non-kernel Kernel Non-kernel Kernel 

Rad- 
ELM 

Lin- 
ELM 

Poly- 
ELM 

RBF- 
ELM 

Rad- 
ELM 

Lin- 
ELM 

Poly- 
ELM 

RBF- 
ELM 

Sig-ELM 0.902 0.000 0.673 0.000 0.857 0.000 0.073 0.018 
Rad-ELM  0.000 0.570 0.000  0.000 0.067 0.024 
Lin-ELM   0.000 0.000  1.000 0.206 0.000 
Poly-ELM    0.000  0.206 1.000 0.024 
 

Figure 3.11 shows the average classification accuracy of RBF-ELM on five amputee 

subjects in two conditions: six channels and 11 channels. The recognition system using 

RBF-ELM was capable of classifying the 12 finger movements by a minimum average 

accuracy of more than 97%. However, the classifier underwent some difficulties in 

identifying signals from the amputee subjects, especially for the subject A4. Based on the 

demographic data in Table 3.1, the subject A4 has been a hand amputee for eight years. 

S/he might have a difficulty in imagining the intended finger movements due to the length 

of time of the amputee condition. Meantime, the subject A1 and A3 who have been hand 

amputees for four years performed well in imagining finger movements so that their 

signals were more detectable than others. 
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Figure 3.11 Average classification accuracy of RBF-ELM on five-amputee subjects using 

four-cross validation 

Different from Figure 3.11, Figure 3.12 presents the classification accuracy of RBF-

ELM in recognizing the intended classes of the five amputee subjects. The finger 

movements performed by the amputees here are not the actual movements. They 

imagined the finger movements representing 12 finger movements aided by their healthy 

hands. The figure shows that RBF-ELM could classify all classes correctly with average 

accuracies of more than 96% on the six-channel and 98% on the 11-channel experiments. 

The easiest finger movement was the rest condition while little extension (Le) and ring 

extension (Re) movements were the most difficult movements to identify. Furthermore, 

middle extension (Me) and index extension (Ie) movements were the next two 

consecutive intricate movements. Interestingly, most of the complicated movements were 

the extension movements, while flexion movements were relatively easily recognized. To 

analyse the misclassified classes, we can observe the confusion matrix plot presented in 

Figure 3.13. It seems that Le was identified as Re and vice versa. Besides, Me was 

recognized as Le. 

 
Figure 3.12 Average classification accuracy of RBF-ELM on 12 finger movement classes 

over five amputee subjects. 
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Figure 3.13 Average confusion matrix plot of six-channel RBF-ELM on five amputee 

subjects 

As for the non-amputee subjects, the average accuracy of RBF-ELM on individual 

subjects is depicted in Figure 3.14. RBF-ELM succeeded in recognizing 15 classes across 

nine subjects by average accuracy of more than 99 % in 6-channel and 11-channel cases. 

The most accurate classification occurs in subject 4 in which the accuracy is 

comparatively the same, on 6-channel and 11-channel experiments. Obviously, 11-

channel trials are more accurate than 6-channel trials. 

 
Figure 3.14 Average classification accuracy of RBF-ELM on nine able-bodied subjects 



Chapter 3 Extreme Learning Machine-Based Classification of Finger Movements Using Surface Electromyography 
 

74 
 

 
Figure 3.15 Average classification accuracy of RBF-ELM on 15 finger motion over nine 

non-amputee subjects 

In addition to the classification performances of subjects, the performance of finger 

motion recognition is analysed. On able-bodied subjects, depicted in Figure 3.15, the 

system can classify all classes by the average accuracy of more than 99%. However, on 

the ring flexion (Rf), rest (R) and thumb abduction (Ta), the accuracies are diverse and 

they descend to less than 99 % in the 6-channel case. Overall, RBF-ELM accurately 

recognizes 15 classes with the accuracy of more than 98 %. 

To investigate misclassified classes, the plot of the confusion matrix of the 

classification results is presented in Figure 3.16. Figure 3.16 shows interesting results. 

The difference between the misclassified data is not clear because the average errors are 

extremely small and relatively similar. Therefore, it confirms that RBF-ELM’s 

performance is clearly outperforms the other classifiers. 

 
Figure 3.16 Average confusion matrix plot of six-channel RBF-ELM on nine non-amputee 

subjects 
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3.3.6.2 ELM and other classifiers 
In this section, the performance of ELM is compared to other well-known classifiers 

to verify its performance in recognizing finger motions over amputee and non-amputee 

subjects. This work compared ELM with some known classifiers such as SM-SVM, LS-

SVM, LDA, and kNN. The structure of the recognition system for these two subject 

groups is alike. In this comparison, ELM is represented by RBF-ELM. The results are 

described in Figure 3.17.  

The figure indicates that the accuracy of RBF-ELM has a higher value than the others 

in all conditions. On six-channel amputee subjects, RBF-ELM was the most accurate 

classifier. It was far superior to LDA and kNN, but it was slightly better than the SVM 

family, SM-SVM and LS-SVM. Likewise, in the 11-channel case, RBF-ELM achieved 

the best accuracy, but the accuracy gap was not as large as in the six-channel experiments.  

 
Figure 3.17 Average accuracy comparison between RBF-ELM and other famous 

classifiers 

Similar to the amputee subjects, the accuracy of RBF-ELM on the non-amputee 

subjects exceeded that of other classifiers. Different from 6-channel amputee results, the 

average accuracies of 6-channel trial on non-amputee subjects are close to each other 

except for LDA. On the other hand, the accuracies are relatively the same for the 11-

channel cases including LDA. It seems that the more complex the data involved, the 

closer the accuracy of classifiers. The superiority of RBF-ELM is more noticeable by 

considering ANOVA test as presented in Table 3.6 and Table 3.7 which shows p-values 

of ANOVA pair-wise test of various classifiers across five amputee subjects. It indicates 

that on the amputee subjects, the accuracy of RBF-ELM was significantly different from 

LDA (p = 0.001) but it was not significantly different to other rest classifiers (p > 0.05). 

Meanwhile, different results occurred to the able-bodied subjects, as depicted in Table 

3.7. In all cases, six-channel and 11-channel, RBF-ELM attained accuracy, which was 
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significantly different from the other classifiers (p = 0.001). This fact means that RBF-

ELM was clearly superior to the other classifiers in recognizing 15 finger movement 

classes. 

 

Table 3.6 p-values from a pair-wise comparison of different classifiers on five amputee 
subjects 

 6 channels 11 channels 
SM-SVM LS-SVM LDA KNN SM-SVM LS-SVM LDA KNN 

RBF-ELM 0.577 0.665 0.000 0.067 0.429 0.539 0.001 0.178 
 
 

Table 3.7 p-values from a pair-wise comparison of different classifiers on nine non-
amputee subjects 

 6 channels 11 channels 
SM-SVM LS-SVM LDA KNN SM-SVM LS-SVM LDA KNN 

RBF-ELM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 
 

The comparison of ELM and other familiar classifiers was undertaken not only in 

terms of accuracy but also in the training time as shown in Table 3.8 and Table 3.9. For 

the amputee subjects, the fastest training time was LDA followed by kNN. As for the 

ELM, the training time was far quicker than the SVM family, SM-SVM, and LS-SVM, 

but slower than LDA and kNN. As for the non-amputee subjects, because they have more 

data, their training time is slower. Interestingly, the time difference between the kernel-

based and node-based ELM is very noticeable in the non-amputee cases. The kernel-based 

ELM consumed much more training time than the node-based ELM. This fact confirms 

the benefit of the node ELM in which the calculation of output weight can be modified to 

deal with extensive data (see Eq. 2.42 in section 2.3.1.4.2). 

Table 3.8 Training time of amputee subjects 

Classifier Six-channel 11-channel 
Mean (ms) Std Mean (ms) Std 

Sig-ELM 4.293 2.159 4.351 2.190 
Rad-ELM 4.301 2.118 4.261 2.115 
Lin-ELM 4.643 5.073 4.635 5.064 
Poly-ELM 5.214 5.567 5.194 5.550 
RBF-ELM 5.581 6.005 5.556 5.958 
SM-SVM 66.402 88.639 54.973 69.084 
LS-SVM 86.339 73.602 86.921 74.398 

LDA 0.012 0.005 0.010 0.004 
KNN 0.785 0.689 0.782 0.690 

 

 



Chapter 3 Extreme Learning Machine-Based Classification of Finger Movements Using Surface Electromyography 

77 
  

Table 3.9 Training time of non-amputee subjects 

Classifier Six-channel 11-channel 
Mean (ms) Std Mean (ms) Std 

Sig-ELM 7.338 1.355 7.362 1.343 
Rad-ELM 7.417 1.337 7.346 1.291 
Lin-ELM 17.318 7.441 17.272 7.443 
Poly-ELM 18.956 8.019 18.881 7.995 
RBF-ELM 19.876 8.409 19.829 8.301 
SM-SVM 324.064 233.388 249.582 173.228 
LS-SVM 241.715 76.175 242.684 76.531 

LDA 0.031 0.006 0.026 0.007 
KNN 2.656 0.885 2.658 0.887 

 

In addition to the training time, the testing time is presented as well, as shown in  

Table 3.10 and Table 3.11.  
Table 3.10 indicates that the testing time of the kernel and non-kernel ELM is very 

close in the amputee subjects. However, in the non-amputee subjects, the testing time of 

kernel-based ELM is about double that of amputee subjects (Table 3.11). In comparison 

with SVM, the testing time of ELM's family is far quicker than that of SVM's family in 

both, the amputees and non-amputees. Overall, the performance of ELM's family for 

finger classification is comparable to SVM's family in terms of accuracy but superior to 

SVM's family in terms of the processing time. However, the processing time of ELM is 

not comparable to those of LDA and kNN. LDA and kNN consumed much shorter time 

than ELM’s family. Nevertheless, the processing time of ELM is still reasonable for the 

real-time application. 

 

Table 3.10 Testing Time of amputee subjects 

Classifier Six-channel 11-channel 
Mean (ms) Std Mean (ms) Std 

Sig-ELM 1.493 0.088 1.530 0.105 
Rad-ELM 1.500 0.097 1.505 0.085 
Lin-ELM 1.387 0.944 1.183 0.960 
Poly-ELM 1.559 1.014 1.341 1.038 
RBF-ELM 1.668 1.094 1.435 1.112 
SM-SVM 20.127 15.659 15.416 12.941 
LS-SVM 26.907 10.802 24.825 11.671 

LDA 0.004 0.001 0.004 0.001 
KNN 0.243 0.107 0.220 0.112 

 

 

 



Chapter 3 Extreme Learning Machine-Based Classification of Finger Movements Using Surface Electromyography 
 

78 
 

 

Table 3.11 Testing Time of non-amputee subjects 

Classifier Six-channel 11-channel 
Mean (ms) Std Mean (ms) Std 

Sig-ELM 1.350 0.045 1.354 0.020 
Rad-ELM 1.366 0.035 1.354 0.037 
Lin-ELM 3.024 0.929 3.015 0.931 
Poly-ELM 3.314 0.991 3.300 0.988 
RBF-ELM 3.476 1.033 3.469 1.019 
SM-SVM 54.275 34.476 42.036 25.307 
LS-SVM 43.208 6.986 43.381 7.022 

LDA 0.006 0.001 0.005 0.001 
KNN 0.473 0.088 0.473 0.088 

 

3.4 Discussion 
This chapter aims to build an accurate and optimum pattern recognition system using 

different variations of ELM for finger movement classification on amputees and non-

amputees. To achieve such a system, the chapter investigated every part of the state-of-

the-art pattern-recognition system. Selecting the window length and window increment 

of the data segmentation started the finding of the optimal system. The experimental 

results show that a 200-ms window length and a 25-ms window increment are the 

optimum choices for the pattern-recognition system that comply with the optimal time 

delay suggested by T. R. Farrell and Weir (2007). These segmentation parameters may 

result in a pattern-recognition system that is ready for real-time application. 

In the feature extraction method, this work introduced a new feature set. The proposed 

feature set mainly comprises Hargrove’s features plus SS (sample skewness) and HTD 

(Hjorth time domain) parameters (see section 3.2.2 and 3.3.3). This additional feature set 

was able to provide more informative features for the classifier. The classification 

accuracy of the new feature set was higher than Hargrove’s features, especially for the 

amputee subjects (Table 3.2). 

As for the dimensionality reduction method, the results supported the claim D. Cai et 

al. (2008) and our published work (Khairul Anam et al., 2013) that SRDA is faster than 

LDA. LDA took more time in reducing the dimension of 6-channel features than SRDA, 

but the time difference between the two is not significant (p > 0.05). However, the 

processing time of LDA is much longer than that of SRDA when reducing the dimension 

of 11-channel features (p < 0.05). As for OFNDA (R. N. Khushaba et al., 2010), its 
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reduction time is large enough, and it is not comparable to SRDA or even LDA. The 

processing time of OFNDA is long because OFNDA consists of two stages: principal 

components analysis (PCA) and fuzzy discriminant analysis (FNDA). PCA in OFNDA 

is needed to overcome the singularity problem in FNDA.  

Unlike the processing time, the accuracy of the system using SRDA is similar to LDA 

and OFNDA (p > 0.05). Probably, this finding can be used to make a comment on the 

outcomes of Al-Timemy et al.’s work (Al-Timemy et al., 2013). Their work, which 

employed the same data as used in this chapter, utilized ONFDA as a dimensionality 

reduction and LDA as a classifier. As a note, LDA can be used as either a dimensionality 

reduction or a classifier. On the six-channel experiment, OFNDA+LDA was able to 

achieve a high accuracy of about 98 % on the able-bodied subjects, but it showed a lower 

accuracy on the amputee subjects with the accuracy of about 90%. Comparing their 

results and the results in this chapter, the proposed recognition system, which utilizes 

SRDA+ELM, attained the accuracy of approximately 99% on the able-bodied subjects 

and around 98% on the amputee subjects. Because ONFDA and SRDA have similar 

performances in terms of accuracy, the inaccuracy of Al-Timemy et al.’s work on the 

amputee subjects was probably caused by LDA as a classifier. This assumption is 

supported by the results in Figure 3.17, which informs the shortcoming of LDA as a 

classifier. 

The utilization of SRDA as a dimensionality reduction method is important in 

constructing a recognition system that is powerful and fast. The experimental results show 

that SRDA is equivalent to other LDA variances, but it is superior to others in terms of 

speed. SRDA should be better than one of the well-known methods, PCA. Martínez and 

Kak (2001) proved that LDA outperform PCA especially for large data as being used in 

this work.  

Finally, the discussion of the classifier’s performances is presented. The experimental 

results confirm that the ELM (extreme learning machine) was capable of classifying the 

EMG signal of the non-amputee and amputee subjects. Among the different types of 

ELM, the kernel-based ELM with RBF kernel outperformed other types of ELM. This 

finding supports the results of G. B. Huang et al. (2012) that, on some cases, RBF-ELM 

achieved better accuracy than the node-based ELM: sigmoid-additive node (Sig-ELM) 

and the radial basis node ELM (Rad-ELM). However, the experimental results show that 
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the kernel-based ELM needs more processing time than the non-kernel-based ELM, 

especially on the large data as shown in Table 3.8 and Table 3.9.  

The large data problem on the node-based ELM has been solved by G. B. Huang et al. 

(2012) but it is still unsolved on the kernel-based ELM. They had manipulated the output 

of node-based ELM (see Eq. 2.42 in section 2.3.1.4.2) in such a way that the dimension 

of a feature-mapping matrix has L x L order, instead of N x N as in the kernel-based ELM 

(see Eq. 2.49 in section 2.3.1.4.3). L is the number of hidden nodes, and N is the training 

data number. In fact, for a large feature, the number of L is far smaller than N. As a result, 

the training time of the node-based ELM is faster than the kernel-based ELM because the 

node-based ELM deals with L x L order instead of N x N order.  

The comparison of the ELM, which is represented by RBF-ELM, and with other well-

known classifiers, confirms that the ELM is comparable with the famous SVM even 

though there is no iterative learning on the ELM’s weight. The superiority of the ELM 

over the SVM is more noteworthy if the processing time of the classifiers is considered. 

It is true that the ELM was not the fastest classifier tested in this work. LDA was the 

fastest one, yet LDA was the least accurate classifier. kNN was faster than the ELM, but 

its performance was still under that of the ELM especially RBF-ELM. In addition, the 

fact that the ELM is far superior to LDA especially with small channel numbers 

disapproves the statement of (L. J. Hargrove et al., 2010) on the classification process. 

They stated that classification is a trivial process as long as the feature set and the 

dimensionality reduction are chosen properly. 

To evaluate the proposed system, some works related to the finger movement 

identification are presented in Table 3.12. The table does not always indicate that the 

system developed here is the best one because the situation, experimental setup and other 

considerations may be different application to application. However, it can be used to 

measure the performance of the proposed system. Overall, this work exhibited the most 

accurate system. Another interesting finding is that the accuracy gap of the non-amputee 

and amputee subjects was not very large. In the six-channel experiments, the accuracy 

difference of RBF-ELM on the amputee subjects and non-amputee subjects was 0.95%.  
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Table 3.12 Comparison of Various Research on Finger Movement Recognition 

Work Nc
h 

Finger 
Class 

Accuracy 
(%) 

Subject
s Mode 

Tenore et al. (Tenore et al., 2009) 
19 

10 Id & 2 
Cm 93.4 5 H 1 A OF 

19 
10 Id & 2 

Cm 87.80 1 A OF 
19 10 Id 92.83 1 A OF 

Cipriani et al.  (Cipriani et al., 2011) 

8 
7 Id & 1 

Cm 89.00 5 H OL 

8 
7 Id & 1 

Cm 79.00 5A OL 

Khushaba et al.  (R. N Khushaba et al., 
2012) 

2 
5 Id & 5 

Cm 92.00 8 H OF 

2 
5 Id & 5 

Cm 90.00 1H OL 

Al-Timemy et al.  (Al-Timemy et al., 
2013) 

6 
12 Id & 3 

Cm 98.55 10 H OF 
6 12 Id 90.57 6 A OF 

This proposed method 
6 

12 Id & 3 
Cm 99.50 9H OF 

6 12 Id 98.55 5A OF 
Nch = Number of channels, Id = Individual finger movements, Cm = Combined Finger 
movements, H = Healthy Subjects, A = Amputees, OF= Offline classification, OL = Online 
Classification 

3.5 Summary 
All components in this recognition system were determined using experimental 

procedures. As a result, a powerful classification system that can work well on able-

bodied and amputee subjects had been achieved. However, this work only studies the 

offline classification system. In fact, the system was designed to be ready for real-time 

application. The system recognition produced here fulfils three conditions for a real-time 

recognition system (Kevin Englehart & Hudgins, 2003). Its performance was highly 

accurate; it was able to detect the user’s intention with accuracy of roughly 99% on the 

able-bodied subjects and around 98% on the trans-radial amputees using six EMG 

channels. In addition, it has easy interface for direct control so that it relieves the user’s 

mental difficulties in wearing the hand rehabilitation device. Finally, it meets the optimal 

delay time for a real application in the range 100–125 ms. 

Different ELM classifiers have been tested in this work. This work presents, on 

average, the kernel-based ELM is better than the node-based ELM. An attempt to enhance 

the performance of the node-based ELM should be carried out. One weakness of the node-
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based ELM is that the input weight was determined arbitrarily and free from the training 

data so that the ELM produced is not optimum for a specific case. Therefore, optimization 

of the node-based ELM should be undertaken. Developments, such as the evolutionary 

extreme learning machine (E-ELM) (Zhu et al., 2005) and the dynamic extreme learning 

(D-ELM) (Zhang et al., 2013) can be implemented for finger movement classification. 

In summary, this chapter presented the detailed investigation of the implementation of 

different types of ELM for the myoelectric pattern recognition system. This process 

results in a recognition system, which is fast, accurate, and easy to develop to classify 15 

and 12 finger movements on nine able-bodied subjects and five amputee subjects, 

respectively. The proposed system introduced a new feature set comprising MAVS, ZC, 

SSC, SS, WL, RMS, AR6, and HTD forming 16 features per channel. The EMG signal 

is segmented using a 200-ms sliding window with a 25-ms shift. The extracted features 

are concatenated to yield a large feature. The combined feature dimension is reduced 

using SRDA, a swift version of LDA. Then the reduced features are fed to the ELM to be 

identified and classified into the intended class. By using the best ELM classifier, RBF-

ELM, the pattern recognition system achieved the accuracy of 98.55% on the amputee 

subjects and 99.5% on the able-bodied subjects using six EMG channels. 

Furthermore, this thesis found that the node-based ELM is not as good as the kernel-

based ELM in many cases. Therefore, the next chapter will discuss the way to improve 

the performance of the node-based ELM. Another thing that should be addressed is about 

the optimization of RBF-ELM. The performance of RBF-ELM greatly depends on the 

selection of its parameters. Therefore, in the next chapter will discuss few methods to 

optimize the parameters of RBF-ELM. 

 

 



 

CHAPTER 4          

Novel ELM-Based Classifications for 
myoelectric finger recognition using two 
EMG channels 

4.1   Introduction 
Extreme Learning Machine (ELM) has shown its benefit as a classifier in the 

myoelectric pattern recognition system, as shown in Chapter 3. However, it has some 

shortcomings as have been highlighted in chapter 3 sections 3.5. Firstly, the feature has 

significant influence in the myoelectric pattern recognition system. Therefore, 

improvement in the feature representation should be made to enhance the classification 

performance. Another issue exists in the node based ELM. The performance of the node 

based ELM is not as good as the kernel based ELM, especially when using two EMG 

channels. As for the kernel-based ELM, the kernel parameters should be determined 

properly to attain a high classification performance. Therefore, parameter optimization is 

needed.  

This chapter will address these three issues. Firstly, this thesis proposes a novel ELM 

called adaptive wavelet extreme learning machine (AW-ELM). AW-ELM is a node-

based ELM that uses wavelet function in the activation function. Interestingly, the shape 

of the wavelet function can change according to the characteristic of the input. The 

implementation of AW-ELM in the myoelectric pattern recognition system and some 

benchmark datasets will be presented in section 4.2.5. AW-ELM and its implementation 

to myoelectric pattern recognition (M-PR) is the second contribution of the thesis. 

In the feature side, this thesis proposes a new feature projection that is expected to 

increases the class separability of the features. This chapter introduces spectral regression 

extreme learning machine (SR-ELM). Section 4.3 will present the basic concept of SR-

ELM and its implementation in the myoelectric pattern recognition for finger movement 

and in some benchmark datasets. This is the third contribution of the thesis. 
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As for the kernel-based ELM, this thesis proposes an optimization of the kernel based 

ELM using particle swarm optimization (PSO), as will be discussed in section 4.4. In 

some situations, PSO tends to be trapped in local minima. As a result, the solution of the 

PSO is not global anymore. To overcome this problem, we investigate the enhancement 

of PSO by injecting a wavelet mutation in the PSO process. Thus, this thesis proposes a 

hybridization wavelet-PSO and ELM for the myoelectric pattern recognition. This 

hybridization will be discussed in section 4.5. The optimization of PSO and wavelet-PSO 

for the parameters of the kernel-based ELM is the fourth and fifth contribution of the 

thesis. 

Furthermore, all experiments conducted in this chapter employed two EMG channels 

only. R. N Khushaba et al. (2012) employed two EMG channels to recognize individual 

and combined finger with the accuracy of about 92% and 89 % on the offline and online 

classification, respectively. Therefore, the performance of the system with two EMG 

channels may be reasonable enough as an effort to enhance the comfort of the user 

wearing the hand rehabilitation device.  

In summary, in this chapter, the thesis presents four contributions. The first and the 

second are AW-ELM and SR-ELM for classification and for feature projection or 

dimensionality reduction, respectively. The third and fourth contribution is the parameter 

optimization of the kernel based ELM using PSO and wavelet-PSO.  

4.2 Performance evaluation of adaptive wavelet 
extreme learning machine (AW-ELM) 

The experimental results in Chapter 3 show that, in general, the performance of the 

node-based ELM is less than that of the kernel-based ELM. The thesis proposes a new 

node-based ELM to enhance the performance of the node-based ELM in the myoelectric 

pattern recognition (M-PR) for finger movement classification. Firstly, the background 

of AW-ELM will be presented in section 4.2.1. The theory of wavelet ELM and adaptive 

wavelet-ELM will come after it. The experimental results on EMG datasets for finger 

motion classification will be presented in the following section. The experiments on the 

benchmark dataset from UCI machine-learning repository will be conducted as well as 

the examination of the performance of AW-ELM for a wide range of applications. 
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4.2.1 Background 
A wavelet neural network (WNN) is a special case of a feed-forward neural network 

whose activation function is a wavelet function (Zhou et al., 2004). It has been applied to 

many applications (Cao et al., 2010). Furthermore, Subasi et al. (2006) extended the 

application of WNN to EMG based pattern recognition. This indicates that WNN is a 

promising classifier for the myoelectric finger motion recognition. However, the learning 

of WNN relies on the gradient descent algorithm. The drawbacks of the gradient descent 

method such as long training time and ease of being trapped to local minima have 

hampered the implementation of WNN in the real-time application (Lin & Tsai, 2008).  

To improve the performance of WNN, Ling et al. (2008) proposed variable translation 

wavelet neural network (VTWNN). VTWNM is a type of WNN in which the translation 

parameter of the wavelet function is varied according to the variation of input. To train 

the weight of VTWNN, Ling et al. implemented a hybrid particle swarm optimization 

wavelet mutation (HPSOWM). The experimental results showed that VTWNN 

performed better than WNN and feed-forward neural network. However, the training 

procedure of the VTWNN using the extension of PSO is complex and time-consuming.  

On the other hand, an extreme learning machine (ELM) was introduced to train  single-

hidden layer feed-forward networks (SLFNs) resulting in a system which is fast and able 

to avoid a local minima (G. B. Huang et al., 2012).  The learning mechanism of ELM can 

be extended to train WNN. The combination of ELM and WNN can be conducted by 

simply replacing the activation function of ELM with wavelets (Cao et al., 2010; Salih et 

al., 2013). This is the simplest unification of both networks as has been done by Salih et 

al. (2013). Cao et al. (2010) introduced a new combination of these two algorithms by 

proposing a composite function of WNN with ELM. In this method, they implemented 

two activation functions, a wavelet function and a piece-wise function that are done in 

order.  

Another new unification of ELM and WNN was proposed by Javed et al. (2014) who 

proposed a summation wavelet extreme learning machine (SW-ELM). In the same way 

as Cao et al. (2010), they utilized two activation functions but employed them in different 

ways. These two activation functions were done in parallel and their outputs were 

averaged to be the output of the hidden nodes.    

This section proposes a new integration of ELM and WNN. Instead of using original 

WNN, the proposed method extends VTWNN into the structure of ELM. In order words, 
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ELM is used to train the weight of VTWNN. Thus, the proposed method is called adaptive 

wavelet extreme learning machine (AW-ELM). Different from VTWNN in that its 

weights are trained using HPSOWM, AW-ELM has random weight in the hidden layer. 

As for the weights of the output layer, they are determined analytically.  

According to WNN structure, the proposed system utilizes a wavelet function as the 

activation function in the hidden node. However, the activation functions are not fixed 

but they are adjusted taking regard to the changing in the input. The sigmoid function is 

used to process the input information and produce translation parameters of the wavelets 

in relation to the hidden node.  

This section implemented wavelet extreme learning machine (W-ELM) and the 

proposed one, adaptive wavelet extreme learning machine (AW-ELM) to the myoelectric 

pattern recognition system. The goal is to classify the finger motions from the surface 

Electromyography signal (EMG) extracted from two-channel sources on the forearm.  In 

addition, classification performance of AW-ELM will be compared with W-ELM, ELM 

with sigmoid function (SIG-ELM), radial basis kernel ELM (RBF-ELM) and other well-

known classifiers such as SVM (support vector machine), LDA (linear discriminant 

analysis) and kNN (k-nearest neighbour). 

The main contribution of this section is the AW-ELM and its application for finger 

motion classifications. Furthermore, to promote broader applications of AW-ELM, the 

AW-ELM is applied to various classification problems using the benchmark dataset from 

UCI Machine learning repository. 

4.2.2 Wavelet extreme learning machine (W-ELM) 
W-ELM is a wavelet neural network that has a single hidden layer; the weights in the 

hidden layer and output layer are trained using extreme learning machine. W-ELM can 

be considered as a special case of extreme learning machine in that its activation function 

is a wavelet. The output function of W-ELM for arbitrary samples (xk,tk)  Rn x Ro with 

M hidden nodes is 

 
1
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i ij a bj j j k
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in which aj and bj are dilatation and translation parameters of the wavelet, respectively. 

Initialization of dilatation and translation parameters, aj and bj, in WELM is an important 

issue. The initialization should consider the input information in order to let the time 

domain of the wavelet cover the input domain. According to Zhou et al. (2004), suppose 

the input vector xk has the domain [xkmin , xkmax], t* and * are the centre and the radius of 

the mother wavelet i ia b , then domain of i ia b is given by: 

 [bj + aj(t*  *)  ,  bj + aj(t* + *)] 4.3 

Meanwhile, the input information range for ith hidden layer can be calculated as: 

 min max1 1
  ,   N N

ji i ji ii i
w x w x  4.4 

where wji is the weight connecting the jth hidden layer to the ith input. The wavelet can 

cover the input space if: 

 * *
min1

( )   N
j j ji ii

b a t w x  4.5 

and 

 * *
max1

( ) N
j j ji ii

b a t w x  4.6 

From Eq. 4.5 and 4.6, ai and bi are formulated as as: 

 max min*
1 1

1
2

N N

j ji i ji i
i i

a w x w x  4.7 

 * * * *
max min*

1 1

1 ( ) ( )
2

N N

j ji i ji i
i i

b w x t w x t  4.8 

4.2.3 Adaptive wavelet extreme learning machine (AW-
ELM) 

4.2.3.1 Theory 
This subsection will explain the theory of the proposed AW-ELM. Figure 4.1 depicts 

the diagram of the proposed method. If M is the number of hidden node and N is the 

number of input, then the input of the hidden layer Pj is given by: 

 
1

( ) .          1,2,...,  
N

j i ji j
i

xP x w c j M  4.9 

where xi are the input variables, wji are the weights of the connection between ith input 

and jth hidden nodes, and cj denotes the bias of  jth hidden layer. 
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Figure 4.1 The proposed adaptive wavelet extreme learning machine 

Using Eq. 4.9, the output of the hidden node is given by: 

 
( )( ( )) ,             1,2,...,j j

j j
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j
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 4.10 

Following the selection of Ling et al. (2008), in the experiment, the dilatation parameter 

aj is equal to j, so: 

 
( )( ( )) ,             1,2,...,j j

j j
a b j
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j

 4.11 

In this proposed work, the Mexican Hat function (Ling et al., 2008) is used as the mother 

wavelet  as described in Figure 4.2. It is defined as  

 
2 / 2 2( ) (1 )xx e x  4.12 

 
Figure 4.2 The mother wavelet of the Mexican hat 
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Therefore, the wavelet activation function of AW-ELM is: 

 

2 2
0.5

( ) 1
j j

j j

P b
j jj

a b j
P bP e

j
 4.13 

In this proposed AW-ELM, the translation parameters bj are varied according to the 

input information and driven by a nonlinear function as shown in Figure 4.3 and defined 

by : 

 ( )j jb f P  4.14 

where 

 
2( ) 1

1 jj Pf P
e

 4.15 

 
Figure 4.3 A nonlinear function to produce bj 

In the wavelet, the dilatation parameter aj and translation parameter bj have different 

roles. The dilatation parameter aj determines the shape of the wavelet function.  The less 

the dilatation parameter aj is, the narrower the shape of the wavelet function is. On the 

other hand, the translation parameter bj determines the position of the wavelet function in 

the direction of x-axis. If b is less than 0, then the wavelet function lies on the left side of 

y-axis. On the contrary, if b is more than 0, then the wavelet function exists on the right 

of the y-axis. Thus, b that is equal to zero will make the wavelet function in the middle 

of xy-plane. 

In Eq. 4.13, the dilatation parameter aj is replaced by j and bj is determined by the 

sigmoid function in Eq. 4.15. It means that the parameters initialization of aj and bj are 

not needed at all, as in Eq. 4.2. This is one of the benefits of the proposed system. 

Actually, it is done by computing parameter bj according to the changes in the input. The 

initialization of wavelet parameters is necessary for WNN and W-ELM. Avoiding this 
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step in AW-ELM is one of the significant improvements in the wavelet neural network 

family. 

Eventually, a new structure of an adaptive W-ELM is constructed and it is presented 

in Figure 4.1. In the figure, a small circle on the top of each hidden node is used to adjust 

the b parameters in order to change the shape of the wavelet. Thus, the output of AW-

ELM is: 

 
1 1

 1, 2, ...,( ) ( , , )= ( ( ))  
j j j

M M
k

i ij a bj j j k ij a b j k
j j
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4.2.3.2 The learning algorithm of AW-ELM 
For the desired output: 

 
1 2D ( )T T T
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The AW-ELM described in Eq. 4.16 can be written as a linear system as follows: 

 HV = D 4.18 

where 
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V can be obtained by solving the least-square solution of 4.18, and is given by: 

 †ˆ  = V H D 4.21 

The training algorithm of AW-ELM can be implemented as follows.  

Given a training set  = {(xk,tk) | xk  Rn, tk  Ro, k = 1,2…, L}, the hidden node output 

function ai,bi(w, c ; x) and the hidden node number M, then  

1. Randomly assign vector matrix W and bias c  

2. Calculate the input hidden layer Pj in Eq. 4.9 

3. Calculate bj in Eq. 4.14 and 4.15 

4. Calculate the hidden layer output H in Eq. 4.19 

5. Calculate the output weight  in Eq. 4.21. 
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4.2.4 Experimental setup 
The experiments to test the performance of AW-ELM were conducted by following 

the state-of-the-art of pattern recognition system as shown in Figure 4.4. 

Feature 
Extraction:

TD-AR

Dimensionality 
reduction:

SRDA
Classification Class

Data 
Acquisition

Two-channel 
EMG

Sig-ELM, W-ELM, AW-ELM,
RBF-ELM, SVM, kNN, LDA

Pre-processing:
Filtering and 
windowing

 

Figure 4.4 Myoelectric finger classification using AW-ELM and other classifiers 

Each stage of the processes in Figure 4.4 will be discussed in detail. The EMG signals 

were acquired from eight subjects. The filtering and windowing were applied to the 

collected data before being extracted using a time domain feature set and autoregressive 

model (AR). To reduce the dimension of the features, SRDA was employed. The theory 

of SRDA was presented in Chapter 2 section 2.3.1.3.3. The experimental results in 

Chapter 3 section 3.3.4 show that SRDA is powerful and fast. Therefore, the myoelectric 

pattern recognition (M-PR) system chose SRDA for dimensionality reduction. In the 

classification stage, the performance of AW-ELM will be compared with the other node-

based ELMs and other well-known classifiers such as RBF-ELM, SVM, LDA, and kNN. 

The experimental results of AW-ELM on EMG signals are presented in section 4.2.5. 

The experiments on benchmarks datasets were also performed to test the performance of 

AW-ELM in a broad range of datasets. Eventually, the last section, which is the 

conclusion, will end the discussion about AW-ELM.  

4.2.4.1 Experimental procedures 
The data in this work were acquired from eight subjects, two females and six males 

aged 24-60 years old. All subjects were normally limbed with no muscle disorders. To 

avoid the effect of movement position on EMG signals,each subject’s arm was supported 

and fixed at a certain position (R. N Khushaba et al., 2012). 

The FlexComp Infiniti™ System from Thought Technology was used to acquire 

signals from two EMG MyoScan™ T9503M sensors which were put on the subject’s 

forearm, as seen in Figure 4.5. The acquired EMG signals were amplified to a total gain 

of 1000 and sampled at 2000 Hz. 
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Figure 4.5 The placement of the electrodes 

The collected EMG signals were processed in the Matlab 2012b installed in the Intel 

Core i5 3.1 GHz desktop computer with 4 GB RAM running on Windows 7 operating 

system. A band-pass filter filters the signals in the frequency range between 20 and 500 

Hz. In addition to the band-pass filter, a notch filter was used as well to remove the 50 

Hz line interference. Finally, the EMG signals were down-sampled to 1000 Hz to reduce 

the data size. 

Figure 4.6 shows ten classes of the individual and combined finger movements 

consisting of a flexion of individual fingers, i.e., Thumb (T), Index (I), Middle (M), Ring 

(R), Little (L) and the pinching of combined Thumb–Index (T–I), Thumb–Middle (T–

M), Thumb–Ring (T–R), Thumb–Little (T–L), and the hand close (HC).  

 
Figure 4.6 Ten different finger movements 

The classification was performed based on the data from the data acquisition. In this 

stage, the subjects were asked to perform a certain posture of finger movement for 5 s and 

then take a rest for 5 s. Each movement was repeated six times. Therefore, there are 5000 

x 6 = 30000 data for each class or in total, the number of data is 30,000 x 10 classes = 

300,000/channel. There are two channels, so the number of data as a whole is 600,000. 

The data collected were divided into training data and testing data using 3-fold cross 

validation.  

4.2.4.2 Feature Extraction 
The experiments in this subsection employed a feature set resulted in the chapter 3 

section 3.3.3. The feature set consists of waveform length (WL), slope sign changes 

(SSC), number of zero crossings (ZCC), sample skewness (SS), mean absolute value 

(MAV), mean absolute value slope (MAVS) and root mean square (RMS). In addition, 

some parameters from Hjorth time domain Parameters (HTD) and autoregressive (AR) 

model parameters were included. This feature set produces 16 x 2 channels = 32 features. 
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All features were extracted using myoelectric toolbox (A. D. C. Chan & Green, 2007) 

and Biosig toolbox (Schlogl & Brunner, 2008). The AR model parameters have been 

proven to be stable and robust to the electrode location shift and the change of signal level 

(Tkach et al., 2010).  

All features were concatenated and reduced using SRDA. SRDA is an extension of 

LDA, which can deal with a singularity and a large data set. The window length of 100 

ms was applied to the signal to comply with the real-time application, along with a 100-

ms increment. The M-PR system only considered the steady state of the EMG signal and 

remove the transient part of the signal, as recommend by Kevin Englehart et al. (2001). 

4.2.4.3 Majority Vote 
To smooth the classification results, the majority vote (A. D. C. Chan & Green, 2007) 

was applied in some experiments. It employs the results from the n present state and m 

previous states and makes a new classification result based on the class that comes out 

most frequently. In this research, n = 0 and m = 4 were used. 

4.2.5 Experiments and Results 
This section applied W-ELM and AW-ELM to two different groups of datasets. The 

first dataset is the EMG dataset for myoelectric finger motion recognition. The second 

dataset is a dataset of UCI machine learning repository.  

4.2.5.1 Experiments on myoelectric finger motion recognition 
Various experiments were done to examine the performance of AW-ELM in the 

myoelectric pattern recognition (M-PR). The first experiment was the experiment 

performed by varying the number of nodes in the hidden layers. The performance of AW-

ELM was compared with other node-based ELM such as wavelet extreme learning 

machine (W-ELM) and sigmoid extreme learning machine (Sig-ELM). The second 

experiment is the comparison of AW-ELM and other well-known classifiers such as 

support vector machine (SVM), kernel-based ELM represented by radial basis function 

ELM (RBF-ELM), linear discriminant analysis (LDA), and k-nearest neighbour (kNN). 

Some analyses were given in each experiment.   

4.2.5.1.1 AW-ELM and other node based ELM 

This subsection examined three node-based ELMs: W-ELM, AW-ELM and sigmoid 

extreme learning machine (Sig-ELM). The number of hidden nodes varied from 50 up to 

500. Four-fold cross validation was used to verify the validity of classification result. For 

segmentation, the work employed overlap windowing with the window length of 200 ms 
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along with a 25 increment. Furthermore, post-processing method is not used in the 

experiments. The M-PR system only considers the state steady of the EMG signal and 

remove the transient state of the signal. Figure 4.7 and Table 4.1 shows the classification 

results. 

 
Figure 4.7 The classification accuracy of three node base ELM across eight subjects using 

4-fold cross validation 

Figure 4.7 and Table 4.1 indicate that the accuracy of AW-ELM was higher than W-

ELM in all cases, except for the hidden node number of 500. Likewise, the AW-ELM 

performance is better than Sig-ELM in all hidden-node numbers except for the hidden 

node number of 50 and 75. In these two hidden numbers, the Sig-ELM achieved better 

accuracy than AW-ELM. Overall, in most cases, the adaptation of the wavelet function 

using a sigmoid function in AW-ELM could enhance the performance of the original 

wavelet extreme learning machine. Moreover, it is better than Sig-ELM. In the network 

structure, AW-ELM consists of two activation functions: a sigmoid and wavelet function. 

The role of the sigmoid function is to reshape the wavelet function in accordance with the 

changes in the input state. Therefore, AW-ELM performed better than W-ELM and Sig-

ELM. In addition, Table 4.1 provides the number of nodes for each classifier in 

myoelectric finger motion recognition. The optimal number for each classifier is 200 

nodes for W-ELM, 125 nodes for AW-ELM and 175 for Sig-ELM. 

Table 4.1 The average classification accuracy of AW-ELM across eight subjects using 
four-fold cross validation compared with W-ELM and Sig-ELM 

# Hidden Node Accuracy (%) 
W-ELM AW-ELM Sig-ELM 

50 91.07 ± 0.17 91.57 ± 0.08 91.65 ± 0.08 
75 91.56 ± 0.14 91.93 ± 0.14 91.97 ± 0.10 

100 91.79 ± 0.10 92.05 ± 0.09 92.01 ± 0.08 
125 91.90 ± 0.08 92.08 ± 0.09 92.03 ± 0.10 
150 91.94 ± 0.11 92.06 ± 0.10 92.04 ± 0.10 
175 91.98 ± 0.09 92.06 ± 0.09 92.04 ± 0.08 
200 91.99 ± 0.08 92.04 ± 0.08 92.01 ± 0.06 
500 91.79 ± 0.08 91.56 ± 0.06 91.37 ± 0.06 
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In terms of processing time, the ELM using a sigmoid function (Sig-ELM) took less 

time than W-ELM and AW-ELM, in the training and testing trials, as depicted in Figure 

4.8 and Table 4.2. Figure 4.8 shows that the larger the number of the hidden nodes, the 

longer the time difference between AW-ELM and Sig-ELM. Likewise, in the testing time, 

AW-ELM is the slowest classifier. The adaptive mechanism in AW-ELM adds to the 

processing time in both the training and testing trials. 

 
Figure 4.8 The training time (LEFT) and testing time (RIGHT) of the node-based ELMs 

Table 4.2 Processing time of different ELM classifiers 
#Hidden 

Node 
Training Time (s) Testing Time (s) 

W-ELM AW-ELM Sig-ELM W-ELM AW-ELM Sig-ELM 
50 0.16 ± 0.01 0.19 ± 0.02 0.12 ± 0.00 0.03 ± 0.00 0.06 ± 0.00 0.01 ± 0.00 
75 0.28 ± 0.01 0.33 ± 0.01 0.19 ± 0.00 0.06 ± 0.01 0.07 ± 0.00 0.02 ± 0.00 

100 0.38 ± 0.02 0.45 ± 0.02 0.27 ± 0.01 0.07 ± 0.00 0.10 ± 0.00 0.02 ± 0.00 
125 0.59 ± 0.05 0.70 ± 0.06 0.48 ± 0.07 0.09 ± 0.00 0.14 ± 0.00 0.03 ± 0.00 
150 0.71 ± 0.01 0.81 ± 0.01 0.51 ± 0.01 0.12 ± 0.00 0.19 ± 0.01 0.04 ± 0.00 
175 0.93 ± 0.06 1.06 ± 0.05 0.69 ± 0.05 0.14 ± 0.00 0.22 ± 0.00 0.04 ± 0.00 
200 1.07 ± 0.08 1.22 ± 0.05 0.85 ± 0.06 0.17 ± 0.00 0.26 ± 0.00 0.05 ± 0.00 
500 4.20 ± 0.08 5.42 ± 0.08 2.82 ± 0.10 0.75 ± 0.01 1.28 ± 0.01 0.12 ± 0.00 
The one-way ANOVA test was done to evaluate the significance of the performance 

of AW-ELM compared to W-ELM and Sig-ELM, as presented in Table 4.3. Confidence 

level of the ANOVA test was set at p = 0.05. Table 4.3 shows that p-values on the 

comparison of AW-ELM and W-ELM are less than 0.05. In other words, the 

improvement of AW-ELM on W-ELM is statistically significant. As for AW-ELM and 

Sig-ELM, in general, their performances are significantly different except in a few 

situations. For instance, when using 50 hidden nodes, the accuracy of Sig-ELM is better 

than AW-ELM; the accuracy gap is statistically significant. However, when using hidden 

node number 100 or 500, the AW-ELM is better than Sig-ELM and the difference is 

statistically significant. As for the rest of hidden node numbers, AW-ELM is better than 

Sig-ELM but the difference is not significant. Overall, AW-ELM is the best classifier 

among the tested classifier for finger movement recognition. 
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Table 4.3 The p-value of anova test on the classification accuracy between AW-ELM and 
other tested classifiers 

#Hidden 
Node 

p-value 
AW-ELM & W-ELM AW-ELM & Sig-ELM 

50 0.0000 0.0000 
75 0.0000 0.1283 

100 0.0000 0.0006 
125 0.0000 0.0610 
150 0.0000 0.3477 
175 0.0021 0.5746 
200 0.0098 0.0552 
500 0.0000 0.0000 

4.2.5.1.2 AW-ELM and other well-known classifiers 

The experiments were conducted to examine the performance of AW-ELM in 

recognizing ten finger movements and compare the results with other well-known 

classifiers. The EMG signal was segmented using the adjoining window with 100 ms of 

window length and incremented every 100 ms. Four famous classifiers besides AW-ELM 

involved in this experiment: the kernel based ELM with radial basis function (RBF-

ELM), support vector machine (SVM), linear discriminant analysis (LDA) and k-nearest 

neighbour (kNN). Majority vote with four previous votes refined the classification results. 

To get the best classification performance, parameters of the classifier were determined 

using a grid-search method. Table 4.4 presents the optimal parameters for each classifier. 

Figure 4.9 depicts the performance of AW-ELM compared to other well-known 

classifiers. A 3-fold cross validation is used to validate the classification performance. 

Table 4.4 The parameters of classifier involved in the experiment 
Classifier C  d #nodes k 
AW-ELM - - - 120 - 
RBF-ELM 20 2-5 - - - 

SVM 28 27 - - - 
kNN - - - - 10 

 

Figure 4.9 shows that all classifiers can classify ten finger motions with good accuracy. 

The best classifier is RBF-ELM. It is the best on most of the eight subjects except subjects 

S2 and S8. The second best is kNN.  As for AW-ELM, its performance is as good as 

SVM. The least accurate classifier is LDA that occurred in all subjects expect subject S2; 

even LDA is the most accurate system on this subject. Table 4.5 provide clear information 

about the accuracy of each classifier that confirms the aforementioned conclusions. 
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Figure 4.9 The performance of AW-ELM and well-known classifiers in recognizing 10 
finger motions on eight different subjects using 3-fold cross validation 

Table 4.5 The average accuracy of different classifiers for myoelectric finger motion 
classification using 3-fold cross validation 

Classifier Accuracy (%) Training time (ms) Testing time (ms) 
AW-ELM 94.84 ± 2.54 450 ± 62 94 ± 20 
RBF-ELM 95.33 ± 2.48 136 ± 2 50 ± 1 

SVM  94.83 ± 2.27 2395 ± 110 97 ± 5 
LDA 93.87 ± 2.71 6 ± 3 4 ± 1 
kNN 94.95 ± 2.63 55 ± 14 33 ± 3 

Even though RBF-ELM is superior to other classifier, ANOVA test result on AW-

ELM and RBF-ELM indicates the accuracy gap between the two classifiers is not 

significant (p>0.05), as described in Table 4.6. Similarly, ANOVA test on AW-ELM and 

SVM shows that their performance difference is not significant including the comparison 

with LDA and kNN. In summary, the performance of AW-ELM is comparable to other 

well-known classifiers.  

Table 4.6 p-value of AW-ELM and other famous classifiers 

AW-ELM vs.  RBF-ELM SVM  LDA KNN 
p-value 0.667 0.961 0.509 0.894 

 

The goal of the myoelectric recognition in this section is to classify ten finger motions. 

Therefore, the evaluation of the performance of AW-ELM was performed. Figure 4.10 

shows the results. The figure indicates that AW-ELM is the most accurate classifiers in 

three movements (T-I, T-L, and HC), and it is among the best classifiers in two 

movements (M and R). Nevertheless, the figure provides the information that AW-ELM 

is the worst one on little (L) and thumb-ring (T-R) finger movements. Furthermore, all 
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classifiers can recognize the ring finger movement (R) properly while they could not 

classify the combination of thumb and ring finger motion (T-R) correctly; even the 

accuracy of the T-R is the worst.  Overall, AW-ELM is a promising classifier for 

myoelectric finger motion recognition, and it is comparable to most used classifiers used 

in the myoelectric pattern recognition field such as SVM, LDA and kNN. 

 

Figure 4.10 The performance of AW-ELM and other classifiers in classifying ten finger 
movements across eight subjects using 3-fold cross validation 

Table 4.7 describes the confusion matrix of the accuracy of AW-ELM. Through this 

table, we can observe the misclassified movement made by certain movement. For 

instance, the movement TR (thumb and ring) is the most misclassified, followed by HC 

(hand-close) and then TI, TL and the least is TM. Furthermore, the movement L (little 

finger) is misclassified to almost all movements except to T, M, and I. Nevertheless, 

overall performances indicate the AW-ELM can recognize ten finger motions using only 

two EMG channels. 

Table 4.7 The confusion matrix of accuracy of AW-ELM in classifying ten finger 
movements across eight subjects using 3-fold cross validation 

 Classified 

In
te

nd
ed

 

 T I M R L TI TM TR TL HC 
T 97.89 0.00 0.00 0.00 0.35 0.35 0.00 0.00 0.00 1.41 
I 0.00 98.09 0.00 0.00 0.00 1.91 0.00 0.00 0.00 0.00 

M 0.00 0.17 98.36 0.00 0.00 0.00 1.47 0.00 0.00 0.00 
R 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 
L 0.00 0.00 0.00 1.76 92.56 1.51 0.87 1.39 1.39 0.52 
TI 0.69 0.07 0.00 0.00 0.64 98.02 0.35 0.00 0.22 0.00 

TM 0.00 1.34 0.02 0.00 1.51 2.41 94.54 0.00 0.17 0.00 
TR 0.00 0.00 0.00 0.00 0.00 1.86 1.18 90.54 1.35 5.07 
TL 0.97 0.00 0.00 0.00 0.94 2.16 0.00 0.00 95.93 0.00 
HC 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.20 
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4.2.5.2 Experiments on UCI datasets 
AW-ELM has been proven able to classify ten finger movements consisting of five 

individual fingers and five combined fingers. In this section, the experiments were carried 

out to investigate the performance of AW-ELM on the benchmark datasets that are 

available online on the UCI machine learning website. The validation of the experiments 

is based on the size of the data. The 5-fold cross-validation was implemented on small 

and medium size data while the 3-fold cross-validation was applied to the large size data. 

Special for large size data, the work did not randomize the data. Instead, the work just 

divided the data into three groups and then applied the cross-validation.  

Table 4.8 Data specification for benchmarking  
Dataset Group # data # features #classes 

Iris Small size 150 4 3 
Glass 214 9 6 

Vehicle Medium size 846 18 4 
Vowel 990 10 11 

Satimage 
Large size 

6435 36 6 
Letter 20000 16 26 
Shuttle 58000 9 7 

The experiments in this section involved seven different classifiers: W-ELM, AW-

ELM, Sig-ELM (sigmoid ELM), RBF-ELM (kernel based ELM), LIBSVM, LDA and 

kNN. Before conducting the experiment, the parameters that affect the performance of 

the classifier were optimized. For instance, LIBSVM with radial basis kernel relies on 

regulation parameter C and gamma. A grid-search method was used to select the optimum 

number of nodes in the node based ELM. As for C and gamma in RBF-ELM and 

LIBSVM, the optimal parameters was taken from (G. B. Huang et al., 2012) because this 

research used the same data and same classifiers as in (G. B. Huang et al., 2012). Table 

4.9 provides all parameters used in the experiment. Table 4.10 presents the experimental 

results. 

Table 4.10 shows that AW-ELM could perform moderately across seven different 

datasets. The comparison of AW-ELM and W-ELM shows that both classifiers are 

comparable. One-way ANOVA test shown in Table 4.11 explains that the accuracy gap 

between them is not significant (p > 0.05). It means that they are comparable. As for SIG-

ELM, the accuracy of AW-ELM is significantly better than SIG-ELM only in “Letter” 

dataset while the rest of them are not significantly different (p < 0.05). 
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Table 4.9 The optimal parameters used by each classifier in the UCI dataset experiments 

Dataset # Nodes RBF SVM kNN 
W-ELM AW-ELM SIG-ELM C gamma C gamma k 

Iris 30 30 20 1 1 1 0.25 10 
Glass 30 30 20 32 1 1 0.25 10 

Vehicle 190 170 210 64 8 214 4 10 
Vowel 290 350 440 32 0.5 1 1 10 
Letter 970 980 920 8 0.25 210 2-4 10 

Satimage 740 640 770 16 0.25 1 1 10 
Shuttle 900 500 970 220 2-10 210 0.25 10 

 

Table 4.10 The accuracy of seven classifiers on various data using 5-fold cross validation 
for small and medium size data and 3-fold cross validation for large size data 

Dataset Accuracy (%) 
W-ELM AW-ELM SIG-ELM RBF-ELM LIBSVM LDA kNN 

Iris 96.00 96.67 96.67 96.67 96.67 98.00 96.00 
Glass 65.03 65.38 66.29 69.23 63.48 57.50 63.98 

Vehicle 82.50 81.68 80.61 84.17 71.51 78.47 70.21 
Vowel 94.44 93.54 93.84 94.65 91.21 60.81 84.75 

Satimage 87.35 87.26 87.99 90.57 89.91 82.70 88.66 
Letter 62.78 62.65 61.99 69.96 46.56 33.01 67.31 
Shuttle 99.74 99.57 99.72 99.90 98.59 85.30 99.81 

       Table 4.11 One way ANOVA test results on the comparison of AW-ELM and other 
classifiers (the black box shows p < 0.05) 

p-value 
AW-ELM --> W-ELM SIG-ELM RBF-ELM LIBSVM LDA kNN 

Iris 0.771 1.000 1.000 1.000 0.524 0.809 
Glass 0.942 0.835 0.377 0.682 0.075 0.755 

Vehicle 0.585 0.424 0.080 0.000 0.121 0.000 
Vowel 0.432 0.807 0.354 0.064 0.000 0.005 

Satimage 0.999 0.980 0.922 0.934 0.885 0.966 
Letter 0.765 0.043 0.000 0.000 0.000 0.000 
Shuttle 0.996 0.997 0.993 0.980 0.679 0.995 

 

Furthermore, Table 4.10 and Table 4.11 indicate that RBF-ELM is the most accurate 

classifier across seven datasets except the “Iris” dataset. Nevertheless, the accuracy of 

AW-ELM is comparable to RBF-ELM in all datasets (p > 0.05) except in “Letter” dataset 

(p < 0.05). Moreover, AW-ELM has the same performance as LIBSVM except on 

Vehicle and Letter datasets in which AW-ELM is better. For the rest of the classifiers, 

Table 4.10 and Table 4.11 show that AW-ELM is significantly better than LDA in two 

datasets: Vowel and Letter. Moreover, AW-ELM is better than kNN in Vowel dataset 
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while kNN is better than AW-ELM in Letter datasets (p < 0.05). Overall, AW-ELM is 

comparable to RBF-ELM and LIBSVM and slightly better than LDA and kNN in most 

of datasets. 

In addition to the classification performance, the processing time of classifiers is one 

of the discussion objectives. Table 4.12 presents the training time while Table 4.13 

provides the testing time. Table 4.12 shows that the training time of AW-ELM is one of 

the slowest classifiers, compared to other classifier over all datasets. It becomes worse 

when AW-ELM works on big data like “Letter” dataset. The AW-ELM is the slowest 

classifier taking around 40 s to learn Letter datasets. However, an anomaly occurred when 

AW-ELM worked on Shuttle datasets. AW-ELM took around 33 s, faster than W-ELM, 

SIG-ELM even much faster than RBF-ELM that took 123 s. Similar results happen on 

the testing time. This happened because AW-ELM used lower number of nodes than SIG-

ELM or W-ELM when working on the Shuttle dataset.      

Table 4.12 The training time of  seven classifiers on various data using 5-fold cross 
validation for small and medium size data and 3-fold cross validation for large size data 

Dataset Training Time (ms) 
W-ELM AW-ELM SIG-ELM RBF-ELM LIBSVM LDA kNN 

Iris 45.20 48.33 41.33 3.51 0.00 15.61 38.53 
Glass 69.53 68.40 31.93 1.81 2.00 1.83 9.62 

Vehicle 403.13 353.67 438.13 16.03 56.00 2.76 40.11 
Vowel 776.00 1,014.80 1,334.67 20.95 30.00 4.82 28.72 

Satimage 6,412.22 6,236.67 5,436.33 562.04 723.33 49.07 799.55 
Letter 29,202.20 40,664.33 17,541.87 11,442.31 20,140.00 72.39 4,618.73 
Shuttle 62,114.33 33,069.22 47,162.44 123,161.44 10,820.00 49.54 1,472.41 

Table 4.13 The testing time of  seven classifiers on various data using 5-fold cross 
validation for small and medium size data and 3-fold cross validation for large size data 

Dataset Testing time (ms) 
W-ELM AW-ELM SIG-ELM RBF-ELM LIBSVM LDA kNN 

Iris 10.00 16.27 6.47 0.99 0.00 1.74 6.28 
Glass 10.73 17.20 6.60 0.46 2.00 1.47 5.80 

Vehicle 38.07 46.00 28.07 2.47 56.00 1.88 9.88 
Vowel 51.40 72.67 34.47 3.69 30.00 2.93 12.43 

Satimage 709.00 1,082.00 134.67 112.45 723.33 14.85 375.33 
Letter 2,391.53 4,751.87 276.87 873.45 20,140.00 28.72 1,177.10 
Shuttle 11,241.89 8,536.11 1,001.22 10,101.54 10,820.00 36.02 786.39 
 

One thing that is not normal on LIBSVM; the training time and the processing time of 

LIBSVM is the same while the other classifiers took a shorter testing time than training 
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time. The fastest classifier is LDA, which took only around 72 ms on Letter dataset and 

about 49 ms on Shuttle dataset. Overall, the training time of AW-ELM is slow but it can 

be compensated by using less number of nodes with comparable performance to other 

classifiers. 

4.2.6 Conclusion 
This section presents the implementation of wavelet extreme learning machine (W-

ELM) and proposed adaptive wavelet extreme learning machine (AW-ELM) for finger 

motion recognition using EMG signals. In general, AW-ELM could classify ten finger 

movements with a good accuracy of 94.84 %. It is even comparable to the well-known 

classifiers RBF-ELM, SVM, LDA, and kNN. Therefore, AW-ELM could enhance the 

performance of the node-based ELM. 

The research in this section did not compare the performance of AW-ELM with WNN 

or even VTWNN. However, by comparing AW-ELM to SVM, LDA, and kNN, the results 

will not be much different with the direct comparison of AW-ELM and WNN or VTWNN 

especially for myoelectric pattern recognition system (Kevin Englehart et al., 2001). 

W-ELM and the proposed one, AW-ELM are better that WNN in terms of training 

processing time, undoubtedly, because AW-ELM omits the iterative training procedure 

that is used in WNN. Although no iterative learning, AW-ELM is comparable to most 

well-known classifiers such as RBF-ELM, SVM, LDA and kNN. The implementation of 

W-ELM and AW-ELM for myoelectric finger motion recognition is one of the thesis 

contributions. 

Another contribution that is proposed in this section is AW-ELM itself. The benefit of 

AW-ELM over W-ELM exists on omitting wavelet parameters initialization. Not like W-

ELM that needs parameter initialization on the wavelet function, AW-ELM is free from 

that initialization. The benefit of initialization is to setup the range of mother wavelet in 

the range of input. It means we should know the input characteristic from the beginning. 

On the other hand, AW-ELM does not need initialization. Instead, it utilizes the internal 

mechanism to learn the range of input by varying the translation parameter of the wavelet 

activation function. Even Cao et al. (2010) who proposed composite function wavelet 

neural network with extreme learning machine (CFWNN-ELM) still needs initialization 

of wavelet parameters. Therefore, this is the contribution of AW-ELM.  

In addition to the myoelectric finger motion classification, AW-ELM has been 

implemented in a wide range classification problem using UCI machine learning datasets. 



Chapter 4 Novel ELM-Based Classifications for myoelectric finger recognition using two EMG channels 

103 
  

The experimental results show that AW-ELM could work on a wide range of datasets 

from small size to large size data. AW-ELM is comparable to W-ELM in all datasets, and 

it is better than SIG-ELM on Letter datasets. Moreover, AW-ELM attained better 

accuracy than LDA in Vowel and Letter datasets while the other datasets shows the same 

performance as LDA. Comparison with RBF-ELM indicates that AW-ELM is 

comparable to RBF-ELM except on Letter dataset. On this dataset, RBF-ELM is better 

than AW-ELM. 

Other results show that AW-ELM has the same performance as LIBSVM except on 

Vehicle and Letter datasets in which AW-ELM is better. Finally, the comparison with 

kNN shows that AW-ELM is better than kNN on Vowel dataset while kNN is better than 

AW-ELM on Letter dataset. Overall, AW-ELM is a promising classifier for many 

classification applications, especially for myoelectric pattern recognition. 

4.3 Performance evaluation of spectral regression 
extreme learning machine (SR-ELM) 

The previous section proposed a new ELM classifier, which is called AW-ELM, for 

the M-PR to recognize finger motions. This section proposes a new dimensionality 

reduction using extreme learning machine that will be applied in the M-PR for finger 

motion recognition. It is called spectral regression extreme learning machine (SR-ELM). 

SR-ELM is used to reduce the dimension of the features. In addition, SR-ELM projects 

the features that are normally scattered into the projected features that are separated 

properly according to their classes. Interestingly, SR-ELM is a kind of unsupervised 

method on the side of extreme learning machines, but it is a supervised method on the 

side of the dimensionality reduction.  

This section is started with the background of SR-ELM and followed by the basic 

concepts of ELM and SR-ELM. The experiments on myoelectric pattern recognition for 

finger motion classification were conducted afterward. Not limited to the myoelectric 

signal, the experiments on UCI machine learning datasets were also performed to examine 

the performance of SR-ELM in broader applications. The conclusion will end the 

discussion of SR-ELM. 

4.3.1 Background 
The performance of myoelectric pattern recognition typically depends on the feature 

extraction and the classifiers (L.J. Hargrove et al., 2007). L.J. Hargrove et al. (2007) and 
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others have proven that time domain feature and AR model parameters are good enough 

to extract features from the EMG signals.  However, the extracted features are frequently 

scattered and large in dimension. This thesis proposes a new method to increase the class 

separability of the features to assist the classifier in doing its job in better way. Moreover, 

the method is also able to reduce the dimension of the features. The proposed method is 

called spectral regression extreme learning machine (SR-ELM), a new extreme learning 

machine for feature projection as well as for dimensionality reduction. 

Extreme learning machine (ELM) is single hidden layer feed forward networks 

(SLFNs) that applies a random projection in the hidden layer. In other words, the hidden 

layer weight of ELM is determined randomly. Meanwhile, the output weight of ELM is 

calculated analytically using a least square method. It means no iterative training in ELM. 

As a result, ELM training is very fast compared to traditional SLFNs that use gradient 

descent algorithm. Interestingly, despite employing random projection in the hidden 

layer, ELM performance outperforms back propagation neural network in most cases, 

either for classification or regression problems (G.-B. Huang et al., 2006; G. B. Huang et 

al., 2012).  

The ELM has succeeded after having been applied in many applications. As a 

classifier, it has been implemented in different application,  such as in our published work 

on myoelectric pattern recognition (Khairul Anam et al., 2013) and character recognition 

(Chacko et al., 2012; Zheng et al., 2013). In addition, it played an importance role in face 

recognition (Mohammed et al., 2011), cancer detection (Saraswathi et al., 2011), and 

protein structure prediction (Wang et al., 2008). As for a regressor, ELM has proved its 

benefits in physical parameter estimation (Javed et al., 2014) and electrical power system 

(Nizar et al., 2008). 

In addition to the classifier and approximator, ELM can be implemented in 

dimensionality reduction. G. Huang et al. (2014) have developed an unsupervised 

extreme learning for unsupervised dimensionality reduction (US-ELM). Its characteristic 

is similar to principal component analysis (PCA) that reduces the feature’s dimension 

with an unknown label. In fact, if the label is available, the dimensionality reduction 

method can work better than without label. For this reason, linear discriminant analysis 

(LDA) has been proposed to consider the label. In many cases, LDA performs better than 

PCA except in a small number of data (Martínez & Kak, 2001). 
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To the best of the author’s knowledge, no one has developed ELM for supervised 

dimensionality reduction. This section aims to develop a new ELM for supervised 

dimensionality reduction applied on myoelectric pattern recognition. This section 

employs spectral regression (Deng Cai et al., 2007) to calculate the output weight of ELM 

instead of least square method as in the original ELM. Spectral regression is a spectral 

analysis of the Laplacian graph solved by least squares regression. It produces 

eigenvectors to project the input space to the output space. SR-ELM is similar to 

unsupervised ELM proposed by G. Huang et al. (2014) that utilizes the obtained 

eigenvector to project the hidden layer output to the output layer. The difference is on the 

calculation of the eigenvector. In this section, the known label is incorporated while, in 

US-ELM, it is not. 

This section provides two main contributions. Firstly, it proposes a new and first 

ELM for supervised dimensionality reduction, i.e. SR-ELM. Secondly, it presents a new 

type of linear discriminant analysis (LDA) for myoelectric pattern recognition system and 

for general pattern recognition cases as will be shown in the experiments. 

4.3.2 Extreme learning machine 
For N arbitrary distinct samples 1{( , )}N

i i ix t  Rn x Rm, the output of SLFNs with L 

hidden nodes is 

 ( ) ,   1,...,i i if t i Nx h(x )  4.22 

where ih(x )  RNxL and   RLxm. To solve the output weights, ELM minimize the sum 

of squared losses of prediction error as follows: 

 
2 21 1

2 2
1

Minimize  :

Subject to :       1,...,

N

ELM
i

T T
i i i

L C e

t e i Nh(x )
 4.23 

If the constraint is substituted into the objective function, the objective function becomes: 

 
2 21 1

2 2
1

Minimize  :
N

ELM
i

L C T H  4.24 

where H = [h(x1),…, h(xN)T]T  RNxL and T  RNxm. Gradient of Eq. 4.24 with respect to 

 to zero gives: 

 0T
ELML CH T H  4.25 

Eq. 4.25 gives two solutions of   subject to the H. If H has more rows than columns: 
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1

T TLI
C

H H H T  4.26 

where IL is an identity matrix of dimension L. On the contrary, if H has more columns 

than rows, then 

 
1

T T NI
C

H HH T  4.27 

where IN is an identity matrix of dimension N. 

4.3.3 Spectral regression extreme learning machine (SR-
ELM) 

To modify ELM for a dimensionality reduction, the proposed method considers 

unknown labels of ELM. In other words, the proposed method employs unsupervised 

extreme machine learning as explained in (G. Huang et al., 2014). Therefore, the 

objective function in Eq. 4.23 is modified as: 

 
21 1

2 2Minimize  : Tr( )
Subject to :       1,...,

T
ELM

i i

L
i N

F LF
h(x )f

 4.28 

where L is a graph Laplacian. Substitution of the constraint to the objective function will 

give: 

 
21 1

2 2

m

Minimize  : Tr( )

Subject to  : 

T T
ELM

T T

L Η L Η

Η L Η I
 4.29 

As proven in (G. Huang et al., 2014), the optimal solution of Eq. 4.29 is the solution of 

the generalized eigenvalue problem: 

 T T
LI Η LΗ u Η LΗu  4.30 

The spectral graph analysis assumes that the map of a graph to real line y, as a linear 

function: 

  y=Hu 4.31 

As a result, Eq. 4.30 can be formulated as: 

 T T
LI Η LΗ u Η Ly  4.32 

According to the spectral regression theory (Deng Cai et al., 2007; D. Cai et al., 2008), 

the optimal y can be obtained by minimizing: 
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,

2 2 T
i j ij

i j
y y W y Ly  4.33 

where L = D – W is a graph Laplacian. D is a diagonal matrix whose elements are 

, and W is a symmetric N x N matrix which is a pairwise similarity between two 

data points. N is the number of samples. They can also be optimized by solving the 

maximum eigenvalue problem (Deng Cai et al., 2007): 

 Wy= Dy 4.34 

In addition, the spectral regression algorithm can include label consisting c classes. The 

solution for u will contain c-1 solutions.   

In summary, the solution to 4.34 is done by two steps. Firstly, solve the eigenvalue 

problem. Secondly, find u with satisfies Hu = y using: 

 
2

1 1

arg min ( )
N L

T
i i j

u i j
h x y uu u  4.35 

where  is regression parameters and uj is the component of u. Finally 

 1 2 1, ,..., cu u u RL 4.36 

Theoretically, the integration of ELM and SR, called SR-ELM, results in another 

variation of LDA. The ELM projects the input feature to a random feature. Then, the 

spectral regression projects the random feature to the reduced and meaningful features for 

the classifier. In the structure of ELM, the SR provides values for the output weights. 

Interesting characteristic of SR-ELM is, it is an unsupervised method on the side of ELM 

structure, but it is a supervised one on the side of dimensionality reduction. 

4.3.4 Experiments and results 
In this section, the work applied SR-ELM on two datasets. Firstly, SR-ELM is used to 

reduce the dimension of features from EMG signals for finger motion recognition. 

Secondly, SR-ELM is applied to public datasets from UCI Machine Learning Repository.  

4.3.4.1 Experiments on myoelectric finger motion recognition 
This section tested the performance of SR-ELM in the myoelectric pattern recognition 

system for classifying ten finger movements. Figure 4.11 describes the myoelectric 

pattern recognition used in this experiment.  

EMG datasets used in this experiment were from data collection in section 4.2.4.1. 

EMG signals were recorded using 2000 kHz sampling frequency. The signals were 
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acquired from two electrodes located on the forearm of the subjects. Eight subjects, six 

males and two females participated in the experiment. 

Feature 
Extraction:

TD-AR

Dimensionality 
reduction: Classification ClassTwo-channel 

EMG

AW-ELM, RBF-ELM,           
SVM, kNN, LDA

SRELM, SRDA, ULDA, 
OFNDA, PCA, 

USELM,Baseline  
Figure 4.11 The myoelectric finger motion recognition for testing SR-ELM 

In this research, the work summed two EMG signals from two channels to get a new 

EMG signal. Thus, there are three EMG channels now. From these EMG channels, the 

myoelectric pattern recognition (M-PR) extracted time domain features (TD). It involved 

zero waveform lengths (WL) (3 features), slope sign changes (SSC) (3 features), number 

of zero crossings (ZCC) (3 features), sample skewness (SS) (3 features) and mean absolute 

value (MAV) (3 features). In addition, some parameters from Hjorth-time domain 

parameters (HTD) (9 features) and 6-order autoregressive (AR) model parameters (18 

features) were included. The total number of features extracted was 42. However, later, 

more features will be added to observe the performance of SR-ELM dealing with a wide 

range of features. For segmentation, the myoelectric pattern recognition (M-PR) system 

applied disjoint windowing with window length of 100 ms every 100 ms because it is 

compatible with the hardware that will be used in the real-time experiment. 

SR-ELM reduces the dimension of the features from 42 to c-1 features in which c is 

the number of classes. Then, the performance of SR-ELM will be compared with other 

dimensionality reduction methods such as uncorrelated linear discriminant analysis 

(ULDA) (Ye et al., 2006), spectral regression dimensionality reduction (SRDA) and 

orthogonal fuzzy discriminant analysis (OFNDA) (R. N. Khushaba et al., 2010). In 

addition, principal component analysis (PCA) and unsupervised extreme learning machine 

(US-ELM) will be involved. The trial without dimensionality reduction is also considered 

in the comparison (Baseline). 

Furthermore, various classifiers will utilize projected features of SR-ELM to identify 

individual and combined finger movements. Those classifiers are AW-ELM (adaptive 

wavelet ELM), SVM (support vector machine), kNN (k-nearest neighbour) and LDA. 

Different numbers of classes will be tested starting from five up to ten classes. The ten 

classes consist of five individual finger movements, i.e. thumb (T), index (I), middle (M), 



Chapter 4 Novel ELM-Based Classifications for myoelectric finger recognition using two EMG channels 

109 
  

ring (R), little (L). The other movements are combined finger movements consisted of 

thumb-index (T–I), thumb-middle (T–M), thumb-ring (T–R), thumb-little (T–L) and the 

hand close (HC). The parameters of classifiers are presented in Table 4.14. 

Table 4.14 The parameters of classifier involved in the experiment 
Classifier C  d #nodes k 
AW-ELM - - - 100 - 
RBF-ELM 20 2-5 - - - 

SVM 28 27 - - - 
kNN - - - - 10 

4.3.4.1.1 Parameter optimization 

The parameter optimization of SR-ELM affects the performance of the system.  SR-

ELM contains two main parameters, i.e. the number of hidden nodes (a part of the ELM 

parameter) and alpha α (a part of the regression coefficient of the spectral regression). As 

in many feedforward neural networks, the number of hidden nodes is a trivial parameter 

that is not easy to determine. No general rule can be utilized to choose the optimal number 

of the hidden nodes. Therefore, the number of hidden nodes was varied, and the optimal 

one was selected by considering the accuracy and the reduction time. In this experiment, 

AW-ELM was employed as a classifier. In addition, the post-processing method is not 

used in the M-PR system. 

Figure 4.12 presents the experimental result of the optimal node searching. As shown 

by the intersection of two red lines in Figure 4.12, approximately, 1000-node in the hidden 

layer is the optimum number. As for alpha (α), Figure 4.13 is used to obtain the relation 

of the number of nodes and alpha α. The figures show that as long as the number of nodes 

is a big number, then any value of alpha can be selected. However, the optimal value can 

be chosen by varying the value of alpha from 0.01 up to 15. Finally, 0.05 is the best value 

for the M-PR system in this section.   

 
Figure 4.12 The experiment result for searching the optimal number of nodes 



Chapter 4 Novel ELM-Based Classifications for myoelectric finger recognition using two EMG channels 
 

110 
 

  
Figure 4.13 The relation of the number of nodes  and alpha (α) using classifier AW-ELM 

(LEFT) and RBF-ELM (RIGHT) 

4.3.4.1.2 The experiment on the class number 

This section tested the performance of SR-ELM in reducing feature dimension for 

different classes, ranging from five up to ten classes. Table 4.15 presents the classes 

involved in the experiment.  

Table 4.15 Various classes involved in the experiment 
#Classes Classes 

5 T, I, M, R, L 
6 T, I, M, R, L, T-I 
7 T, I, M, R, L,T-I, T-M 
8 T, I, M, R, L, T-I, T-M, T-R 
9 T, I, M, R, L, T-I, T-M, T-R, T-L 
10 T, I, M, R, L, T-I, T-M, T-R, T-L, HC 

 

The SR-ELM’s performance is compared to other well-known methods grouped into 

two groups: supervised and unsupervised dimensionality reduction. The supervised 

dimensionality reductions consist of ULDA (uncorrelated linear dimensionality 

reduction), SRDA (spectral regression dimensionality reduction), OFNDA (orthogonal 

fuzzy neighbourhood dimensionality reduction), while the unsupervised dimensionality 

reductions consist of PCA (principle component analysis), USELM (unsupervised 

extreme learning machine) and Baseline (without dimensionality reduction method). In 

addition, all experiments employed AW-ELM as a classifier. Figure 4.14 presents the 

experimental result. 
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Figure 4.14 The performance of SR-ELM and others across eight subjects without using a 

majority vote 

As shown in Figure 4.14, the accuracy of the system is decreasing as the number of 

classes is increasing. This trend happens to all methods. The characteristic of SR-ELM is 

comparable to the state-of-the-art of linear discriminant analysis. All supervised 

dimensionality reductions such as ULDA, SRDA, SR-ELM, and OFNDA attain similar 

accuracy in all class numbers. However, SR-ELM is better than all methods tested in the 

system that does not use the post-processing method, which is the majority vote. Its 

accuracy ranges from 95.67 % to 86.73 % for 5 to 10 classes of movement, as seen in 

Figure 4.14. However, when the system utilized the majority vote, the performance of 

SR-ELM and other methods is comparable (see Figure 4.15) with accuracy ranging from 

98.64 % to 94.16 % for 5 to 10 motion classes. 

 
Figure 4.15 The performance of SR-ELM and others across eight subjects with a majority 

vote 
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SR-ELM and SRDA employ same spectral regression. They are different in treating 

the spectral regression (SR). SRDA uses SR to find the eigenvectors for the projection 

while SR-LEM utilizes SR to obtain the weight output of the extreme learning machine. 

Another difference of both is SR-ELM involves a random projection as additional to the 

SR projection. Experimentally, the random projection could improve the performance of 

the SRDA, as seen in Figure 4.14. Figure 4.14 shows that SR-ELM (green bars) is more 

accurate than SRDA and even better than other methods across five different classes. It 

indicates that SR-ELM enhances the performance of SRDA. However, when the 

classifiers employed the majority vote, the improvement of the SR-ELM is not seen 

significantly. Despite having better performance, SR-ELM takes more processing time 

than SRDA, as can be seen in Figure 4.16. However, its processing time is still reasonable 

and less than ULDA’s processing time. 

 
Figure 4.16 Processing time consumed by some dimensionality reduction methods 

4.3.4.1.3 Classifier experiments 

Various types of classifiers were involved to test the performance of SR-ELM. Figure 

4.17 display the result. Figure 4.17 indicates that SR-ELM works well across five 

classifiers when the pattern recognition did not use the majority vote. The accuracy of 

SR-ELM is the best over classifiers except SVM. However, when the classifiers utilize 

the majority vote (see Figure 4.18) to refine the classification result, the influence of SR-

ELM is not noticeable. In the myoelectric pattern recognition system, involving the 

majority vote could improve the performance, but it can increase the delay time (T. Farrell 

& Weir, 2008). 
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Figure 4.17 SR-ELM performance on different classifiers without majority vote across 
eight subjects 

 

Figure 4.18 SR-ELM performance on different classifiers plus majority vote across eight 
subjects 

An analysis of variance (ANOVA) test was also conducted to find the exact 

comparison of SR-ELM and other methods. Figure 4.19 presents the ANOVA test for p 

set at 0.05 using 10 classes with majority vote. The results indicate that there is a 

significant difference between SR-ELM and SRDA (p<0.05). However, the difference 

between SR-ELM and other LDA models like ULDA and OFNDA is not significant 

(p>0.05). This statistic analysis highlights the improvement of SR-ELM over SRDA. 
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Figure 4.19 Anova test of SR-ELM and other methods across eight subjects using 10 

classes with majority vote 

The performance of the dimensionality reduction can be investigated from a scatter 

plot of the data. Figure 4.20 describes the scatter plot of three first features of the original 

feature set before being projected. The picture indicates that the data are scattered 

completely. The projection method such as LDA and SR-ELM could improve the class 

separability of the data, as shown in Figure 4.21 and Figure 4.22.  

 
Figure 4.20 Scatter plot of the original features before projected 

Figure 4.21 presents the scatter plot of ULDA and OFNDA. Both methods could 

enhance the class separability of features by grouping the data according to the class. 

Similarly, Figure 4.22 describing the scatter plot of the features using SRDA and SR-

ELM indicates that SRDA and SR-ELM could improve the class separability of the 

features, compared with Figure 4.20. Furthermore, the comparison of the scatter plot of 

SRDA and SR-ELM is presented in Figure 4.22. The figure shows that feature projected 

using SR-ELM are slightly better than SRDA. 
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Figure 4.21 Scatter plot of the projected features using ULDA (LEFT) and OFNDA 

(RIGHT) 

 
Figure 4.22 Scatter plot of the projected features using SRDA (LEFT) and SR-ELM 

(RIGHT) 

4.3.4.1.4 Feature experiment 

This section examined the performance of SR-ELM to reduce the features from EMG 

signals from various features.  

Table 4.16 describes the various features used in the experiment.   

Table 4.16 Various features used in the experiment 

Name #features Features Group 
F1 12 SSC,ZC, WL, MAV Small dimension 
F2 15 SSC,ZC,WL,MAV, MAVS 
F3 24 SSC,ZC,WL,MAV, SKW, HJORTH Medium 

dimension F4 36 SSC,ZC,WL, MAV, MAVS, RMS,6AR 
F5 42 SSC,ZC,WL, MAV,SKW,HJORTH,6AR 

F6 48 SSC,ZC,WL,SKW,MAV,MAVS, 
HJORTH,RMS,6AR 

F7 195 Power autoregressive Large dimension 
 
Furthermore, several classifiers were employed along with the majority vote with n 

=4. They are AW-ELM (adaptive wavelet extreme learning machine), RBF-ELM (radial 

basis extreme learning machine), SVM (support vector machine), and LDA (linear 
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discriminant analysis). This experiments conducted 3-fold cross validation. Table 4.17 to 

Table 4.20 present the experimental results. 

Table 4.17 The accuracy achieved employing AWELM on the feature test using 3-fold 
cross validation 

Feature 
set # features 

Accuracy (100%) 
ULDA SRDA SR-ELM OFNDA PCA USELM BASELINE 

F1 12 88.88 88.35 90.50 86.15 87.59 80.52 89.51 
F2 15 89.73 88.88 91.38 90.77 81.84 78.73 89.47 
F3 24 93.55 93.31 94.01 93.49 90.44 87.91 92.99 
F4 36 93.84 93.66 93.73 93.90 85.36 79.54 91.45 
F5 42 94.32 94.15 94.22 94.20 88.60 84.45 92.21 
F6 48 94.82 94.80 94.71 94.85 88.98 85.14 92.54 
F7 195 63.99 94.02 92.52 94.85 88.98 85.14 92.54 

 

Table 4.17 provides the experimental results when using AW-ELM as a classifier, to 

classify ten finger motions from the features reduced using various dimensionality 

reduction methods. SR-ELM achieved the highest accuracy for the feature set F1 up to 

F3. For the feature set F4 - F6, the accuracy of the system is not the highest but it is very 

close to the highest one. Another interesting fact is revealed when comparing SRDA and 

SR-ELM. In all features, SR-ELM attained better accuracy than SRDA except on the 

feature set F6 and F7. Especially on the feature set F7 whose dimension is vast, the 

difference of SRDA and SR-ELM is noticeable. Moreover, SR-ELM is better than 

unsupervised dimensionality reduction, PCA, and US-ELM. The comparison of SR-ELM 

and Baseline shows that the SR-ELM could reduce the dimension of data and at the same 

time could increase the class separability of the features. It is proven by looking at the 

accuracy of the Baseline, which is lower than SR-ELM except on the feature set F7. It 

seems that SR-ELM does not perform well on a large dimension of data. 

In addition to AW-ELM, LDA also classified the ten finger movements along with 

various dimensionality reduction methods. Table 4.18 presents the experimental results. 

The table shows that SR-ELM is the most accurate method across six features sets: F1 to 

F6. However, SR-ELM is worse than SRDA when projecting the feature set F7, but it is 

still better than ULDA and OFNDA. This new fact confirms the previous assumption 

about SR-ELM that the accuracy is slightly low when it works on the large dimension of 

features.  In general, compared to PCA, US-ELM and the Baseline, SR-ELM attained 

better accuracy. 
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Table 4.18 The accuracy achieved employing LDA on the feature test using 3-fold cross 
validation 

Feature 
set # features 

Accuracy (100%) 
ULDA SRDA SR-ELM OFNDA PCA USELM BASELINE 

F1 12 85.70 84.17 88.01 82.07 82.83 73.12 85.70 
F2 15 86.89 85.05 88.81 86.89 78.19 70.48 86.89 
F3 24 92.53 92.34 93.34 92.53 88.48 82.37 92.53 
F4 36 92.95 92.69 93.64 92.95 84.64 75.21 92.95 
F5 42 93.33 93.25 94.05 93.33 87.65 80.85 93.33 
F6 48 94.16 93.87 94.59 94.16 88.13 81.16 94.16 
F7 195 92.10 93.36 92.77 92.10 91.33 87.24 92.10 

 

By Looking at Table 4.19, Table 4.20, and facts mentioned in the previous discussion 

in this section, it could be concluded that SR-ELM is very useful for reducing the feature 

with low up to medium dimension. Compared to SRDA, the performance of SR-ELM is 

less but it is still high compared to unsupervised dimensionality reduction (PCA and 

USELM) and the baseline.  

Table 4.19 The accuracy achieved employing RBF-ELM on the feature test using 3-fold 
cross validation 

Feature 
set # features 

Accuracy (100%) 
ULDA SRDA SR-ELM OFNDA PCA USERLM BASELINE 

F1 12 90.63 87.33 91.14 85.50 80.24 81.15 80.79 
F2 15 91.83 89.19 92.15 89.11 78.07 79.77 80.24 
F3 24 94.39 93.06 94.43 92.25 87.15 88.46 87.81 
F4 36 94.67 93.75 94.29 93.41 78.59 80.45 83.15 
F5 42 94.76 93.83 94.52 93.25 82.43 85.14 86.57 
F6 48 95.47 94.59 94.78 94.40 83.49 85.86 87.30 
F7 195 92.47 93.11 92.98 17.62 87.64 87.34 88.01 

Table 4.20 The accuracy achieved employing SVM on the feature test using 3-fold cross 
validation 

Feature 
set # features 

Accuracy (100%) 
ULDA SRDA SR-ELM OFNDA PCA USERLM BASELINE 

F1 12 89.32 87.29 89.55 89.17 85.84 75.64 84.88 
F2 15 90.60 88.09 90.39 90.50 81.62 73.71 85.60 
F3 24 93.52 93.39 93.57 93.55 90.39 84.49 91.89 
F4 36 94.21 93.94 93.93 94.18 84.93 77.81 91.78 
F5 42 94.30 94.26 94.29 94.28 88.66 82.42 92.85 
F6 48 95.21 94.83 94.58 95.16 89.53 83.10 93.29 
F7 195 92.40 93.81 92.70 92.35 91.36 87.67 92.36 
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4.3.4.2 On UCI dataset 
This section examined SR-ELM to reduce the dimension of features on the datasets in 

the UCI machine learning library. This section examined five datasets with various 

dimension and different numbers of data, as presented in Table 4.21.  

Table 4.21 Various datasets used in the experiments from UCI Library  

Datasets Group #data #features #classes 
Iris Small size and 

small 
dimension 

150 4 3 

Glass 214 9 6 

Vehicle 

Medium size 
and medium 
dimension 846 18 4 

Segmentation Large size and 
large dimension 

2310 20 7 
Satimage 6435 36 6 

There are six dimensionality reduction methods involved. They consist of supervised 

and unsupervised methods. The supervised methods are ULDA (uncorrelated linear 

discriminant analysis), SRDA (spectral regression discriminant analysis), the proposed 

SR-ELM (spectral regression extreme learning machine) and OFNDA (orthogonal fuzzy 

neighbourhood discriminant analysis). In addition, two unsupervised methods employed 

are PCA (principle component analysis) and USELM (unsupervised extreme learning 

machine). In addition to those methods, the original features without projection method 

called BASELINE are involved.  

As for the classifier, the myoelectric pattern recognition (M-PR) system classified the 

projected features into c-1 classes using seven different classifiers. They are AW-ELM 

(the proposed classifier discussed in section 4.2), RBF-ELM (the kernel-based ELM), 

LIBSVM, LDA and kNN. Table 4.22 to Table 4.26 present the classification results. 

Table 4.22 presents the accuracy attained when the system employed AW-ELM as the 

classifier along with various dimensionality reduction methods. When working together 

with AW-ELM, SR-ELM is very good in reducing the features with large dimension with 

an accuracy of about 96 % and 88 % in Segmentation and Satimage datasets, respectively. 

This fact contrasts with the findings in the myoelectric pattern recognition discussed 

previously. Therefore, it can be concluded that the ability of SR-ELM is different, 

application-to-application as some datasets are working better without the need of the 

dimensionality reduction. Furthermore, in two datasets, Glass and Vehicle, the accuracy 

of the system using any reduction method is less than Baseline. It means both datasets do 

not need any dimensionality reduction when working together with AW-ELM. 



Chapter 4 Novel ELM-Based Classifications for myoelectric finger recognition using two EMG channels 

119 
  

Table 4.22 The accuracy attained using AW-ELM  

Datasets Average Accuracy (%) 
ULDA SRDA SR-ELM OFNDA PCA USELM BASELINE 

Iris 80.67 94.67 84.67 96.67 93.33 80.67 94.67 
Glass 53.37 64.41 63.08 55.54 66.28 63.05 66.29 

Vehilce 76.24 70.33 77.30 73.89 54.83 57.11 81.68 
Segmentation 53.51 93.81 96.19 - 93.12 93.68 92.64 

Satimage - 84.18 88.34 - 87.38 82.02 87.38 
“-“ means the method does work properly because of singularity problem 

In addition to AW-ELM, the experiment involved another ELM classifier, radial basis 

function extreme learning machine (RBF-ELM). Table 4.23 provides the classification 

results. In general, any method shows a good accuracy in one dataset but exhibits a low 

accuracy in other datasets. That happens on SR-ELM as well with general observation 

that it works better in datasets that need the feature reduction.  

Table 4.23 The accuracy attained using RBF-ELM using 3-fold and 5-fold cross validation 
for satimage and other than satimage, respectively 

Datasets Average Accuracy (%) 
ULDA SRDA SR-ELM OFNDA PCA USERLM BASELINE 

Iris 82.67 97.33 84.67 98.00 94.67 79.33 96.67 
Glass 57.98 66.83 64.62 64.50 69.14 62.27 68.43 

Vehilce 76.00 75.41 78.02 76.12 54.72 45.99 84.17 
Segmentation 88.48 96.71 91.26 - 97.06 85.24 97.53 

Satimage - 85.45 89.28 - 90.02 84.06 88.95 
“-“ means the method does work properly because of singularity problem 

In Table 4.24, PCA is comparable to the supervised dimensionality reduction. This 

contrasts with the results in the myoelectric signal in which PCA is not as good as the 

LDA and its extension.  

Table 4.24 The accuracy attained using LIBSVM using 3-fold and 5-fold cross validation 
for satimage and other than satimage, respectively 

Datasets Average Accuracy (%) 
ULDA SRDA SR-ELM OFNDA PCA USERLM BASELINE 

Iris 83.33 96.67 94.00 96.67 96.67 81.33 96.00 
Glass 35.52 58.87 42.08 47.72 58.90 35.53 60.82 

Vehilce 76.12 78.02 78.25 77.42 58.63 44.80 70.80 
Segmentation 84.72 94.20 91.13 - 93.16 78.96 95.93 

Satimage - 85.13 83.68 - 89.53 74.31 89.91 
“-“ means the method does work properly because of singularity problem 

Table 4.25 and Table 4.26 present the experimental results for the system that 

employed LDA and kNN as a classifier, respectively. Compared with other supervised 
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methods, the combinations of SR-ELM+LDA or SR-ELM+kNN give better 

performances. The comparison with unsupervised methods shows that SR-ELM and PCA 

are comparable, but SE-RLM is better than USERLM. SR-ELM and US-ELM are an 

extension of extreme learning machine for dimensionality reduction. The difference is 

that SR-ELM considers classes while US-ELM does not. It can be concluded that for 

ELM family, the taking of classes into consideration improves the performance of the 

method. However, the accuracy gap is not as large as in the myoelectric pattern 

recognition discussed before.  

Table 4.25 The accuracy attained using LDA using 3-fold and 5-fold cross validation for 
satimage and other than satimage, respectively 

Datasets Average Accuracy (%) 
ULDA SRDA SR-ELM OFNDA PCA USERLM BASELINE 

Iris 98.00 98.00 97.33 98.00 97.33 80.67 98.00 
Glass 63.05 58.37 62.38 63.62 47.12 49.59 61.26 

Vehilce 77.79 77.06 79.31 77.31 43.98 46.34 77.90 
Segmentation 91.52 91.69 92.73 - 84.07 85.41 94.98 

Satimage - 82.89 85.67 - 82.04 79.11 82.70 
“-“ means the method does work properly because of singularity problem 

Table 4.26 The accuracy attained using kNN using 3-fold and 5-fold cross validation for 
satimage and other than satimage, respectively 

Datasets 
Average Accuracy (%) 

ULDA SRDA SR-ELM OFNDA PCA USERLM BASELINE 
Iris 94.67 96.00 96.00 98.00 95.33 84.67 96.00 

Glass 63.01 61.69 65.64 60.69 64.49 64.52 63.08 
Vehilce 76.13 75.89 78.01 77.29 57.45 55.80 70.44 

Segmentation 95.41 95.76 96.67 - 93.85 93.59 94.81 
Satimage - 85.59 87.20 - 88.59 81.99 88.66 
“-“ means the method does work properly because of singularity problem 

Another interesting fact exists when comparing SRDA and SR-ELM in all tables. In 

summary, SR-ELM is better than SRDA when the pattern recognition system employed 

AW-ELM, LDA and kNN as a classifier. As for RBF-ELM and LIBSVM, SRDA is better 

than SR-ELM. 

4.3.5 Conclusion 
This section proposes a new extreme learning machine and at the same time, a new 

dimensionality reduction called SR-ELM for finger movement classification. The 

experiment results on myoelectric pattern recognitions system show that SR-ELM is 

comparable to ULDA and OFNDA and better than SRDA. However, the processing time 
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of SR-ELM is much slower than that of SRDA, a bit slower than OFNDA and faster than 

ULDA. Moreover, SR-ELM can also work well on different classifiers and various 

numbers of classes with an average accuracy ranging from 95.67 % to 86.73 % for 5 to 

10 classes of movement across eight subjects using two EMG channels. It is noted that 

the system did not implement the majority vote. When applying majority vote, the 

accuracy ranged from 98.64 % to 94.16 % for 5 to 10 motion classes. 

The experimental results on UCI datasets showed that SR-ELM exhibits good 

performance when it works together with AW-ELM, LDA and kNN. As for RBF-ELM 

and LIBSVM, the performance of SR-ELM is comparable to other methods. 

4.4 Evaluation of swarm based extreme learning 
machine (S-ELM) for myoelectric finger 
recognition 

The experiment results in Chapter 3 and the previous sections (section 4.2 and 4.3), 

show that kernel-based ELM especially RBF-ELM is a powerful classifier. It is the most 

accurate classifier among the node-based ELM, SVM, LS-SVM, LDA, and kNN. 

However, the performance of kernel-based ELM greatly depends on its parameters. The 

parameter selection is a crucial issue in the RBF-ELM. Trying all possible candidates of 

the parameters will not be a good option. The optimization can be a wise option to deal 

with this issue. In this section, particle swarm optimization (PSO) will optimize the 

parameters of three different kernels. The background will be discussed first. The basic 

concept of the kernel-based ELM and PSO will come after that. Then, the hybridization 

of the kernel-based ELM and PSO will be presented. The experiments will be provided 

afterward. This section will be ended by the conclusion.  

4.4.1 Background 
ELM is a great improvement of feed-forward neural networks, which very 

considerably reduce the training time by omitting the iterative learning process. In ELM, 

the hidden node weights and biases are determined randomly, while the output weights 

are calculated analytically. Therefore, the training time is very fast compared to the 

traditional neural networks. ELM method has been used for a wide range of application 

(Cao et al., 2010). Nevertheless, the hidden node parameters, the input weights, and 

biases, which are determined arbitrarily, result in a non-optimal system. Some efforts 

dealing with the optimization problem in ELM have been done. Self-adaptive 
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evolutionary ELM (SAE-ELM) (Cao et al., 2012),  and particle swarm optimization ELM 

(PSO-ELM) (Xu & Shu, 2006) are a number of methods developed to optimize the hidden 

node parameters.  

ELM is not merely working on the node style. A kernel system can be incorporated in 

ELM by replacing the node processing structure with a kernel function. This kernel based 

ELM can be considered as a variance of least square support vector machine (LS-SVM) 

without the output bias (Zong et al., 2011). Similar to the node-based ELM, the kernel-

based ELM faces the optimization problem too. The efficacy of the kernel-based ELM 

greatly depends on the optimum combination of the kernel parameters (G. B. Huang et 

al., 2012). The popular grid search algorithm that is simple was used to search the optimal 

kernel (Khairul Anam et al., 2013). However, the exhaustive grid search on a large 

number of the parameter space may result in a very time-consuming process.      

   A popular particle swarm optimization (PSO) algorithm can be a promising solution 

for optimizing the kernel parameters in the kernel-based ELM. To the best of the author’s 

knowledge, the integration of PSO and ELM only exists in the node-based ELM. This 

thesis extends the use of PSO into the kernel-based ELM. 

4.4.2 Kernel-based extreme learning machine 
ELM is a learning algorithm for single layer feedforward networks (SLFNs). In 

classical SLFNs, network parameters are tuned while in ELM, most of these parameters 

are analytically determined. Hidden parameters can be independently calculated from the 

training data, and output parameters can be determined by the pseudo-inverse method. As 

a result, the learning of ELM can be carried out fast compared to the other learning 

algorithms (G. B. Huang et al., 2012).  

As described in Chapter 2 section 2.5.4.3, the output of ELM is defined by: 

  4.37 

where g(x) is the feature mapping in the hidden layer, T is the target and C is the 

regulation parameter of ELM. The feature mapping in the hidden layer of ELM can be 

replaced by a kernel function. Therefore, the formulation of the kernel based ELM is 

defined by: 

  4.38 

where  
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  4.39 

and K is a kernel function as shown in Eq. 4.40 - 4.42. 

 Radial basis function:  4.40 

 Linear:  4.41 

 Polynomial:  4.42 

4.4.3 Particle swarm optimization (PSO) 
Particle swarm optimization (PSO) is a population-based stochastic optimization 

algorithm that has been applied widely in many optimization areas   (Ling   et al., 2008). 

PSO is inspired by the social behaviours of animals like fish schooling and bird flocking 

(Ling   et al., 2008). The particle swarm does not use selection. It means that all population 

members survive from the beginning until the end (Kennedy, 2010). In the PSO, a swarm 

of interacting particles moves in an n-dimensional search space of the problem’s possible 

solution. Four elements that are a position , a velocity , the best previous (local) 

position  and the best global position  represent a particle in the swarm. Some 

generations are generated to update the particle’s positions and velocities. The particles 

explore the promising domain to find the best solutions, which spread throughout the 

swarm. The parameter adaptations are given by: 

  4.43 

 
 

4.44 

where 

 

 

 

In the Eq. 4.43 and  4.44,  t represents the generation, k denotes the number of the 

particles in the swarm, d denotes the number of dimension.  is an inertia weight factor, 

and c1 and c2 are acceleration constants that are weighted by r1 and r2, random function 

in the range of [0-1]. Based on (de Souza et al., 2006),  the total number of c1 and c2 
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should exceed 4 to assure the convergence. The velocity is constrained to  

to limit the swarm particles in the search space. 

4.4.4 Optimization of the parameters of the kernel based 
ELM using PSO 

The objective of the optimization using PSO is to find the optimal parameters of the 

kernel-based ELM. The optimization was implemented in three kernels, and it forms three 

hybridizations of PSO and ELM, i.e., a swarm-based radial basis function ELM (SRBF-

ELM), a swarm-based linear ELM (SLIN-ELM) and swarm-based polynomial ELM 

(SPOLY-ELM). According to Eq. 4.40 - 4.42, the SRBF-ELM contains two parameters: 

C and , the SLIN-ELM contains one parameter which is C, and the SPOLY-ELM 

consists of three parameters: C, a and d. The value ranges of the parameters of the PSO 

are C  [2-5, 25],    [2-4, 210], a  [2-4, 210] and d  [1, 50]. In this work, the c1 and c2 

are set at 2.05 while  is 0.9. In addition, the optimization was done until 150 generations 

with 30 particles in each generation. A 3-fold cross validation was employed to measure 

the error.  Therefore, the fitness function of particle  is defined by 

  4.45 

where En is the error in each validation process. Figure 4.23 shows the pseudo-code of 

PSO for optimization of the ELM parameters.  
Begin 

t  1    // iteration 
 Initialize xi  // xi : position (swarm particle) 
 Evaluate f(xi)  // f(xi): fitness function Eq. 4.45 
 Initialize vi  // vi : velocity 
     //  : personal best position 
     //  : global best position 
 While (condition satisfied) do 
  t  t+1 
  update position of particle x(i)   // Eq. 4.43 

update velocity v(t)    // Eq. 4.44 
if v(t)> vmax, v(t)=vmax end 
if v(t)< -vmax, v(t)=-vmax end 

  Evaluate f(x(t)) 
  update  if new  better than previuos  

update  if new  better than previuos  
 end 
end 

Figure 4.23 The pseudo code of PSO for the optimization of the kernel-based ELM 
parameters 
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4.4.5 Experimental setup 
The proposed recognition system consists of two stages, i.e., a tuning of ELM 

parameters and the classification stage using optimized parameters, as shown in Figure 

4.24.  

Windowing Feature 
Extraction

Dimensionality 
reduction:

SRDA

Two 
EMG 

channels

Post-
Processing

MAV, MAVS, ZC, SSC, 
SS, WL, RMS, AR6, HTD

Classification:
Poly-ELM, Lin-ELM, 

RBF-ELM

Kernel ELM 
parameters:

C, a , d  

PSO

 
Figure 4.24 The myoelectric pattern recognition using integration PSO and the kernelized 

ELM 

The EMG signal used in this experiment is the same data as in section 4.2.4.1. Then 

the filtering and windowing were applied to the collected data before being extracted 

using a time domain (TD) and autoregressive (AR) features. The features were extracted 

from the time domain feature set which consists of waveform length (WL), slope sign 

changes (SSC), number of zero crossings (ZCC), sample skewness (SS), the parameters 

of Hjorth time domain parameters (HTD) and auto regressive (AR) model parameters 

were included. Furthermore, SRDA is used to reduce the feature dimension.  

Afterwards, the optimization process was done using PSO where the goal is to find the 

best ELM parameters which minimize the classification error. Based on the parameters 

obtained in the tuning stages, the offline classification was carried out. The classification 

outputs were refined by using a majority vote. Some analyses were performed to validate 

the result. 

The optimized kernel-based ELMs were used to recognize ten classes of the individual 

and combined finger movements. They consisted of the flexion of individuated fingers. 

They consisted of Thumb (T), Index (I), Middle (M), Ring (R), Little (L) and the pinching 

of combined Thumb–Index (T–I), Thumb–Middle (T–M), Thumb–Ring (T–R), Thumb–

Little (T–L), and the hand close (HC). The four-fold cross validation was used to validate 

the classification results. Simulation was done in the MATLAB 8.3 environment running 

on 2.8 GHz PC. 
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4.4.6 Experiments and Results 
The first experiment conducted was plotting of the fitness function to investigate the 

convergence of the optimization process. Three experiments were performed in three 

different kernels. The discussion will be presented in section 4.4.6.1. Afterward, the 

investigation of the classification results according to the optimal parameters is presented. 

Section 4.4.6.2 will describe the results as well as the analysis. 

4.4.6.1 The fitness function 
This section evaluates the convergence of the PSO for different kernels across eight 

subjects using 3-fold cross validation. As shown in Figure 4.25, all fitness outputs 

converge to the optimum value. SPOLY-ELM achieves the minimum error compared to 

other kernels. On the other hand, the SLIN-ELM shows different trends. Its fitness 

becomes constant quicker than the other two, but it keeps staying at the highest error 

compared to the others. Meanwhile, the SRBF-ELM shows a moderate behaviour. 

Although the SPOLY-ELM attained the lowest accuracy, the actual performance should 

be done by applying the optimal parameter to the testing session. Table 4.27 shows the 

optimal parameters obtained by PSO.  

 
Figure 4.25 The average fitness function for different kernels across eight subjects using 3-

fold cross validation 

Table 4.27 The optimal parameter optimized by a swarm technique 

Type of ELM 
Optimal Parameters 

C  a d 
SLIN-ELM 1.56 - - - 
SRBF-ELM 24.75 0.82 - - 

SPOLY-ELM 14.75 - 430.27 4.38 
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4.4.6.2 The classification performance over eight subjects 
The next experiment is the evaluation of the classification performance using the 

optimal parameters optimized by PSO. Figure 4.26 depicts the accuracy of all systems 

over eight subjects. The figure shows that SRBF-ELM outperforms the other two systems 

especially compared to SLIN-ELM but not too much compared to SPLOY-ELM. SRBF-

ELM is better than SPOLY-ELM in all subjects except subject S2. Table 4.28 provides 

overall accuracy of the system. It is clear that by averaging the accuracy over eight 

subjects as shown in Table 4.28, SRBF-ELM achieved the highest accuracy.  

 
Figure 4.26 The classification accuracy of the optimized ELM averaged from eight 

subjects 

Table 4.28 The average classification accuracy across eights subject 
Type Average Accuracy (%)  

SRBF-ELM 94.62  ± 3.70 
SLIN-ELM 91.43 ± 5.61 

SPOLY-ELM 94.16 ± 3.70 
 

4.4.6.3 The performance on the classified movements 
The performance of the systems in recognizing the finger movements is also 

investigated. As described in Figure 4.27, SRBF-ELM outperforms SLIN-ELM and has 

similar performance to SPOLY-ELM. Moreover, all systems recognize individual 

motions better than combined motions.  The figure shows that the accuracy of individual 

motions is mostly higher than the combined motions except the little finger (L). It is an 

interesting phenomenon that the little finger which is an individual digit, yet it is the most 

difficult motion to recognize. 
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Figure 4.27 The classification accuracy of the optimized ELM for different finger 

movements 

Besides two previous experiments, the statistical test using analysis of variance 

(ANOVA with significance values set at 0.05) was performed. The result is described in 

Table 4.29. The p-values in Table 4.29 indicate that there is no significant performance 

between SRBF-ELM and SPLOY-ELM (p>0.05). Thus, both systems have the same 

performance statistically. Meanwhile, the performance of SRBF-ELM and SLIN-ELM 

are significantly different (p<0.05).  In addition, SPOLY-ELM and SLIN ELM are not 

significantly different (p>0.05).  

Table 4.29 p-values resulting from a-pair wise comparison of classification accuracy 
 SPOLY-ELM SLIN-ELM 

SRBF-ELM 0.72 0.04 
SPOLY-ELM   0.09 

4.4.7 Conclusion 
This section proposes the hybridization of PSO and ELM for myoelectric finger 

motion recognition. Among three hybridizations, SRBF-ELM outperforms SLIN-ELM 

but is not too much different compared to SPOLY-LIN. This is also indicated by the p-

values in which SRBF-ELM and SPOLY-ELM have similar performance. Moreover, 

PSO is able to optimize the three systems by giving the accuracy of more than 90% with 

the highest accuracy being about 94 %. 

However, Figure 4.25 shows that the PSO in SLIN-ELM and SRBF-ELM converges 

in the early stage of the searching stages and then saturates in the later stage. This fact 

indicates that PSO possibly becomes trapped in local optima. This phenomena confirms 

the fact expressed by Ling   et al. (2008). Some methods have been proposed to overcome 

this problem (Chia-Feng, 2004; Ling et al., 2008). Therefore, the next section will 
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investigate and implement the new PSO for optimizing the parameters of the kernel-based 

ELM. This new system will be discussed in the next section. 

4.5 Evaluation of swarm-wavelet extreme 
learning machine (SW-ELM) for myoelectric 
finger recognition 

This section proposes a new hybridization of PSO and ELM. The research utilizes the 

wavelet-PSO to tackle the local optima issue in the PSO. The experiment only involved 

one kernel, which is radial basis function (RBF) kernel as it is the most accurate kernel 

for finger motion classification in this research. It is called SW-RBF-ELM. The structure 

of this section is as follows. The first subsection will discuss the basic theory of wavelet-

PSO. Then, the experimental setup is presented. The experimental results on the healthy 

subjects are discussed in detail. Additional experiment on the amputee subjects is also 

provided. Finally, this section is ended by the conclusion.    

4.5.1 PSO with wavelet mutation 
The theory of PSO is presented in Section 4.4.3. This section is discussing the PSO 

with wavelet mutation. The wavelet mutation in PSO was proposed by Ling et al. (Ling   

et al., 2008). A mutation chance is driven by a mutation probability pm  [0 1]. If xi(t) is 

selected to be mutated, then a new position is given by:   

  4.46 

where parmax and parmin are the maximum and minimum position, respectively. As for , 

it is the Morlet wavelet function defined by: 

  4.47 

The variable “a” in the Morlet wavelet is determined by the following equation: 

  4.48 

The objective of the optimization using the wavelet-PSO is to find the optimum 

parameters of the kernel-based ELM that minimize the classification error of the finger 

motion recognition. A 3-fold cross validation was employed to measure the error.  

Moreover, the fitness function of particle xx  is defined by 
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  4.49 

where Nv is the number of cross validation, En is the error in each validation process.  

The fitness function of Eq. 4.49 is different from the previous one, Eq. 4.45. In the 

previous experiment, the optimization was conducted in each trial of the validation 

process. Calculating errors in each validation means that the work will perform all pattern 

recognition steps. As a result, the optimization process takes a lot of time. In this section, 

the optimization did not use the error in each validation step. Rather, it employed the 

average of the validation process as a fitness function. The pseudo code of the wavelet 

mutation for optimizing the parameters of the kernel based ELM is presented in Figure 

4.28. 

 
Begin 

t  1    // iteration number 
 Initialize x(t)  // x(t) : position, a particle swarm 
 Evaluate f(x)  // f(x): fitness function Eq. 4.45 
 Initialize v  // v : velocity 
     //  : personal best position 
     //  : global best position 
 While (condition satisfied) do 
  i  i+1 
  update position of particle x(i)   // Eq. 4.43 

update velocity v(i)    // Eq. 4.44 
if v(i)> vmax, v(i)=vmax end 
if v(i)< -vmax, v(i)=-vmax end 
 
perform wavelet mutation operation with pm  
Updating x(i)        // Eq. 4.46 

   
Evaluate f(x(i)) // f(x): fitness function Eq. 4.45 

  update  if new  better than previuos  
update  if new  better than previuos  

 end 
end 

Figure 4.28 The pseudo code for PSO with wavelet mutation for optimizing the 
parameters of ELM 
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4.5.2 The experimental setup 
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Figure 4.29 The experimental setup of the PSO-wavelet mutation for ELM parameters 

optimization 

Figure 4.29 shows the block diagram of the experiment conducted in this section. It is 

similar to that in section 4.4.5. The experiments utilized the same data and the same 

methods as in section 4.2.4 except for the classifier. In this section, the optimization 

process involves radial basis function (RBF) kernel only. This section focuses on the 

efficacy of the wavelet mutation on PSO, so it is enough to use one kernel only. Besides, 

the previous work (see Chapter 3) shows that RBF kernel outperformed other kernels. 

The hybridization of PSO, wavelet and ELM is called SW-RBF-ELM (swarm-wavelet 

based RBF-ELM). 

Some parameters should be determined in the beginning of the experiment. Two 

parameters of RBF-ELM are C and  (see Eq. 4.38 and 4.40). They are in the range of [2-

7, 210], and  [2-7, 210] for C and , respectively. Then, the parameters of PSO (see Eq. 4.43 

and 4.44) are set as follows.  Parameter c1 and c2 are set at 2.05, and  is 0.9. Parameters 

r1 and r2 are random functions in the range of [0-1]. In addition, the optimization was done 

until 150 generations with 30 particles in each generation. As for the parameter of the 

wavelet, the work in this section will vary the value of the wavelet parameters, as seen in 

Eq. 4.46 and 4.47 except for α; it is determined randomly, according to (Ling et al., 2008). 

To test the efficacy of the proposed system, some experiments will be conducted. 

They are: 

- The experiment on the influence of the mutation probability pm 

- The experiment on the shape parameter  ( Eq. 4.48) 

- The experiment on the parameter g (Eq. 4.48) 

- The experiment on the pattern recognition performance 
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4.5.3 Experiments and Results 
4.5.3.1 Mutation probability pm 

This section tested the influence of the mutation probability pm to the SW-RBF-ELM 

performance. The pm value is varied from 0 to 0.6. The parameter pm = 0 means no wavelet 

mutation in the PSO. Besides,  is equal to 0.2 and g is equal to 10000. The experimental 

results are presented in Figure 4.30 and Table 4.30.  

Figure 4.30 indicates that on the parameter pm = 0, the fitness value of the PSO is larger 

than that with pm more than 0, even when it is the largest value. The lower the fitness 

value, the better the system, so the PSO with wavelet mutation is better than without 

wavelet mutation. Therefore, the wavelet mutation can enhance the optimization process. 

Moreover, in general, the figure also shows that the more the mutation probability, the 

less the fitness value. However, the pm = 0.5 is the optimum value among the tested values.   

 
Figure 4.30 The fitness values for variable pm when =0.2 and g=10000 over eight subjects 

Table 4.30 give more information regarding the mutation probability pm across 

different subjects. In Table 4.30, the underlined value indicates the minimum value in 

each subject. This table emphasizes the fact in Figure 4.30 that pm = 0.5 is the most 

accurate PSO across seven subjects, out of eight. Although the accuracy of the parameter 

pm=0.6 is the highest, it occurred on five subjects only. Another interesting fact is also 

found in the Table. The mutation wavelet does not provide a benefit to the optimization 

process on two subjects, S5 and S8 because the accuracy of the system with wavelet 

mutation and without is very similar. This fact shows that the wavelet mutation in the 

PSO does not fully ensure the improvement in the classification performance. However, 

there is a high probability that the optimization process will be improved. Finally, the 

parameter pm = 0.5 is selected for the rest of the experiment. 
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Table 4.30 The accuracy of SW-RBF-ELM when =0.2 and g=10000 

Subject Mutation parameter (Accuracy in %) 
0 0.1 0.2 0.3 0.4 0.5 0.6 

S1 92.278 92.417 92.417 92.869 92.869 92.869 92.869 
S2 98.098 98.098 98.028 98.028 98.028 98.129 98.098 
S3 95.070 95.070 95.070 95.139 95.139 95.440 95.546 
S4 93.240 93.238 93.238 93.344 93.344 93.344 93.310 
S5 96.731 96.660 96.660 96.731 96.660 96.731 96.731 
S6 97.088 97.215 97.215 97.215 97.215 97.250 97.250 
S7 93.898 94.106 94.106 93.967 94.005 94.038 94.004 
S8 97.880 97.880 97.880 97.880 97.880 97.880 97.880 

Average 95.535 95.585 95.577 95.647 95.643 95.710 95.711 
*The underlined value is the highest one 

The big number of the parameter pm increases the searching space of the optimization 

in PSO. If the number of element in a particle is small, it is preferable to increase the 

value of the parameter. Figure 4.30 implies that the big number of pm tends to give good 

optimization performance. This phenomena matches with the fact suggested by Ling et 

al. (Ling   et al., 2008). They recommended a big number of pm in between 0.5 – 0.8 for 

a small number of elements in a particle. In this research, the number of elements is two. 

To examine the benefit of wavelet mutation statistically, an analysis of variance 

(ANOVA) test was conducted on the fitness value of the PSO without wavelet mutation 

and with wavelet mutation pm = 0.5. The confidence level p is set at 0.05. ANOVA test 

produced p = 3.69 x 10-7. This result concludes that the enhancement produced by wavelet 

mutation is statistically significant. 

4.5.3.2 Shape-parameter  
This section varied the value of shape parameter  in Eq. 4.48. The shape parameter is 

varied among 0.1, 0.2, 0.3, 0.5, 2 and 5. The value of the parameter pm is 0.5 following 

the result in section 4.5.3.1. Furthermore, g is equal to 10000. The experimental result is 

presented in Figure 4.31 and Table 4.31.  

Figure 4.31 indicates that  = 2 converged earlier than the others did. The final fitness 

value of it is the second worst after  = 5. On the other hand, the small value of  gave a 

good optimization process. These facts imply that the high value of  is not a good option 

for optimization of SW-RBF-ELM. The best optimization process is shown when  = 0.2.    
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Figure 4.31 The fitness values for variable   when pm = 0.5 and g = 10000 

Table 4.31 draws different finding from Figure 4.31. The table shows that SW-RBF-

ELM with  = 0.1 achieved the highest average accuracy, not  = 0.2. Besides, it attains 

the highest accuracy across four subjects, which is similar to  = 0.2. By considering the 

fitness value and the average accuracy performed,  = 0.2 is selected as the optimal shape 

parameter. 

Table 4.31  The accuracy of SW-RBF-ELM when pm=0.5 and g=10000 

Subject  (Accuracy in %) 
0.1 0.2 0.3 0.5 2 5 

S1 92.869 92.869 92.869 92.869 92.869 92.869 
S2 98.028 98.129 98.028 98.098 98.028 98.028 
S3 95.893 95.440 95.893 95.139 95.070 95.139 
S4 93.310 93.344 93.310 93.344 93.240 93.309 
S5 96.731 96.731 96.660 96.731 96.660 96.731 
S6 97.321 97.250 97.250 97.250 97.215 97.123 
S7 94.106 94.038 94.002 94.004 93.898 93.898 
S8 97.845 97.880 97.880 97.845 97.845 97.845 

Average 95.763 95.710 95.737 95.660 95.603 95.618 
*The underlined value is the highest one 

4.5.3.3 Parameter g 
The previous two experiments have selected two optimum parameters, pm = 0.5 and  

= 0.2. This section tries to get the optimum g parameter. The parameter g (Eq. 4.48) is 

varied from 100, 1000, 10000 and 100000. The experimental result is presented in Figure 

4.32. 
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Figure 4.32 The fitness values for variation of the parameter g when pm=0.5 and =0.2 

Figure 4.32 depicts the fitness values of four different g values. This figure indicates 

that the big number of g value give better accuracy than the small one. However, the best 

fitness value is not g = 100,000. The g = 10,000 exhibits the best performance. Therefore, 

there is no general rule for selecting g value. It is required to perform experimental 

procedure to find the best g value. This fact is supported by the accuracy of SW-RBF-

ELM in Table 4.32. On average, the lower g attained the lower accuracy. Although the 

accuracy of the parameter g = 10000 is the lowest one on average across eight subjects, 

it is the highest in the over half of the subjects, which is five out of eight.  

Table 4.32 The accuracy of SW-RBF-ELM when pm=0.5 and  = 0.2 

Subject Parameter g (Accuracy in %) 
100 1000 10000 100000 

S1 92.869 92.869 92.834 92.800 
S2 98.028 98.098 98.129 98.129 
S3 95.732 95.893 95.440 95.546 
S4 93.347 93.310 93.344 93.238 
S5 96.731 96.660 96.731 96.731 
S6 97.250 97.215 97.250 97.215 
S7 94.038 94.004 94.038 94.106 
S8 97.845 97.845 97.880 97.880 

Average 95.730 95.737 95.706 95.706 
*The underlined value is the highest one 

4.5.3.4 Pattern recognition performance across subjects 
The previous sections conducted some experiments to determine the optimum 

parameters of the wavelet. They are pm=0.5,  = 0.2 and g = 10000. This section applied 

those values to SW-RBF-ELM and did analysis on the results especially on the 
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comparison between PSO with wavelet mutation and without mutation. The result is 

shown in Figure 4.33. 

 

Figure 4.33 The accuracy of RBF-ELM with mutation and without mutation using 3-fold 
cross validation 

Figure 4.33 depicts the average accuracy of RBF-ELM that is optimized by PSO with 

wavelet mutation (SW-RBF-ELM) and without mutation (SRBF-ELM). The figure 

indicates that SW-RBF-ELM achieves better accuracy than SRBF-ELM. SRBF-ELM is 

as accurate as SW-RBF-ELM in one subject only, which is subject S8. Therefore, the 

probability of the improvement of the performance using wavelet mutation is 7/8 x 100 

% = 87.5 %. On average, SW-RBF-ELM attained an accuracy of 95.62 % while SRBF-

ELM achieved the accuracy of 95.54 %.  

4.5.3.5 Pattern recognition performance on the movement 
This section investigates the performance of both systems, SRBF-ELM and SW-RBF-

ELM, in classifying finger movements. The myoelectric pattern recognition classifies ten 

finger movements. They include thumb (T), index (I), middle (M), ring (R), and little (L) 

finger movements. The other movements are thumb–index (TI), thumb–middle (TM), 

thumb–ring (TR), thumb–little (TL), and the hand close (HC) movements. Figure 4.34 

presents the classification results of SRBF-ELM (without wavelet mutation) and SW-

RBF-ELM (with wavelet mutation). 
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Figure 4.34 The accuracy of the finger movement classification across eight subjects using 

3-fold cross validation 

Figure 4.34 shows that SW-RBF-ELM is better than SRBF-ELM in classifying two 

individual finger movements (T, and M), and four combined movements (TI, TM, TR, 

and TL). On the other hand, SRBF-ELM is better than SW-RBF-ELM in two movements 

only: L and HC. As for finger movement I and R, both systems exhibited the similar 

performance. Overall, the SW-RBF-ELM is better than SRBF-ELM. In other words, the 

wavelet mutation in PSO enhances the classification performance of the pattern 

recognition system. However, the analysis of variance test (ANOVA) set p = 0.05 yields 

p is equal to 0.96. Therefore, the improvement is statistically not significant. This result 

confronts the ANOVA test outcomes in section 4.5.3.1 that proved the significance of the 

existence of the wavelet in PSO. These two results can be accommodated by saying that 

the enhancement of wavelet mutation in the optimization process is statistically 

significant, but it is statically not significant in the classification performance.  

Another fact found in Figure 4.34 is that  SRBF-ELM and SW-RBF-ELM exhibit 

relatively bad performance in classifying all combined movements and little finger 

movement. The phenomena can be investigated through the confusion matrix in Table 

4.33 and Figure 4.35.  Table 4.33 shows that the SW-RBF-ELM mostly misclassified the 

little finger movement (L) to thumb-index motion (TI) by accuracy of 2.19 %. Besides, 

the system also misclassifies L to movement R and TL. As for the combined movement, 

SW-RBF-ELM generally misclassified them to the individual movement they belong to. 

For instance, the movement TL is mostly misclassified to the movement L by accuracy 

2.65 %. Nevertheless, it did not occur in all combined movements.  
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Table 4.33 The confusion matrix of the classification result of SW-RBF-ELM 

  Classified 

In
te

nd
ed

 

  T I M R L TI TM TR TL HC 
T 97.27 0.00 0.04 0.00 0.52 0.65 0.00 0.61 0.00 0.91 
I 0.04 99.35 0.00 0.00 0.00 0.48 0.13 0.00 0.00 0.00 
M 0.00 0.00 99.66 0.00 0.00 0.00 0.34 0.00 0.00 0.00 
R 0.00 0.00 0.09 99.13 0.17 0.00 0.00 0.61 0.00 0.00 
L 0.00 1.19 0.00 1.84 91.40 2.19 0.79 0.53 1.89 0.18 
TI 0.56 1.91 0.04 0.00 1.48 94.57 1.00 0.13 0.30 0.00 
TM 0.00 0.74 0.22 0.26 1.48 4.30 91.58 1.22 0.22 0.00 
TR 1.27 0.17 0.00 0.17 0.38 0.55 1.44 94.81 0.55 0.68 
TL 0.30 0.00 0.22 0.13 2.65 1.13 0.00 1.04 94.53 0.00 
HC 0.75 0.35 0.00 0.00 1.27 0.17 1.96 0.70 0.00 94.80 

 

 
Figure 4.35 The confusion matrix plot of the classification result of SW-RBF-ELM 

4.5.4 Experiment on the amputee database 
This section tested the performance of SW-RBF-ELM and SRBF-ELM to classify 12 

finger movements on the EMG signals collected from the amputee subjects.  The data 

collection is presented in Chapter 3 section 3.2.1.1. The finger motion classes consist of 

a thumb abduction (Ta), thumb flexion (Tf), index flexion (If), and middle flexion (Mf). 

Then ring flexion (Rf), and little flexion (Lf). Moreover, it involved thumb extension 

(Te), index extension (Ie), middle extension (Me), ring extension (Re), little extension 

(Le), little and ring flexion (LRf), index, middle and ring flexion (IMRf), and middle, ring 

and little flexion (IMRLf).  

The myoelectric pattern recognition used in this experiments is the same as the system 

used in section 4.5.2 and  Figure 4.29. For wavelet parameters, the values of the 

parameters are pm = 0.1,  = 2 and g = 10000, following the our work (Khairul Anam & 

Al-Jumaily, 2014c). Figure 4.36 depicts the experimental results of SRBF-ELM and SW-

RBF-ELM on five amputee subjects. 
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Figure 4.36 Average classification accuracy of three different ELM methods 

Figure 4.36 shows that the SW-RBF-ELM achieved better performance than SRBF-

ELM across five amputees except on amputee A5. On the amputee A5, SRBF-ELM is 

better than SW-RBF-ELM. Overall, SW-RBF-ELM outperformed SRBF-ELM. 

Probably, the optimization process in the PSO influences the superiority of SW-RBF-

ELM over SRBF-ELM. Figure 4.37 gives clearer information about this assumption. It is 

shown in Figure 4.37 that after 30th generation, the PSO did not change the fitness value. 

Meanwhile, the wavelet mutation helped the PSO to avoid the local optima. 

 
Figure 4.37 The fitness value of PSO and wavelet-PSO across five amputees 

Furthermore, a statistical test on the accuracy using one-way ANOVA (p set at 0.05) 

was also done.  The performance of the SW-RBF-ELM is significantly different from 

swarm ELM (p = 0.036). The SW-RBF-ELM achieved the average accuracy of 94.27 %, 

while SRBF-ELM produced the average accuracy of 92.55 %. 

In addition, the classification performance in regards to the finger motion was 

observed. As shown in Figure 4.38, the SRBF-ELM was able to classify the flexion 

motions with the average  accuracy more than 90%.  In contrast, the extension motions 

were classified with the average accuracy less than 90%. Similarly, the SW-RBF-ELM 

recognized the flexion motions better than the extension motions, but with the average 

accuracy that is better than the SRBF-ELM. 
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Figure 4.38 The accuracy of different finger motions across five amputees 

The confusion matrix in Table 4.34 provides information about the misclassified 

finger motions. According to the Figure 4.38, SW-RBF- ELM poorly classified the Little 

extension (Le), Middle extension (Me), and Ring extension (Re). Me was mostly 

misclassified to Thumb abduction (Ta) and Middle flexion (Mf). Furthermore, the system 

mostly misclassified the little extension (Le) to Re and vice versa. Even though the 

misclassified motions were present, arguably the SW-RBF-ELM has succeeded to 

recognize different finger motions on five amputee subjects with accuracy of about 94%. 

Table 4.34 The confusion matrix of the classification results of swarm-wavelet elm 
averaged for five amputees (Units : %) 

 Intended Task 
 Lf Rf Mf If Le Re Me Ie R Tf Te Ta 

C
la

ss
ifi

ed
 T

as
k 

Lf 98.2 0.5 0.1 0.0 0.0 0.0 0.1 0.3 0.0 0.4 0.0 0.3 
Rf 0.8 98.4 0.6 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 
Mf 0.2 0.7 95.8 0.3 0.3 0.8 0.9 0.6 0.0 0.0 0.3 0.2 
If 0.2 0.1 0.1 97.7 0.3 0.3 0.2 0.1 0.0 0.7 0.1 0.3 
Le 0.0 0.0 0.4 0.3 90.1 4.6 1.8 0.2 0.0 0.6 1.0 0.9 
Re 0.1 0.0 0.7 0.2 3.8 89.8 2.1 0.2 0.0 0.6 0.7 1.7 
Me 0.2 0.0 1.3 0.3 2.4 3.1 88.6 1.3 0.0 0.4 0.7 1.8 
Ie 0.1 0.0 0.7 0.3 0.2 0.2 1.0 94.8 0.1 0.2 1.7 0.8 
R 0.1 0.0 0.0 0.2 0.1 0.0 0.0 0.1 99.1 0.3 0.0 0.0 
Tf 0.1 0.0 0.0 1.3 0.9 0.5 0.2 0.2 0.1 96.0 0.4 0.2 
Te 0.0 0.1 0.3 0.1 1.2 0.9 0.7 2.0 0.0 0.7 92.8 1.1 
Ta 0.0 0.0 0.3 0.4 1.2 2.3 1.1 0.3 0.0 0.2 1.2 93.0 

 

To conclude, the proposed pattern-recognition system, which employs PSO mutated 

using a wavelet function to optimize the kernel based ELM (SW-RBF-ELM), was able to 

recognize eleven imagined finger motions on five transradial amputees with the high 

accuracy of 94.27 % even though it employed only two EMG channels. The proposed 

system performed better than standard PSO-ELM (SRBF-ELM).  
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4.5.5 Conclusion 
This section proposed an improvement in the optimization process of PSO by injecting 

wavelet function to the PSO. The goal is to increase the searching space of the PSO to 

avoid the local optima that normally occurs in the PSO process. A swarm wavelet radial 

basis function ELM (SW-RBF-ELM) was proposed in addition to a swarm radial basis 

function ELM (SRBF-ELM). The former is the one that involves wavelet function and 

the latter is the one that does not. The experimental results show that the wavelet mutation 

improves the optimization process of the PSO. Consequently, the wavelet mutation in 

PSO also enhance the classification performance of the system. The experiments have 

been done on the healthy subjects and amputees. On the healthy subjects, the accuracy of 

SW-RBF-ELM is 95.62 % while SRBF-ELM is 95.53 %. The improvement of wavelet 

mutation on the amputees is more significant than that on the healthy subjects. On the 

amputees, the SW-RBF-ELM achieved the average accuracy of 94.27 %, while SRBF-

ELM produced the average accuracy of 92.55 %. 

4.6 Summary 
This chapter proposes two new ELMs and two hybridizations of ELM and PSO. The 

first ELM is adaptive wavelet extreme learning machine (AW-ELM). The experimental 

results on EMG datasets for finger motion recognition shows that the performance of 

AW-ELM is good with the average accuracy of about 94 %. It is comparable to some 

well-known classifiers such as SVM, LDA, and kNN. Furthermore, the performance of 

AW-ELM is comparable to RBF-ELM, the most accurate kernel-based ELM. Although 

AW-ELM and RBF-ELM are comparable, the performance of RBF-ELM is better than 

AW-ELM. The experiments on UCI machine learning repository show that AW-ELM 

could work on a wide range of datasets.  

Another new ELM that is proposed in this thesis is spectral regression extreme 

learning machine (SR-ELM). SR-ELM is an ELM for dimensionality reduction method 

that reduces and projects the features to new features that has smaller dimension but better 

class separability. The advantage of SR-ELM is that it has a good separation performance. 

The experimental results on the EMG dataset and benchmark datasets exhibit its benefits. 

Moreover, the experimental results on UCI datasets show that SR-ELM achieves the best 

performance when working together with AW-ELM, LDA and kNN. As for RBF-ELM 

and LIBSVM, the performance of SR-ELM is comparable to other methods. The 
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shortcoming of SR-ELM is on the processing time. The processing time of SR-ELM is 

slower than SRDA but faster than ULDA. 

In addition to the new type of ELMs, this chapter provides two optimizations of the 

parameters of the kernel-based ELM. The first optimization was using particle swarm 

optimization (PSO). Three different kernels were involved including linear (SLin-ELM), 

polynomial (SPoly-ELM) and radial basis function kernels (SRBF-ELM). The 

experimental results show that SRBF-ELM is the most accurate system with the accuracy 

of about 94 %.  

The experimental results show that the PSO tends to be trapped on the local optima. 

Therefore, the advanced PSO should be incorporated into the system. In this research, the 

wavelet-PSO was utilized to overcome the local optima issue. The benefit of the wavelet-

PSO is not significant when working on the able-bodied subjects, but it is significant 

when it is applied to the amputees.  

Another improvement in the fitness function is made as well. The previous 

experiments compute the fitness function from the error in each cross-validation output. 

In the new experiment, the fitness function was calculated from the average error of the 

cross-validations. Using this mechanism, the accuracy of SRBF-ELM improved to the 

accuracy of 95.53 %. As for the hybridization of wavelet-PSO and ELM (SW-RBF-

ELM), it attained the accuracy of 95.64% on the healthy subjects. 

In summary, all proposed systems show its benefits and advantages. Next, the system 

proposed should be applied to the real-time application. The real-time application 

considers not only the accuracy but also the processing time. Another thing is the 

robustness issue that should be taken into account. The next chapter will present the real-

time application of the methods that have been designed in this chapter. In addition, the 

next chapter will propose some methods to improve the robustness of the myoelectric 

pattern recognition for finger motion classification. 



 

CHAPTER 5          

Toward robust myoelectric pattern 
recognition for real-time finger 
movement classification 

5.1 Introduction 
This chapter presents implementations of the myoelectric pattern recognition (M-PR) 

or EMG-based pattern recognition (EMG-based PR) that have been developed in the 

previous two chapters (chapter 3 and 4) in the real-time application. This chapter consists 

of three sections. The first section will provide the implementation of myoelectric pattern 

recognition in the real-time environment, as presented in section 5.2. The second section 

will propose a new classifier that can reject the untrained movements. The shortcoming 

of the system developed in section 5.2 is that the system is trained only with a limited 

number of movements compared to the movements that human can do. Therefore, there 

should be a mechanism to reject the untrained movement. The discussion will be 

presented in section 5.3. Finally, section 5.4 proposes the way to deal with the 

degradation of the classification performance in the day-to-day use. 

This chapter provides three main contributions of the thesis. The first contribution 

is the real-time M-PR for finger motion classification. The second one is the improvement 

of the real-time M-PR by introducing a rejection mechanism to reject the movements that 

are involved in the training stage. The last one is an adaptive real-time M-PR to anticipate 

the changes that may happen during the day-to-day activities.  

5.2 Evaluation of real-time myoelectric finger 
motion recognition using two EMG channels 

This section presents real-time implementation of the myoelectric pattern recognitions 

(M-PR) that have been developed in Chapter 3 and 4. The major change made in this 

section compared to those made in Chapter 3 and 4 is on the involvement of the transient 
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state of EMG signal along with the steady state. Involving the transient state in the system 

will decrease the accuracy, but it can increase the robustness of the M-PR. The discussion 

will be started with the introduction, and then followed by the methodology used in the 

real-time experiments. The next section will discuss the offline and the online experiment. 

The conclusion will end the discussion. 

5.2.1 Background 
The electromyography signal has been used widely to control hand rehabilitation 

devices such as the exoskeleton hand and the prosthetic hand. Furthermore, many 

attempts have been made to decode the hand movements as control sources of the hand 

robot (Micera et al., 2010; Oskoei & Huosheng, 2008; Sang Wook et al., 2011).  In 

addition to the hand movement, the finger movement has been taken into consideration 

in an effort to develop a dexterous control system (R. N Khushaba et al., 2012; Tenore et 

al., 2009). One of the major researches in the finger movement is finger movement 

recognition. Tenore et al. (2009) decoded ten classes of individual finger movements by 

using up to 32 EMG channels with accuracy about 90%. In addition, Al-Timemy et al. 

(2013) classified 15 individual finger movements and achieved 98 % accuracy by using 

six sEMG channels. 

The use of few numbers of electrodes in the finger motion recognition system without 

compromising the decoding performance is a challenging task. Tsenov et al. (2006) used 

two sEMG channels for four finger movements i.e. the thumb, index, middle finger and 

hand closure with the best accuracy of nearly 93 % in offline classification (Tsenov et al., 

2006).  Moreover, R. N Khushaba et al. (2012) classified ten classes of individual and 

combined finger movements which consisted of five individual finger movements by 

using two sEMG channels. The work could achieve 92% and 90 % accuracy for the 

offline and online classification, respectively. 

To the best of the author’s knowledge, most reports show the efficacy of myoelectric 

pattern recognition using few EMG channels in the laboratory environment, yet they are 

not proven yet for real-time application. This chapter proposes some methods that are 

intended to close the gap between the success of laboratory experiments and the real-time 

application. This section is the initial step of the project.  

There are some issues that have to be addressed when doing real-time myoelectric 

pattern recognition. The major issue is the robustness of the recognition system. Many 

aspects influence the robustness of the EMG-based pattern recognition (EMG-based PR) 
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including electrode shifts, the limb position, muscle fatigue, and the improvement on the 

muscle function. This chapter proposes methods to deal with the robustness issues. The 

robustness of the myoelectric pattern recognition (M-PR) system can be attained by 

considering the transient and steady state of the EMG signal, even though it will decrease 

the classification accuracy. Involving both states in the training can improve the 

robustness of EMG-based PR. 

5.2.2 Methodology 
In this thesis, the real-time myoelectric pattern recognition (real-time M-PR) system 

consists of two main components: the hardware and software, as shown in Table 5.1. Both 

components will be involved in the stages of the real-time M-PR system. In general, all 

the stages of real-time pattern recognition based EMG are shown in Figure 5.1. In the 

experiment, the system collects the data from a subject. Then, the collected data is used 

to train the system. The output of the offline classification is the trained classifier and the 

eigenvectors for features projection. Instantly, the online classification is conducted after 

completing the offline classification. The result of the online classification is presented 

on the computer screen located in front of the subject. 

Table 5.1 The hardware and software needed for real-time application 
Component Description Picture 
Hardware Personal Computer Intel 

Core i5 3.1 GHz with 4 GB 
RAM equipped with 
Windows 7 operating system 

 

 EMG acquisition device, the 
FlexComp Infiniti™ System 
from Thought Technology 
with frequency sampling 
2000 Hz.  

 
Two EMG sensors: 
MyoScan™ T9503M Sensors 
from Though technology 

 
 

Two electrodes 

 
Software Matlab   

API library from Though 
Technology connecting the 
Flexcomp to Matlab 
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Figure 5.1 Stages of online myoelectric pattern recognition system 

5.2.2.1 Data acquisition 
In the experiment, eight subjects are involved in the offline and online experiments.  

The data for the offline classification is same as the data used in Section 4.2.4.1.   As for 

the online classification, the EMG data were collected from two females and six males 

who were normally limbed with no muscle disorder. During the experiment, the subject’s 

arm was supported and fixed at a certain position as described in Figure 5.2 to avoid the 

effect of position movement on EMG signals. In the data collection, a couple of digital 

filters used during the data collection and online experiments. They were a band pass 

filter between 20 and 500 Hz and a notch filter to remove the 50 Hz line interference. 

Then the EMG signals were down- sampled to 1000 Hz. 

 
Figure 5.2 The electrodes placement 

The offline and online experiment involved ten finger movements as explained in 

Section 4.2.4.1 Figure 4.6. They consisted of the individual and combined finger 

movements consisting of the flexion of individuated fingers, i.e., Thumb (T), Index (I), 

Middle (M), Ring (R), Little (L) and the pinching of combined Thumb–Index (T–I), 

Thumb–Middle (T–M), Thumb–Ring (T–R), Thumb–Little (T–L), and the hand close 

(HC).  
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5.2.2.2 Feature extraction 
In this section, the features are extracted from a time domain feature set which consists 

of waveform length (WL), slope sign changes (SSC), number of zero crossings (ZCC), 

and sample skewness (SS). In addition, some parameters from Hjorth time domain 

parameters (HTD) and auto regressive (AR) Model Parameters were included as used in 

(R. N Khushaba et al., 2012).  

The AR model parameters have been proven to be stable and robust to the electrode 

location shift and the change of signal level (Tkach et al., 2010). Moreover, 

aforementioned time domain features were windowed by using disjoint window instead 

of sliding window to keep computational cost low. A 100-ms window and a 100-ms 

increment were used to form a system that is suitable for the real-time application. 

5.2.2.3 Dimensionality reduction 
Chapter 4 section 4.4 have tested different types of dimensionality reduction method 

including the proposed SR-ELM. In this experiment, the M-PR system will use one of the 

tested methods based on the speed. All methods are reasonable for real-time application. 

However, the M-PR system selects the fastest one that is spectral regression 

dimensionality reduction (SRDA). 

5.2.2.4 Classification 
Chapter 4 presented various types of myoelectric pattern recognition (M-PR) for finger 

movement recognition employing different types of components. In the classifier side, 

this thesis has developed two different classifiers. The first one is the node-based ELM, 

which is adaptive wavelet extreme learning machine (AW-ELM) and the second one is 

the kernel-based ELM optimized using particle swarm optimization (PSO). This chapter 

selects the optimized kernel-based ELM especially radial basis function ELM. In this 

chapter, the term of RBF-ELM is used instead of SRBF-ELM or SW-RBF-ELM for the 

sake of simplicity. All classifiers that have been developed are comparable to each other. 

However, in this real-time experiment, the work has to select one of them due to difficulty 

in using different classifiers for long duration experiments on many subjects. In addition, 

RBF-ELM has two important parameters, C and . This work used the optimized RBF-

ELM with the =2-5 and C=20. 

5.2.2.4.1 Offline experiment 
The offline classification was performed based on signals collected through data 

acquisition, as explained in Section 4.2.4.1. The main purpose of doing the offline 
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classification is to train the myoelectric pattern recognition especially for the feature 

projection and classification. Before training the system for the online classification, this 

section will investigate the possibility of adding a new channel from the summation of 

two channels collected in the data acquisition. In both the offline and online stage, the 

signals were extracted in 100 ms windows length incremented every 100 ms. 

5.2.2.4.2 Online experiment 
In the online stage, the subject performed similar activities as in the offline 

classification. The difference is the repetition, which is only four times instead of six. 

Furthermore, no more training exists in the system.  All data are for testing only which is 

carried out online and real-time. Another difference is the recognition system is 

performed each 100 ms and then the result is displayed on the screen. The detailed 

procedure for the online experiment is depicted in Figure 5.3. 

Feature Extraction:
TD-AR

Dimensionality reduction:
SRDA

Classification
Trained RBF-ELM

Mean of 
RMS(EMG) > 

threshold

Yes

No

Post-processing:
Majority vote

Preprocessing

No motion

Predicted 
motions

START

Capture 100 ms EMG 
signal every 100 ms, 

from Two sensors

Display 
the detected motion

 
Figure 5.3 Procedure for the online classification 
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As shown in Figure 5.3, the online experiment detects the intention of the user to move 

the finger by calculating the root mean square value of EMG signals from all channels. 

Then, the calculated value is compared with the threshold value. If the value is less than 

the threshold, the system will produce no motion. Otherwise, the pattern recognition 

system will begin to work. 

5.2.2.5 Post-processing 
In the online experiment, a majority vote was used to refine the classification results. The 

number of previous votes is four to comply with the acceptable controller delay of the 

myoelectric controller (<300 ms) based on Eq. 3.1.  

5.2.3 Experiment 1: offline classification 
Before conducting the online experiment, the offline classification is performed to 

learn and investigate the optimal setting of the myoelectric pattern recognition system for 

the online experiment. Firstly, the efficacy of adding a new channel from integration of 

two EMG channels was observed. Before conducting the offline classification, the EMG 

signals were collected from the subject’s forearm using a customized software created in 

Matlab. The appearance of the software is shown in Figure 5.4 

 

 

Figure 5.4 The Interface for EMG signal acquisition 
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After collecting data, the offline classification is conducted using a menu displayed in 

Figure 5.5. A user needs to specify where the EMG signals are stored. If all steps are 

done, then the offline classification runs by clicking the start button on the figure.  

 
Figure 5.5 The offline classification menu done after data collection 

5.2.3.1 Adding new virtual channel 
The first experiment is a new channel experiment. In this stage, the performance of 

the classification system using only two original signals (channel 1 = ch1, channel 2 = 

ch2) was compared to the original signals plus the new additional channel from the 

summation of both the channels (ch1, ch2, ch1+ch2). The classification utilized 3-fold 

cross validation. Figure 5.6 presents the classification results. 

 

Figure 5.6 The accuracy of the system using two and three channels 

Figure 5.6 shows that both configurations achieved good accuracies across eight 

subjects. However, the additional signal of the summation of two channels gives better 
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average accuracy than two channels only. It occurs in all subjects. However, the 

difference is not significant, as shown by the one-way ANOVA test results in Table 5.2. 

By setting p at 0.05, the accuracy difference between two is statistically not significant 

because p-values are above 0.05. Although the improvement is insignificant statistically, 

the work on the online experiment employed the third channel to improve the robustness 

of the pattern recognition system.  

Table 5.2 One-way ANOVA test between two-channel and three-channel experiment 

 
p-value 

S1 S2 S3 S4 S5 S6 S7 S8 
2Ch vs 3Ch 0.95 0.97 0.20 0.96 0.50 0.14 0.41 0.21 

 

5.2.3.2 Classification performance 
Figure 5.7 presents the offline classification results across eight subjects. This figure 

shows that the myoelectric pattern recognition (M-PR) system could recognize the 

individual finger well, except on the little finger motion (L). Furthermore, the 

performance of M-PR system on the individual finger motions is better than the combined 

finger except in little finger movement (L). The average classification accuracy for offline 

classification is 90.46 %. 

The offline classification produces an optimal M-PR system for finger motion 

recognition in the online experiment. The optimal M-PR system consists of the trained 

RBF-ELM and the eigenvectors of SRDA. The M-PR software stores them and then loads 

them when conducting the real-time application. 

 
 

Figure 5.7 The accuracy of the myoelectric pattern recognition in the offline classification  
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5.2.4 Experiment 2: online classification 
5.2.4.1 Experimental environment 

This section presents the online classification. Figure 5.8 presents the environment 

utilized during the online experiment. Two EMG sensors are located on the forearm of 

the user. The EMG acquisition device captures the EMG signals every 100 ms and then 

processes it to yield the predicted movement. The predicted movement will be displayed 

on the screen computer. Before starting the online classification, the user should load the 

trained system produced in the offline classification. Therefore, offline classification is 

very important to the success of the online classification. 

A screen to display 
the results

EMG sensors

An EMG 
acquisition device

A virtual hand

 

Figure 5.8 The experimental environment for the online myoelectric pattern recognition 

In this experiment, the online classification should be conducted after offline 

classification straight way. The reason is to avoid muscle fatigue of the user because of a 

long period of the experiment. The second reason is to prevent the electrode shift. 

Electrode shift affects the online classification performance. Certainly, this procedure is 

not suitable for daily life activities. The end of this chapter will discuss this and propose 

a new method to overcome such defects in the real-time application (see section 5.4).  

5.2.4.2 Analysis of subjects 
Each subject conducted ten different finger movements consisting of five individual 

motions, four combinations of two fingers and one hand close movement. Each finger 

movement was repeated four times. Figure 5.9 depicts the results of the online 

experiment.  

Figure 5.9 shows that the myoelectric pattern recognition (M-PR) system could work 

on various subjects with an average accuracy of about 89%.  The accuracy is lower than 

the offline experiment (90.46 %). Furthermore, the offline classification is better than the 
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online one on five subjects, out of eight. Interestingly, on three subjects, which are S5, 

S7, and S8 ( three dot circles in Figure 5.9) , the online classification achieved better 

accuracy than the offline one. In regards to the subject discussion, the online M-PR got 

the worst accuracy on subject S2 and then on subject S1. On the other hand, the M-PR 

system achieved the best performance when it recognized the EMG signal from subject 

S8 and then S5. In general, the online classification results verify the reliability of the 

online M-PR.    

 
Figure 5.9 The average accuracy of the online experiment from four trials. 

5.2.4.3 Analysis of the movement 
Figure 5.10 exhibits the accuracy of the movements in the online classification. The 

figure presents all four trials and the average of it (black colour). The thumb-index finger 

movement (TI) is the most difficult movement to recognize. The accuracy of the 

movement is the worst. Besides, during four trials, the accuracy is not stable. The second 

most unstable movement is the little finger movement (L). Most of the combination 

movements exhibited unstable performance across four trials except the hand-close (HC) 

movement. On the other hand, all individual movements show a stable performance on 

four trials except the little finger movement (L).  

 

Figure 5.10 The accuracy of the online MPR in various finger movements across eight 
subjects 
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Comparison between the offline and online classification is presented in Figure 5.11. 

In general, the figure indicates that the behaviour of offline and online is similar. In both 

classifications, the individual movements are better than combined movements except in 

the hand close (HC) movement. The difference exists in the worst movements. In the 

offline classification, the most difficult movement to recognize is the little finger 

movement (L) and TI is the second, while in the online classification it is the opposite of 

the offline. The movement TI is the worst and then followed by L. Overall, the online 

classification has succeeded in classifying ten finger movements as what have achieved 

in the offline classification. 

 
Figure 5.11 The performance comparison between offline and online classification across 

eight subjects 

Table 5.3 presents the average confusion matrix of the online classification 

performance across eight subjects. This table indicates that the thumb-index finger 

movement (TI) was misclassified to the thumb (T), little finger (L) and thumb-little finger 

(TL) movements. Meanwhile, the L movement was mostly misclassified to T, I, TM and 

TL movements. 

Table 5.3 Confusion matrix of the online classification 

  
Target Movement 

T I M R L TI TM  TR TL HC 

A
ct

ua
l m

ov
em

en
t 

T 95.34 1.47 0.00 0.00 0.32 1.28 0.13 0.00 0.32 1.15 
I 0.45 94.45 0.00 0.00 0.38 2.87 0.06 0.00 1.28 0.51 
M 0.32 0.13 92.92 2.04 0.32 0.26 3.06 0.00 0.19 0.77 
R 0.38 0.13 0.00 93.94 3.76 0.19 0.00 0.89 0.70 0.00 
L 1.72 1.34 0.19 0.96 87.05 0.57 3.83 0.70 2.87 0.77 
TI 3.25 1.85 0.06 0.32 4.78 81.06 2.93 0.00 4.91 0.83 
TM  0.00 0.06 5.93 0.26 4.78 2.04 84.63 0.83 0.64 0.83 
TR 0.77 0.51 0.06 2.42 1.28 1.72 3.19 85.84 3.57 0.64 
TL 1.72 3.13 0.19 0.19 5.04 1.79 1.28 2.49 83.74 0.45 
HC 2.04 0.89 0.64 0.64 0.06 1.85 0.26 0.57 0.13 92.92 
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To evaluate the performance of the M-PR in recognizing ten finger motions, this thesis 

also considers the performance of the M-PR over time, as shown in Figure 5.12. The total 

of root mean square (RMS) of two channels is used to detect the moving intention of a 

user. Figure 5.12 shows the output of the system (the fifth row) will be zero if the total of 

RMS from two channels is less than the threshold. Otherwise, the system produced a 

predicted movement.  

T I M R L TI TM TR TL HC

T I M R L TI TM TR TL HC

T I M R L TI TM TR TL HC

ms  

Figure 5.12 The performance of the online classification across time on subject S6. 

Figure 5.12 also provides a comparison of the existence of a majority vote (the fourth 

row) and the absence of it (the fifth row). It is noticeable that the majority vote could 

smooth the output of the system. This performance is needed when the output is used to 

drive a hand rehabilitation device. The absence of majority vote will reduce the comfort 

of the users because the movement of the robot is not stable. By contrast, the existence of 

majority vote improves the stability of the output and finally it will enhance the user’s 

comfort. Indeed, the existence of the majority vote increases the time delay. However, as 

long as it can be maintained lower than 300 ms, it will not matter. The reader is 

recommended to watch the video about the online experiment reported in this thesis 

through the following link: 

https://www.youtube.com/watch?v=DCj-y8JxRLY 
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5.2.4.4 Processing time 
 This section investigates the delay time produced by the system to comply with the 

acceptable delay time of myoelectric controller. The calculation of the delay time follows 

the equation proposed by T. Farrell and Weir (2008), as defined in Eq. 3.1. Table 5.4 

presents the results.  

Table 5.4 The controller delay of the online experiment 

Class 
Window 
length 
(ms) 

Window 
Increment 

(ms) 

Filter 
(ms) 

Extraction  
& reduction 

(ms) 

ELM 
(ms) 

Vote 
(n=4) 
(ms) 

Total 
(Eq. 3.1) 

(ms) 
T 100 100 3.9 7.6 0.5 0.1 262.1 
I 100 100 3.5 7.2 0.5 0.1 261.3 

M 100 100 3.5 7.3 0.5 0.1 261.4 
R 100 100 3.6 7.4 0.5 0.1 261.6 
L 100 100 3.7 7.6 0.6 0.1 262 

T-I 100 100 3.5 7.3 0.5 0.1 261.4 
T-M 100 100 3.6 7.5 0.5 0.1 261.7 
T-R 100 100 3.6 7.6 0.6 0.1 261.9 
T-L 100 100 3.5 7.3 0.5 0.1 261.4 
HC 100 100 3.5 7.3 0.5 0.1 261.4 
Avg 100 100 3.6 7.4 0.5 0.1 261.62 
 

Table 5.4 shows that the delay time of the system is about 261 ms. This time length is 

lower than the acceptable controller delay recommended by Kevin Englehart et al. (2001). 

However, it is longer than the optimal delay time proposed by T. Farrell and Weir (2008) 

in which 175 ms (for average users). The optimal delay time of T. Farrell and Weir (2008) 

can complied by reducing the number of votes in the majority vote. However, it will 

decrease the performance of the online classification, as discussed in 5.2.4.3.  

5.2.5 Conclusion  
This thesis developed real-time myoelectric pattern recognition (real time M-PR) for 

the finger motion detection. There are eight subjects involved. The subjects conducted 

the offline and online classification in sequence without long delay and without taking 

off the electrodes. It means that the electrode positions in offline and online experiments 

are exactly same. The offline classification is done to train the parameters of the 

components in the M-PR system such as the eigenvectors of dimensionality reduction 

SRDA and the weights of the classifier. Once those parameters are set, the online 
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experiment was performed based on those parameters and no change in them occurred 

during the online experiment.  

Furthermore, the both experiments considered the transient and steady state of the 

signal. Although the inclusion of transient state can reduce the classification performance, 

it can increase the robustness of the system on real-time application. The experimental 

results show that the online classification accuracy is not too much different from the 

offline classification. The classification accuracy is 90.46 % and 89.19 % on the offline 

and online classification, respectively. 

As for the controller delay time, the M-PR system took about 261 ms to produce a 

movement. This length time is less than the acceptable controller delay proposed by 

Kevin Englehart et al. (2001). Therefore, the developed M-PR system is reliable for the 

next project which is moving the hand rehabilitation device. 

The implementation of the M-PR in the hand rehabilitation device should consider 

some issues. Firstly, the system should be able to tackle the movements that are not 

included in the training stage or it is called untrained movements. In fact, the untrained 

movements in the real-time application are far larger in number than the trained 

movements. The second issue is in regard to day-to-day activity. The M-PR should be 

able to work not only on the day of training but also for the days after it. In fact, the 

performance of the M-PR degrades along with the passing of time. The reason is that the 

environment has changed from the day of the training. As a result, the M-PR system is 

not able to cope with changes in the environment. Electrode shifts, improvement in the 

muscle functionality are some examples of what possibly happens. 

The next section will address these two issues to increase the acceptance rate of the 

myoelectric controller in the real-time or clinical application.  

5.3 Evaluation of myoelectric finger motion 
recognition with motion rejection for an 
exoskeleton hand 

This section provides two major contributions. Firstly, the myoelectric pattern 

recognition (M-PR) with rejection mechanism is introduced. The rejection mechanism 

helps M-PR to deal with the movements that are not included in the training stage. 

Inevitably, it will improve the accuracy and the robustness of the M-PR. Secondly, this 

section introduces a new myoelectric controller for the exoskeleton hand. The novelty 

lies on the capability of dealing with the individual and the combined finger movements. 
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The structure of this section is as follows. The first and the second sections will discuss 

the introduction and methodology used in the experiments. The experimental results come 

after that. The conclusion will end this section. 

5.3.1 Background 
The myoelectric finger motion detection can recognize the trained movement, but it 

fails to recognize untrained movement. The untrained movement means the movement 

that is not included in the training stage. In the real-time application, the trained 

movements are limited, yet the untrained movements are very large. As a result, the 

performance of myoelectric pattern recognition (M-PR) is affected when it works in the 

real-time or clinical application.  

To cope with the untrained movements, this thesis proposes a classifier with a rejection 

mechanism called RBF-ELM-R, radial basis function extreme learning with rejection. 

RBF-ELM-R is equipped with a mechanism to detect the untrained movements and reject 

them. In other words, the system will consider the rejected movement as no action or rest. 

In this section, the proposed method will be used to drive an exoskeleton hand. To the 

best of the author’s knowledge, the implementation of a myoelectric controller in the 

exoskeleton hand is limited to the threshold controller. The threshold controller drives the 

exoskeleton hand based on the state of the EMG signal. If the value of EMG signal is 

more than the threshold value, then the controller will move the exoskeleton hand. 

Otherwise, the exoskeleton hand is in a rest position. A “hand of hope”, a commercial 

exoskeleton hand from rehab-robotics, employs the threshold controller to detect user 

intension to move all fingers simultaneously or just stay in a rest position. The control 

method of the “hand-of-hope” is developed by Ho et al. (2011). Similar controller was 

also applied to another exoskeleton hand (Mulas et al., 2005).  

A more advanced method was proposed by Wege and Zimmermann (2007) when they 

employed a blind separation to decompose individual finger movements using ten EMG 

channels. This thesis proposes a myoelectric control system that can move five individual 

fingers and five-finger combinations using only two channels. 

5.3.2 Methodology 
This section presents the proposed myoelectric control for the exoskeleton hand that 

can move or flex five individual fingers and five combined finger movements. The work 

employed an exoskeleton hand developed by Rahman and Al-Jumaily (2012). The control 

system diagram is depicted in Figure 5.13. As shown in Figure 5.13, a root mean square 
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(RMS) is used to detect the user’s intention to initiate movement. Besides, RMS is used 

to measure the level of the movement contraction and then utilize it to move electric 

motors of the exoskeleton hand proportionally.  

 

Feature 
Extraction:

RMS

Myoelectric Pattern 
recognition

TD-AR+SRDA+RBF-
ELM-R

Two-
channel 

EMG

Proportional 
control

Predicted 
class

RMS>thres
hold

Yes

No No motion

 

Figure 5.13 Myoelectric control system developed to control the exoskeleton hand  

The control system of the exoskeleton hand consists of two main parts: myoelectric 

pattern recognition and proportional controller. In this section, the thesis proposes 

myoelectric pattern recognition with motion rejection (M-PR-R). Section 5.2 has 

discussed the performance of RBF-ELM for online classification. This section provides 

the RBF-ELM that is equipped with a rejection mechanism (E. J. Scheme et al., 2013). 

The algorithm of the motion rejection mechanism is shown in Figure 5.14.  

As presented in Figure 5.14, the rejection mechanism utilized entropy as confidence 

measurement. The lower the entropy is, the more confidence the output is. The 

formulation of entropy is defined by: 

  5.1 

The second main component of the myoelectric controller used in these projects is the 

proportional controller. The proportional controller translates the predicted class 

produced by the myoelectric pattern recognition into motor action. The action is given 

proportionally according to the RMS of the amplitude of the EMG signals. The algorithm 

for the proportional controller is described in Figure 5.15. 

The exoskeleton hand used in this experiment was developed by Rahman and Al-

Jumaily (2012). The exoskeleton hand is able to flex the finger actively at the 

metacarpophalangeal (MCP) joint and passively in the proximal interphalangeal (PIP) 

and distal interphalangeal (DIP) joint. The Arduino microcontroller board is used to drive 

the five linear DC motors, as described in Figure 5.16. 
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Figure 5.14 Myoelectric finger movement recognition using RBF-ELM with rejection 
mechanism 
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Figure 5.15 Proportional controller for the exoskeleton hand 

 

    
Figure 5.16 The exoskeleton hand used in the experiment 

5.3.3 Experiments and results 
5.3.3.1 Offline experiment 

In the offline experiment, the thesis investigates the efficacy of the rejection 

mechanism in RBF-ELM and its implication on the performance of the myoelectric 

pattern recognition system. The threshold values of the motion detection were varied from 
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0 to 1 by increments of 0.1. In addition to varying the threshold values, the composition 

of the number of trained classes and untrained classes was changed. In the experiments, 

the data consists of ten movements or classes. If five classes are used in the training, the 

others are used to test the rejection capability of the system. As a result, if the M-PR is 

trained using nine classes, then only one untrained classes is used in the testing.  

Afterward, the thesis investigates the performance of the system that utilizes the 

rejection mechanism and compares it with the system without the rejection mechanism. 

The offline experiments were conducted using 3-fold cross validation. The EMG signals 

collected in section 5.2.2.1 were used in the experiments. The data was collected from 

eight able-bodied subjects. Figure 5.17 and Table 5.5 provides the results.  

Figure 5.17 and Table 5.5 indicate that M-PR with small threshold values achieved 

high accuracy. In addition, the system that is trained using five classes and then tested 

using five untrained classes achieved poor accuracy. Another interesting fact provided in 

Table 5.5 is that the system without rejection mechanism (RBF-ELM) and with rejection 

mechanism (RBF-ELM-R) experience poor performance when the untrained classes were 

imposed into the system. The accuracy of RBF-ELM on 10 trained classes was 87 %. 

However, the accuracy dropped to 65.9 % when one untrained class was introduced to 

the system (see the dark-grey background in Table 5.5). Fortunately, the system with 

rejection motion (RBF-ELM-R) could improve the dropped accuracy due to the existence 

of the untrained classes on RBF-ELM by 10 %, when using threshold 1.0. The similar 

improvement also occurs in all cases, but the enhancement gets less by increasing the 

number of untrained classes in the testing. 

 

Figure 5.17 The variation of rejection threshold on the system performance without 
majority vote 
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Table 5.5 The accuracy achieved by varying the threshold of the rejection mechanism 
across eight subjects using 3-fold cross validation without using the majority vote 

#classes Rejection with threshold (accuracy %) No 
 Rejec 
-tion Trained Untrained 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

5 5 71.0 60.1 49.3 43.8 38.1 34.1 31.2 28.4 26.5 25.4 23.8 
6 4 74.5 74.6 61.2 56.2 51.6 47.4 43.7 40.1 36.6 34.6 30.8 
7 3 NA 87.7 75.4 68.5 63.7 58.6 55.0 51.2 47.6 44.7 39.5 
8 2 NA 94.1 88.5 79.0 75.0 70.8 67.8 64.6 61.7 58.7 51.1 
9 1 NA 97.8 95.4 89.1 85.9 84.8 83.4 81.2 78.5 75.9 65.9 

10 0 NA NA 99.6 99.0 98.6 98.4 98.1 97.4 96.2 94.6 87.0 
NA : Not Applicable 

In addition to Table 5.5, Table 5.6 describes the accuracy when the rejection 

mechanism is combined with the majority vote. It seems that the majority vote decreases 

the accuracy of the system with the rejection mechanism especially for low threshold 

value. The rejection rate of the low threshold value is high so that the majority vote does 

not have enough data to vote the correct outputs. Therefore, for good performance, the 

threshold selection should be selected properly.    

Table 5.6 The accuracy achieved by varying the threshold of the rejection mechanism 
across eight subjects using 3-fold cross validation using the majority vote 

#classes Rejection with threshold (accuracy %) No 
Rejec 
-tion Trained Untrained 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

5 5 43.1 55.7 46.8 42.0 36.7 33.1 30.4 28.0 26.3 25.2 23.6 
6 4 46.6 64.2 56.7 53.2 49.2 45.5 42.4 39.3 36.2 34.4 30.8 
7 3 NA 62.0 67.2 63.5 60.1 56.0 53.1 50.1 47.2 44.7 40.1 
8 2 NA 50.2 74.0 71.4 69.6 66.9 64.9 62.5 60.6 58.4 52.3 
9 1 NA 59.1 70.7 77.7 78.4 79.3 79.2 78.1 76.5 75.2 68.1 

10 0 NA NA 63.2 81.6 87.6 90.5 92.1 92.7 93.0 92.9 90.5 
 

Table 5.7 The rejection rate of threshold experiments on eight subjects using 3-fold cross 
validation 

# trained 
classes 

Untrained 
classes 

(%) 

Threshold (rejection rate %) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

5 75.0 89.6 80.1 64.7 56.0 47.4 38.8 32.0 24.2 15.6 10.7 
6 60.1 99.5 88.9 71.9 62.1 52.6 43.1 35.5 26.9 17.4 11.9 
7 45.1 100 95.3 80.9 70.1 60.2 49.0 40.5 32.4 23.2 15.8 
8 29.9 100.0 98.1 86.5 73.4 63.2 52.7 43.5 36.0 27.9 20.4 
9 14.9 100.0 99.3 91.3 77.6 66.6 56.4 46.3 38.5 30.7 23.4 

10 0.0 100.0 100 94.2 81.0 69.6 58.4 47.5 38.8 31.6 23.9 
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Figure 5.17 indicates that the smaller the threshold value is, the most accurate the 

system is. However, the rejection rate of the system should be considered to determine 

the optimal threshold value in order to avoid wrong rejection. Table 5.7 can be used to 

find the optimal threshold value for each case. In the experiment that used five trained 

classes, percentage of the untrained data is 75 %. It means the system with rejection 

mechanism could reject the output by a rejection rate around or less than this value. 

Therefore, threshold ranging 0.2 - 0.4 can be the optimal solution for this case. Similarly, 

if the same procedure is applied, the grey background in Table 5.7 presents the possible 

threshold values for different cases. 

Looking back at Table 5.5 and Table 5.6, the data presented proves that the motion 

rejection in the myoelectric control improves the performance of the system. Figure 5.18 

shows a detailed comparison between the two systems, RBF-ELM and RBF-ELM-R on 

the 10-classes  experiment. The figure clearly indicates that RBF-ELM-R outperforms 

RBF-ELM on all subjects without exception. RBF-ELM attained accuracy of around 90 

% while RBF-ELM-R is around 92 %. The superiority of RBF-ELM-R over RBF-ELM 

is more obvious when one-way ANOVA test is conducted on them. By setting p at 0.05, 

the p value is 0.034, which is less than 0.05. Therefore, the enhancement made by RBF-

ELM-R is statistically significant. 

 
Figure 5.18 The accuracy achieved by RBF-ELM and RBF-ELM-R (threshold = 1.0) 

across 8 subjects suing 3-fold cross validation using majority vote 

5.3.3.2 Online experiment 
The result of the offline experiments concludes that the system with rejection 

mechanism could enhance the classification performance especially when the untrained 

movements are introduced in testing stage. The experiments in this section utilize the 

result of the real-time application to control the exoskeleton hand. In the online 
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experiment, an able-bodied user wore the exoskeleton hand on the left hand. On the right 

hand, there were two EMG sensor placed on the forearm, as shown in Figure 5.19. 

Figure 5.19 exhibits the example of the real-time experiments on the exoskeleton hand 

on the healthy subject. The figure only provides six movements. In the experiment, ten 

movements were tested as well. To get a better understanding of the system, the reader 

could watch the videos regarding the experiment in this section online on YouTube. Here 

is the link to access those videos: 

 https://www.youtube.com/watch?v=Bou7URGQQ_4 for 10-classes experiment 

 https://www.youtube.com/watch?v=pPTft3SmtlM for 6-classes experiments 

 

Figure 5.19 An example of online experiment on the implementation of myoelectric 
pattern recognition with motion rejection on the exoskeleton hand 

In this experiment, the subject performed 10 subsequent movements from the thumb, 

index finger until the hand-close movement. The duration of each movement is 5 seconds 

No motion 

Thumb motion 

Index finger motion 

Middle finger motion 

Ring finger motion 

Little finger motion 

Closing hand motion 

Electrode 
placement 
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with a rest state in between lasting 5 seconds as well. The subject repeated the experiment 

four times. The performance of the system is presented in Table 5.8. 

Table 5.8 The accuracy of the real-time experiment using 10 trained classes 

Trials Online accuracy (%) 
RBF-ELM RBF-ELM-R 

1 89.06 90.46 
2 89.45 89.75 
3 90.23 90.06 
4 88.15 88.64 

Average 89.22 89.73 
 

The experiment results in Table 5.8 show that the average accuracy of the real-time 

application across four trials is 89.22 % and 89.72 % using RBF-ELM and RBF-ELM-R, 

respectively. The timing diagram of an experiment is presented in Figure 5.20. 

T I M R L TI TM TR TL HC

T I M R L TI TM TR TL HC

T I M R L TI TM TR TL HC

0.7

B

ms

C

A

 

Figure 5.20 An example of real-time experiment over time using threshold 0.7 on 10-
classes experiment  
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Figure 5.20 presents the outputs of myoelectric pattern recognition using three 

different scenarios. The first scenario is the output of RBF-ELM, the system that does not 

use the rejection mechanism. It is shown in the figure by the letter A. The second scenario 

is the output of RBF-ELM-R with rejection threshold 0.7. It is shown by the letter B in 

the figure.  The last scenario, which is shown by the letter C, is the output of RBF-ELM-

R with rejection threshold 0.7 but it employed different concepts of “no motion” from the 

previous RBF-ELM-R.  

The rejection motion in RBF-ELM-R can be applied in two ways. Firstly, no motion 

means that the output of the system is the rest state. Therefore, whenever the system 

rejects a motion, the system forces the output to the rest state by neglecting the current 

movement. As a result, the output changes from one state to a rest state back and forth 

frequently, as shown in Figure 5.20 part B. This action will be inconvenient for the user. 

The second implementation of “no motion” is that instead of the rest state, the output 

is the last movement produced before the implementation of the rejection mechanism. 

This scenario provides smoother output than the first scenario, as shown in Figure 5.20 

part C. For this reason, the second scenario is a good choice for controlling the 

exoskeleton hand. 

The advantage of the second scenario is also exhibited in Figure 5.21. Figure 5.21 

describes the online experiments using five classes in the training. Then, in the online 

experiment, the system is tested with the data including the five classes in the training 

stage and the additional five classes that were not included in the training stage. The figure 

shows that the second scenario, that considers “no motion” as the previous movement 

instead of the rest state, exhibits reasonable performance for real-time application, as 

shown in Figure 5.21 part C. Part C of the figure is much smoother than part B.  

However, there is a drawback when using “no motion” as the previous state. When the 

previous state is the wrong movement, then the “no motion” produces the wrong 

movement as well. For example, see Figure 5.21 part C, the thumb-middle finger 

movement (TM) is a motion that was not included in the training stage. When it is 

imposed on the system, the system outputs the L movement. In fact, the correct output 

should be no movement.   

Regarding the accuracy of the experiment on five trained classes and untrained classes, 

Table 5.9 shows that the rejection mechanism could minimize the performance 

degradation of the real-time myoelectric pattern recognition (M-PR). The M-PR using 
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RBF-ELM-R could achieve the accuracy of about 80% while the one using RBF-ELM 

attained the accuracy of about 59 %. 

Table 5.9 The accuracy of the real-time experiment using five trained classes and five 
untrained classes 

Trials Online accuracy (%) 
RBF-ELM RBF-ELM-R 

1 59.38 82.01 
2 60.55 79.07 
3 60.29 81.45 
4 58.33 78.35 

Average 59.64 80.22 
 

T I M R L TI TM TR TL HC

T I M R L TI TM TR TL HC

T I M R L TI TM TR TL HC

0.3

B

C

A

ms
5 trained classes 5 untrained classes

 
Figure 5.21 The real-time experiment results over time using threshold 0.3 using 5 trained 

classes and 5 untrained classes.  
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5.3.4 Conclusion 
This section proposes myoelectric pattern recognition (M-PR) with motion rejection 

using radial basis function extreme leaning machine. In short, it is named RBF-ELM-R. 

The existence of the motion rejection mechanism improves the performance of the 

recognition system in both offline and online experiment. In the offline experiment of 10 

classes, the accuracy is around 90 % and 92 % for RBF-ELM and RBF-ELM-R, 

respectively. In the online experiment, the accuracy is about 89.22 % and 89.73 % for 

RBF-ELM and RBF-ELM-R, respectively.  

The efficacy of RBF-ELM-R is more noticeable if the classes that are not included in 

the training stage are involved in the test stage. In the online experiment, when using five 

classes in the training stage and then in the testing stage, another five classes are involved, 

the accuracy is about 59 % and 80 % for RBF-ELM and RBF-ELM-R, respectively. In 

addition, the implementation of RBF-ELM-R in the exoskeleton hand system shows its 

efficacy in the real-time application. 

Nevertheless, the efficacy of the proposed system should be tested in day-to-day 

application. The users do not use a hand rehabilitation device once; often they employ it 

for days as long as they need it. Therefore, such a promising system should be able to 

overcome many issues regarding daily uses. The next section will discuss this issue.  

5.4 Evaluation of online sequential extreme 
learning (OS-ELM-R) for robust myoelectric 
finger recognition 

The rejection mechanism in myoelectric pattern recognition improves the robustness 

of the system. Another robustness issue emerges when implementing the hand 

rehabilitation device for longer time use. The performance will decrease due to changes 

in the EMG characteristic. This section proposes the way to adapt to these changes. The 

first section will discuss the introduction. The methodology will come next. The 

experimental results will be presented to describe the efficacy of the proposed system. 

Finally, the conclusion will end this section. 

5.4.1 Introduction 
For daily use, myoelectric pattern recognition should be able to deal with all situations 

that are possibly faced in the future, such as electrode shift and improvement in the muscle 

activity after several training sessions. Young et al. (Young et al., 2012) found that a 2 
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cm-electrode shift can increase classification errors up to 25 – 30 % of eight EMG 

channels. They suggested tight procedures so as to design a robust myoelectric pattern 

recognition system. Of course, such procedures, somehow, are not comfortable and not 

convenient for people, the therapist and the patient.   

Such problems can also be solved by incorporating all data that involve all conditions 

possibly faced in the training session. However, this idea results in a cumbersome training 

process and will not be convenient for users (R N Khushaba et al., 2014). Moreover, all 

conditions cannot be covered in the beginning due to variation of the user’s pattern over 

time. The variations can be influenced by the muscle fatigue, humidity, electrode 

displacement, and other potential causes.     

To anticipate such variation, Nishikawa et al. (Nishikawa et al., 2000) proposed 

supervised adaptation technique using a feed-forward neural network. In the proposed 

method, the new data is appended to the training data according to the user’s intention. 

Furthermore, the method could also eliminate the redundant or harmful data. A similar 

approach to Nishikawa’s work has been proposed by Chen et al. (Chen et al., 2013) who 

developed self-enhanced linear and quadratic discriminant analysis (SLDA and SQDA). 

These methods retrain the classifiers using testing data in addition to training data. 

Interestingly, the methods use predicted labels/classes to adjust the classifier’s internal 

parameters. In other words, adaptation is conducted in an unsupervised manner. 

Sensinger et al. (Sensinger et al., 2009) suggested that the supervised adaptation 

mechanism should be considered to be applied in a clinically feasible pattern recognition 

system. Following the suggestion, Gijsberts et al. (Gijsberts et al., 2014) occasionally 

retrain the classifier using  a modest amount of  training data, instead of adding new data 

to original data. Different from previous researchers who employed batch learning 

classifiers, they utilized incremental learning classifier called incremental ridge 

regression with random Fourier features (iRFFRR). iRFFRR is a combination of 

incremental ridge regression and random Fourier features, which is an approximation of 

the Gaussian kernel machine. The main issue of a kernel machine is in the processing 

speed which is slow especially for large data. 

This thesis proposes a new supervised adaptation mechanism using an online 

sequential extreme learning machine (Liang et al., 2006) with motion rejection as the 

classifier. This new online classifier is called OS-ELM-R. The adaptation is conducted 

manually by the user or the therapist at the beginning of a new session using a small 
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number of a new training data. A new session means a session that has different 

experimental setups from the previous one. Briefly, the proposed method combines the 

ideas of Nishikawa and Gijsberts. The proposed method will be applied to the finger 

classification problems. Interestingly, the number of channels used is only two.  

5.4.2 Methodology 
5.4.2.1 Online sequential extreme learning machine (OS-ELM) 

Online sequential extreme learning machine (OS-ELM) is formed on the basis of 

ELM. In ELM, for N arbitrary distinct samples  Rn x Rm, the output of a 

single hidden layer feed-forward network (SLFN) with L hidden nodes is: 

  5.2 

where f is an output of ELM, G is a hidden layer output, ih(x )  RNxL is a matrix of hidden 

layer output and   RLxm is a matrix of output weight.  

OS-ELM consists of two phases, an initialization phase and a sequential phase. In the 

initialization phase, a small chunk of training data is taken from the whole 

training dataset. In addition, .  

INITIALIZATION LEARNING PHASE  

The procedures in this phase are as follows: 

1. Assign the hidden node parameters, such as weight a and bias b, randomly. 

2. Calculate the initial hidden layer output matrix H0. 

5.3 

3. Calculate the initial output weight β(0) 

4. Using the target , the goal of ELM is to minimize: 

5.4 

The solution is  

5.5 

where  

5.6 

and 

5.7 
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This phase is set as k=0 as the initial sequent. 

SEQUENTIAL LEARNING PHASE 

The second phase is the sequential learning phase. A new observation for (k+1)th 

chunk of data will involve: 
1

0

0

1
1

,
k

jj
k

jj

N
k i i

i N
N x t 5.8 

Procedures involved in this phase are as follows. 

1. Calculate the output matrix of the partial hidden layer Hk+1. 

5.9 

 

2. Compute the output weight 

The target is: 
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The inverse of  should be avoided in the recursive process. 
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And 

5.14 

So, 5.14 can be modified by: 

1

1
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( 1) ( ) ( )
1 1 1 1

k k T k
k k k kβ β M H T H β 5.16 

Set k=k+1 and go to (a) in this phase. 
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5.4.2.2 Online sequential extreme learning machine with motion 
rejection (OS-ELM-R) for real-time application 

OS-ELM consists of two main stages: an initialization phase and sequential leaning 

phase. These two steps are conducted during the offline classification. OS-ELM differs 

from all previous classifiers that are used in this thesis in the way data treated and passed 

to the classifiers. In OS-ELM, data is presented block by block, so the training stage is 

conducted in a sequential manner. In addition, OS-ELM can be trained using small 

number of data. New data can be imposed to the OS-ELM whenever data is available. 

The M-PR system can take benefit from this way of learning by conducting sequential 

learning phase before doing the online classification using small number of data. This 

thesis injects the rejection mechanism to OS-ELM. It is named OS-ELM-R. The 

implementation of OS-ELM-R in the online classification is shown in Figure 5.22. As a 

note, the experiments employed SRDA instead of SR-ELM for feature projection due to 

the quick processing time of SRDA. 

5.4.2.3 Experimental procedure 
In this section, the experiment consists of three stages. They are the offline, adaptation 

and online experiment. In the offline stage, the experiments is conducted to investigate 

the optimal OS-ELM by finding the optimal number of the hidden layer unit. Then, the 

performance of the optimal OS-ELM to classify the finger movements in various numbers 

of classes was observed. Finally, the comparison of the performance of OS-ELM with 

other well-known classifiers is presented. In the offline experiment, the EMG signals 

collected in section 5.2.2.1 were employed. The data collected from eight normal subjects 

consists of ten finger movements. 

The next stage is an adaptation stage. The adaptation stage is performed before doing 

real-classification when the environment of the experiment changes. For instance, when 

the electrode position has changed or when the real-time experiment is done in different 

days of the offline classification. The adaptation stage needs a small number of new data 

from the current situation.  

The last stage is the online stage or real-time implementation. The online stage can be 

done anytime by calling up the trained system produced in the adaptation stage. The 

procedure of the online classification is shown Figure 5.22. The process of online 

classification is similar to the online classification in section 5.3.2. The difference is on 

the use of OS-ELM-R instead of using RBF-ELM-R. 
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Figure 5.22 Online myoelectric pattern recognition for finger motion recognition using 
OSELM-R 

5.4.3 Experiments and results 
5.4.3.1 Offline experiment 

This section investigates the reliability of OS-ELM for recognizing finger movement 

using two EMG channels. The components of the myoelectric pattern recognition (M-

PR) in the offline experiment are completely the same as those in previous experiments, 
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as provided in section 5.2.2. The offline experiment was performed using 3-fold cross 

validation.  The experiment was started by finding the optimal number of hidden layer 

unit in OS-ELM. 

The precise method that can be used to determine the optimum number of the hidden 

node is hard to get except trial-and-error method. Therefore, in this experiment, the 

number of hidden nodes was varied from 50 to 150. Figure 5.23 provides the result. The 

figure indicates that the hidden node numbers less than 110 produce smaller errors than 

the numbers above it. Besides, the smallest error was achieved when the number of the 

hidden nodes is 110.  Therefore, 110 is selected as the optimum number of the hidden 

node.  

 
Figure 5.23 Average errors on the node experiments across eight subjects using 3-fold 

validation 

Another offline experiment conducted in this section is an experiment to investigate 

the performances of the OS-ELM in the myoelectric pattern recognition using different 

class numbers. The result depicted in Figure 5.24 shows that the system employing OS-

ELM can work across different classes. Interestingly, the fewer class number does not 

guarantee good accuracy. As can be seen in Figure 5.24, nine and ten classes perform 

better than six up to eight classes do.  

 
Figure 5.24 Average errors on the class number experiments across eight subjects using 3-

fold validation 
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To understand and evaluate the real performance of OS-ELM in the M-PR for finger 

motion recognition, this section compares the performance of OS-ELM with other 

classifiers such as SVM (support vector machine), RBF-ELM (radial basis function ELM) 

and AW-ELM (adaptive wavelet ELM). Figure 5.25 presents the experimental result. The 

figure indicates that the performance of OS-ELM is comparable to other tested classifiers 

across eight subjects. All classifiers achieved similar accuracy around 89 % except RBF-

ELM that attained around 90 %. The one-way ANOVA showed the p = 0.984. If the 

confident level is set at p = 0.05, then the performance difference among classifiers are 

not significant. Hence, the incremental method used in OS-ELM does not affect its 

performance. 

 
Figure 5.25 The overall performance of the OS-ELM compared with other classifiers 

across eight subjects using 3-fold cross validation 

The last offline experiment is an experiment to investigate the efficacy of motion 

rejection in OS-ELM. In other words, the performance of OS-ELM is compared to OS-

ELM-R to investigate the influence the rejection mechanism in the performance of OS-

ELM. The results are presented in Figure 5.26 and Table 5.10. 

Figure 5.26 presents the accuracy (TOP) and rejection rate (BOTTOM) of M-PR with 

different threshold values. The figure shows that the accuracy decreases along with the 

increasing of the threshold. In other words, a small threshold value exhibits better 

performance than higher threshold. However, the threshold value that is very small could 

reject too many data. For example, Figure 5.26 (BOTTOM) presents the rejection rate of 

the 10-classes experiment for threshold less than 0.6, which is 100 %. It means the system 

rejects all data used in the experiment, so the system does not produce any output (not 

applicable). Therefore, the selection of threshold value is not trivial. However, Figure 
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5.26 (bottom) indicates that the threshold values more than 1 are a possible solution for 

various cases. 

 
Figure 5.26 The performance of the M-PR with rejection using 3-fold cross validation 

without a majority vote: the accuracy (TOP) and the rejection rate (BOTTOM)  

In addition to the threshold selection, the comparison between the system with and 

without motion rejection is discussed as well, as shown in Table 5.10. Table 5.10 exhibits 

the improvement of the rejection mechanism in the myoelectric pattern recognition. In 

the case of 10-classes experiment, the rejection mechanism could improve the accuracy 

from around 86% to around 91 % and around 89% to around 92 % without the majority 

vote and with the majority vote, respectively. Another interesting fact in Table 5.10 is 

related to the efficacy of the majority vote when the rejection mechanism is employed. 

The existence of the majority vote is not significant. This results support the fact that 

occurred in Table 5.5 and Table 5.6.  The majority vote does not give a significant 

improvement on the system with the rejection mechanism, even it reduces the 

performance of the system. However, in this section, the system with the majority vote is 

better than the system without a majority vote. Maybe, the type of classifier is the cause 

of this contradictory results. The prior system employed the batch classifier while the 

later utilized the sequential classifier. 
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Table 5.10 The comparison of OS-ELM with and without rejection rate using 3-fold cross 
validation across eight subjects 

#trained 
class 

Rejection 
rate (%) 

Accuracy without 
Majority vote (%) 

Accuracy with Majority 
vote (%) 

Threshold 
1.6 

No 
rejection 

Threshold 
1.6 

No 
rejection 

5 0.05 21.92 21.91 22.05 22.04 
6 1.39 29.24 28.73 29.58 29.11 
7 6.52 41.69 39.38 42.24 40.03 
8 15.40 56.87 50.81 57.48 51.93 
9 21.98 78.64 65.46 79.46 67.67 
10 18.34 91.89 86.12 92.33 89.69 

 

5.4.3.2 Online experiment 
5.4.3.2.1 The first day experiment 

After doing the offline experiments, eventually, the optimum parameters for the online 

classification are obtained. The hidden node number is 100 and threshold value is 1.7. In 

the online experiment, the work tested the M-PR system on three different days. In the 

first day, data acquisition is collected from a subject. Afterward, the offline classification 

employs the collected data to train the OS-ELM and RBF-ELM. The experiment involved 

only two classifiers because both classifiers represent different data representation. The 

former utilizes a chunk-by-chunk style while the later employs the batch style. The 

subject performed four trials for each movement and took a rest for 5 s between two 

movements. Figure 5.27 depicts the results. 

 
Figure 5.27 The classification results of M-PR using OS-ELM and RBF-ELM  

Figure 5.27 shows that, on the first day of data collection, OS-ELM and RBF-ELM 

exhibit the same average accuracy, which is about 82.64%. However, the accuracy for 

each movement is not the same. OS-ELM is as good as RBF-ELM in recognizing the 
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individual movements (T, I, M, R, L). As for the combined finger movements, OS-ELM 

outperformed RBF-ELM on the thumb-middle finger movements. For the other 

movements, RBF-ELM outperformed OS-ELM. In general, the M-PR system using 

incremental method such as OS-ELM is comparable to batch method. 

Next, the discussion of the performance of the M-PR using OS-ELM and OS-ELM-R 

over time is presented, as shown in Figure 5.28. The experimental procedure for the result 

in Figure 5.28 is different from Figure 5.27. The result in Figure 5.28 involved a rest state 

and the rest state became part of a movement that should be recognized using the 

threshold value in the RMS.  Meanwhile, the rest state was not involved in Figure 5.27. 

As seen in Figure 5.28, the figure provides the fact that OS-ELM-R outperforms OS-ELM 

by accuracy of 89.32 % and 91.19 %, respectively. Furthermore, both systems had a 

difficulty to differentiate the rest state and the R movement because the RMS value of it 

is similar to the RMS value of the rest. 

T I M R L TI TM TR TL HC

ms

1.7

T I M R L TI TM TR TL HC

T I M R L TI TM TR TL HC

 
Figure 5.28 Online classification of OS-ELM and OS-ELM-R for recognition of 10 finger 

motions on one subject on one trial 
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5.4.3.2.2 Daily basis experiments 

The primary benefit of utilizing OS-ELM is to provide an adaptation mechanism to 

deal with problems appearing in the daily uses. For that aim, the thesis investigates the 

performance of the proposed system on the different days from the offline classification. 

The results are presented in Figure 5.29.  

 
Figure 5.29 Daily classification performance of OS-ELM and RBF-ELM 

In the previous discussion, it has been concluded that, on the first day (see the Figure 

5.27), the system with OS-ELM and RBF-ELM has the same performance. Both systems 

achieved accuracy around 82 %. Figure 5.29 presents the comparison of both systems on 

the second and third days. On the second day, the system with OS-ELM achieved better 

accuracy than the day before, while RBF-ELM attained accuracy that is worse than the 

day before. Similar phenomena occurred on the third day. These facts indicate that the 

pattern recognition with OS-ELM has stable performance. The adaptation mechanism of 

OS-ELM helps M-PR to adapt to the new environment. 

The complete classification that involves the rest state into consideration is presented 

in Figure 5.30 and Figure 5.31. The last and second last rows describe the output of OS-

ELM-R and OS-ELM, respectively. If Figure 5.28 representing the first-day experiment 

is compared to Figure 5.30 representing the second day experiment, then it is found that 

the performance of OS-ELM increases. Again, the experiment result on the third-day 

shows another improvement, as in Figure 5.31. The output of the third day is smoother 

than the previous days. In summary, the OS-ELM or OS-ELM-R benefits the myoelectric 

pattern recognition (M-PR) and improves the stability of (M-PR).    
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Figure 5.30 An example of online classification result  of OS-ELM and OS-ELM-R in 

reconizing 10 finger motions for the second day 
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Figure 5.31 An example of online classification result  of OS-ELM and OS-ELM-R in 
reconizing 10 finger motions for the third day 
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5.4.4 Conclusion 
This thesis aims to develop myoelectric pattern recognition (M-PR) that is robust and 

can work over time for long term usage. The mechanism adaptation of OS-ELM enables 

M-PR to adapt to the changes that possibly occur during long usage of the EMG-based 

hand rehabilitation device. The thesis also developed OS-ELM with rejection mechanism 

named OS-ELM-R. The comparison of OS-ELM and RBF-ELM across different day 

experiments show that the adaptation mechanism improves the robustness of the system. 

The M-PR with OS-ELM has stable performance, and even the accuracy is improved. 

The average accuracy is around 82%, 84% and 85 % on the first, second and third days, 

respectively. Meanwhile, the performance of the M-PR with RBF-ELM decreased across 

three different days. The average accuracy is about 82 %, 33% and 35 % on the first, 

second and third days, respectively. 

Furthermore, the rejection mechanism improves the robustness of the M-PR because 

it can anticipate the existence of the untrained movement in the clinical application. The 

experimental results, offline and online prove the efficacy of the rejection mechanism in 

the myoelectric finger motion recognition. In the offline experiment for the 10-class 

experiment, the accuracy is 81 and 90 % for OS-ELM and OS-ELM-R. In the online 

experiment, the accuracy is around 89 % and 91 % for OS-ELM and OS-ELM-R on the 

first-day experiment. 

5.5 Summary 
This chapter addresses the real-time application of myoelectric pattern recognition (M-

PR) for finger movement detection. There are three different applications conducted. The 

first application is the online classification of M-PR for finger movement recognition, as 

discussed in section 5.2. The virtual hand simulation displayed on the screen of a personal 

computer was used to demonstrate the classification performance.  The classification 

accuracy is 90.46 % and 89.19 % on the offline and online classification, respectively. 

Interestingly, the experiment included the transient state in which many researchers 

avoided because it can downgrade the classification performance. In fact, the transient 

state of EMG signals should be incorporated to enhance the robustness of the system. 

 Then, section 5.3 addressed the implementation of the previous section on the 

exoskeleton hand robot. Not only that, a mechanism to reject the movement that is not 

involved in training session was also discussed. Again, the rejection mechanism improves 
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the robustness of the M-PR system. For long use, the M-PR system should deal with the 

changes that possibly exist in the environment such as electrode system, the improvement 

of muscle function. For that reason, the thesis proposed a new M-PR using OS-ELM in 

section 5.4. It is an incremental classifier that can be updated to the new situation using 

a small number of data. The experimental results showed that the M-PR with OS-ELM 

had stable performance over three different days and in addition, the performance had 

improved. 

These experimental results provide optimism for implementation of the proposed 

system to be tested on the disabled person following a stroke. In this thesis, the proposed 

system was applied to an able-bodied subject. The proposed system consists of a control 

system that can recognize the intended finger movement of the patient. Based on this 

information, the control system will drive the corresponding finger exoskeleton and at the 

same time, the user’s finger will be actuated. The advantage of the proposed system over 

the existing system is on the number of movements that can be dealt with. The system 

can move individual fingers while other cannot. Inevitably, this feature will improve the 

rehabilitation process of the disabled person.      
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CHAPTER 6          

Summary, conclusion and future 
research 

In this chapter, the summary of this thesis and major finding of the research conducted 

in this thesis are given. Afterward, the future works following on from the research in the 

same field are described.  

6.1 Thesis summary 
The main aim of this research is to introduce novel myoelectric controllers for hand 

rehabilitation devices that can deal with problems occurring in real-time application. To 

achieve the main goal, this research has proposed various methods and algorithms, and 

examined them in real-time application.  

In Chapter 3, novel myoelectric pattern recognition (M-PR) for finger motion 

recognition that can work well on amputees and non-amputees was proposed. Different 

feature extraction methods were examined. Furthermore, the experiments involved 

various methods and different components of M-PR. Three dimensionality reduction 

methods were incorporated including linear discriminant analysis (LDA), spectral 

regression discriminant analysis (SRDA), and orthogonal fuzzy neighbourhood 

discriminant analysis (OFNDA). The research has investigated different extreme learning 

machine algorithms including kernel-based ELM and node-based ELM. The kernel based 

ELM consists of radial basis function ELM (RBF-ELM), polynomial ELM (Poly-ELM) 

and linear ELM (Lin-ELM), while the node based ELM is composed of sigmoid ELM 

(Sig-ELM) and radial basis ELM (Rad-ELM). In addition, some well-knows classifiers 

were involved including support vector machine (SVM), linear discriminant analysis 

(LDA) and k-nearest neighbour (kNN).  

Some possible configurations of those methods were investigated to find the optimal 

M-PR for finger motion recognition. The experimental results show that RBF-ELM along 

with TD-AR and SRDA achieved the best classification performance. The M-PR 
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achieved good accuracy in amputees and non-amputees with an accuracy of about 99 % 

and 98%, respectively, using six EMG channels. In addition, the experimental results 

using two EMG channels show that RBF-ELM achieves the highest accuracy on both 

subjects with an accuracy of 92.73 % across five amputees and of 97.11 % across nine 

able-bodied subjects. Therefore, the research has succeeded in developing a highly 

accurate M-PR for complex finger-motion recognitions using radial basis function ELM 

(RBF-ELM). 

The first section of Chapter 4 proposes a new ELM classifier named adaptive wavelet 

extreme learning machine (AW-ELM). Wavelet extreme learning machine (W-ELM) and 

AW-ELM are special types of wavelet neural network (WNN) that avoid iterative training 

to determine the weights. In W-ELM and AW-ELM, the weights of the hidden nodes are 

randomly determined, while the weights of the output are calculated analytically. For that 

reason, the training time of W-ELM and AW-ELM are very fast compared to WNN. AW-

ELM differs from W-ELM in the wavelet activation function. In W-ELM, the wavelet 

shape does not change during the process. On the contrary, in AW-ELM, the wavelet 

shape changes according to the input characteristic. The mechanism of the changing of 

the wavelet shape enables AW-ELM to avoid the initialization stage that is needed in 

WNN or W-ELM, to set the wavelet shape in the range of input. The experimental results 

on myoelectric pattern recognition for finger motion classification using two EMG 

channels show that the improvement made by AW-ELM is significant. In addition, AW-

ELM attained the accuracy of about 94 % and the result is comparable to other well-

known classifiers such as RBF-ELM, SVM, LDA, and kNN. The experimental results on 

the UCI machine learning datasets indicate that AW-ELM could work on a wide range of 

datasets from small size to large size data and in general, the performance is comparable 

to other well-known classifiers. 

In the second section of Chapter 4, the thesis presents a novel dimensionality 

reduction named spectral regression-extreme learning machine (SR-ELM) to improve the 

class separability of the features. To the best of the author’s knowledge, SR-ELM is the 

first ELM for supervised dimensionality reduction. The experimental results on 

myoelectric finger motion classification show that SR-ELM + AW-ELM achieved 

accuracy from 98.64 % to 94.16 % for 5 to 10 motion classes. One-way ANOVA test 

showed that the performance of SR-ELM is comparable to ULDA (uncorrelated linear 

discriminant analysis) and OFNDA (orthogonal fuzzy neighbourhood discriminant 
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analysis), but it is better than SRDA (spectral regression discriminant analysis). The 

experimental results on UCI machine learning datasets showed that SR-ELM exhibits 

good performance when it works together with AW-ELM, LDA, and kNN. As for RBF-

ELM and LIBSVM, the performance of SR-ELM is comparable to other methods. 

The experimental results in Chapter 3 shows that ELM needs parameter optimizations 

to work optimally, especially in the kernel based ELM. For that purpose, in the second 

section of Chapter 4, a hybridization of particle swarm optimization (PSO) and the kernel 

based ELM was introduced. This hybridization resulted in three different classifiers: 

swarm radial basis ELM (SRBF-ELM), swarm polynomial ELM (SPoly-ELM) and 

swarm linear ELM (SLin-ELM). The experimental results show that SRBF-ELM and 

SPoly-ELM have similar performance. As for SRBF-ELM and SLin-ELM, SRBF-ELM 

is better than SLin-ELM. Interestingly, the performance of SPloy-ELM and SLin-ELM 

are not significantly different. The most accurate classifier is SBRF-ELM that attained an 

accuracy of 94.62 % across eight subjects using 3-fold cross validation. In addition, the 

experimental results show that there is a possibility of PSO becoming trapped on local 

optima.   

The third section of Chapter 4 presents the next experiment conducted in this thesis 

in relation to overcoming the likeliness of PSO to become trapped in local optima. Many 

attempts have been proposed to overcome the local optima issue in PSO. One of them is 

to mutate PSO using wavelet, as proposed by Ling et. al. (Ling   et al., 2008). Therefore, 

the thesis proposed swarm wavelet radial basis function (SW-RBF-ELM). In this 

experiment, fitness function was obtained from the average errors of the cross-validation 

results, which was different from the previous experiment in which fitness function was 

obtained from the error of each cross-validation. This new mechanism shortens the 

searching time of PSO. The experimental results showed that the accuracy of SRBF-ELM 

improved when using this new mechanism from 94.62 % to 95.54 %. As for SW-RBF-

ELM, its performance was 95.62 % across eight subjects using 3-fold cross validation. 

The one-way ANOVA test result shows that improvement made by SW-RBF-ELM is not 

significant. However, the comparison of the fitness value of SBRF-ELM and SW-RBF-

ELM indicated that the improvement made by SW-RBF-ELM is significant.  

Chapter 5 provides some efforts to improve the robustness of the myoelectric pattern 

recognition (M-PR) in the real-time application. The second section of Chapter 5 presents 

the real-time application of myoelectric pattern recognition (M-PR). In the real-time 
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experiment, the M-PR considered the transient and steady state of the EMG signals. 

Majority researchers avoid the transient state in the experiment because it can downgrade 

the classification performance. However, including the transient state in the training stage 

will improve the robustness of M-PR in the real-time application. This thesis has proposed 

many methods to improve the performance of M-PR for finger motion classification. 

Nevertheless, this thesis employed the configuration of TD-AR for feature extraction, 

SRDA for feature projection and the optimized RBF-ELM for classifiers. The 

experimental results show that the M-PR could attain an accuracy of 90.46 % and 89.19 

% on the offline and online classification, respectively. In the delay time, the M-PR took 

261 ms to produce an output. This delay time is less than the acceptable delay time of 

myoelectric controller (300 ms). 

In the third section of Chapter 5, the M-PR produced in the previous section was 

employed to control an exoskeleton hand. To improve the robustness of the M-PR, RBF-

ELM was equipped with a rejection mechanism. The aim of this mechanism is to neglect 

any movement that is not included in the training stage. The offline classification results 

show that RBF-ELM with rejection mechanism (RBF-ELM-R) could attain an accuracy 

of around 94 % while RBF-ELM achieved around 90%. In addition, the M-PR with RBF-

ELM-R along with proportional controller has succeeded in controlling an exoskeleton 

hand with an accuracy of 89.7 % on an able-bodied subject. 

The last section of Chapter 5 proposed M-PR that has an adaptation mechanism to 

anticipate changes on EMG signal characteristic, especially for long use. The adaptation 

mechanism was performed by online sequential extreme learning machine (OS-ELM). 

OS-ELM enables M-PR to be updated using a small number of data. Therefore, before 

doing the online experiment, if the experimental environment has changed, a small 

number of data is collected and then used to retrain the M-PR. The experimental results 

show that, in day-to-day experiments, the M-PR with OS-ELM has more stable 

performance than that with RBF-ELM. For example, in one subject, OS-ELM could 

achieve an accuracy of around 82 % on the first day, around 84 on the second day and 85 

% on the third day. On the contrary, RBF-ELM achieved the accuracy of around 82% on 

the first day, and the accuracy dropped to around 32 % and 35 % on the second and third 

day, respectively. These results exhibit the benefit of adaptation mechanism to enhance 

the robustness of M-PR in the real-time application.  
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The experimental results of M-PRs developed in this thesis are summarized in Table 

6.1. 

Table 6.1 The summary of the M-PR developed in this thesis 

M-
PR #Ch 

#Finger motion 
#Subject #Features 

Dim.  
reduction+ 
Classifier 

Avg.  
Accuracy 

(%) 
Mode Signal 

State 

Trained Un-
trained 

C
ha

pt
er

 
3 

6 12 Id and 3 
Cm   9H 16 SRDA+ 

RBF-ELM 99.5 OF Tr 

6 12 Id   5A 16 SRDA+ 
RBF-ELM 98.55 OF Tr 

C
ha

pt
er

 4
 

2 5 id and 5 
Cm   8H 16 SRDA+ 

AW-ELM 94.84 OF Tr 

2 5 id and 5 
Cm   8H 16 SRDA+ 

RBF-ELM 94.59 OF Tr 

2 5 id and 5 
Cm   8H 16 SR-ELM+ 

AW-ELM 94.71 OF Tr 

2 5 id and 5 
Cm   8H 16 SR-ELM+ 

RBF-ELM 94.78 OF Tr 

2 5 id and 5 
Cm   8H 16 SRDA+ 

RBF-ELM 95.53 OF Tr 

2 5 id and 5 
Cm   8H 16 SRDA+ 

SW-RBF-ELM 95.62 OF Tr 

C
ha

pt
er

 5
 

2 5 id and 5 
Cm   8H 16 SRDA+ 

RBF-ELM 90.46 OF St + Tr 

2 5 id and 5 
Cm   8H 16 SRDA+ 

RBF-ELM 89.19 OL St + Tr 

2 5 id and 5 
Cm   1H 16 SRDA+ 

RBF-ELM-R 92.89 OF St + Tr 

2 5 id and 5 
Cm   1H 16 SRDA+ 

RBF-ELM-R 89.73 OL St + Tr 

2 5 id trained 5cm  1H 16 SRDA+ 
RBF-ELM 59.64 OL St + Tr 

2 5 id trained 5cm  1H 16 SRDA+ 
RBF-ELM-R 80.22 OL St + Tr 

2 5 id and 5 
Cm   1H 16 SRDA+ 

OS-ELM 89.69 OL St + Tr 

2 5 id and 5 
Cm   1H 16 SRDA+ 

OS-ELM-R 92.33 OL St + Tr 

2 5 id 5cm  1H 16 SRDA+ 
OS-ELM 22.04 OL St + Tr 

2 5 id 5cm  1H 16 SRDA+ 
OS-ELM-R 22.05 OL St + Tr 

Ch = Number of channels, Id = Individual finger movements, Cm = Combined Finger movements, 
H = Healthy Subjects, A = Amputees, OF= Offline classification, OL = Online Classification, Tr 
= Trainsient state, St = Steady state 
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6.2 Recommendation for future research 
The following issues are recommended for future research. 

 Employing AW-ELM in the real-time experiment and introducing sequential 

learning of AW-ELM for adaptive myoelectric pattern recognition. 

 In the real-time experiment, myoelectric pattern recognition (M-PR) employed 

two EMG channels and attained accuracy around 89 %. A few more EMG 

channels may be added to improve the performance in the real-time 

application. 

 The delay time of the myoelectric controller is around 261 ms. It is less than 

the acceptable delay time (300 ms). However, it is more than the optimal delay 

time (175 ms for average users). In the future work, the delay time should be 

shortened to improve the comfort of the user,  

 The efficacy of the myoelectric controller developed here should be 

investigated for broader users including able-bodied and paralyzed users. 

 The exoskeleton hand used in this research does not have sensory feedback. 

For future research, any hand devices used in the experiment should have 

sensory feedback to improve the performance and the robustness of the 

myoelectric controller. 

 The implementation of the proposed myoelectric controller on the hand 

prosthetic should be investigated as well. 

 In this thesis, to update the M-PR for long use, the user should provide small 

data. It means that the data for updating M-PR should be provided. The reason 

is the M-PR should be retrained with the good data. In other words, M-PR 

could not select the data by itself. In the future research, a mechanism that can 

select and sort the good and the bad data should be developed. Therefore, the 

adaptation mechanism will be fully automated. 

 The feature learning on EMG signals should be investigated to improve the 

performance of the myoelectric pattern recognition system. 

 The classification accuracy or error have been used as the main metric to 

measure the efficacy of the M-PR in both laboratory environment and clinical 

application. In fact, in the clinical application, many parameters should be 

considered to measure the performance of the M-PR. In the future, this issue 

should be addressed to enhance the performance of the M-PR and finally 
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increase the acceptance rate of the usage of the rehabilitation device among the 

disabled people. 

6.3 Conclusion 
In this thesis, eight contributions were proposed including some new algorithms, novel 

myoelectric pattern recognition systems, and a novel myoelectric controller for an 

exoskeleton hand.  

This thesis proposed some novel systems for finger motion recognitions. The first 

system is myoelectric pattern recognition (M-PR) system that could work well in amputee 

and non-amputees for complex finger-motion recognitions. The latest publication in this 

area [2] shows that for complex finger motion, there was a big performance gap of 

myoelectric pattern recognition on amputee and non-amputees. This research exhibits its 

contribution by proposing an M-PR system that works well in both subjects using a 

combination of time domain and autoregressive features (TD-AR), SRDA and RBF-

ELM. The second M-PR is a real-time M-PR. The real-time M-PR developed in this thesis 

considers the transient state of the EMG signals. In many M-PRs, the transient state is 

avoided and removed. In fact, the inclusion of the transient state will increase the 

robustness of the real-time experiments even though it will decrease the accuracy of the 

M-PR. For the real-time application, robustness and accuracy should be considered.  

The third M-PR system proposed is M-PR with motion rejection for real-time 

experiments. This M-PR employed RBF-ELM with motion rejection or RBF-ELM-R. 

This RBF-ELM-R increases the robustness of the M-PR. The fourth M-PR system 

proposed is the M-PR that can adapt to changes in the environment that affect the EMG 

signal characteristic. The main component that enables adaptation in the M-PR is online 

sequential extreme learning machine (OS-ELM). The efficacy of OS-ELM is very 

noticeable by empowering the M-PR to have an experimentally demonstrated stable 

performance over three different days.  

Furthermore, this thesis proposed four new algorithms that are dealing with two 

electromyography (EMG) channels. The first two methods are to optimize the parameters 

of the kernel based ELM, which are swarm radial basis function extreme learning 

machine (SRBF-ELM) and swarm wavelet radial basis function extreme learning 

machine (SW-RBF-ELM). These two methods have been proven to be able to optimize 

kernel based ELMs. Another algorithm proposed in this thesis is adaptive wavelet 
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extreme learning machine (AW-ELM). AW-ELM is a classifier that can change the shape 

of the wavelet activation function according to the condition of the input. Compared to 

WNN, AW-ELM is faster, yet it has comparable performance to well-known classifiers 

such as SVM, LDA, and kNN. Compared to W-ELM, AW-ELM does not need an 

initialization to cover the range of input, as is needed in W-ELM. AW-ELM has been 

tested on the EMG dataset for myoelectric finger motion recognition. In addition, it has 

been tested on the UCI machine learning datasets. The experimental results indicate the 

benefit of AW-ELM. 

Another algorithm regarding the feature projection or dimensionality reduction 

methods was also proposed. It is named spectral regression extreme learning machine 

(SR-ELM). SR-ELM is a novel extreme learning machine for supervised dimensionality 

reduction. The experimental results on EMG dataset for finger motion recognitions and 

UCI machine learning datasets show that SR-ELM could work on various applications 

with good performance. 

The last contribution is a new myoelectric controller for exoskeleton hands. The 

literature informs that the majority of the exoskeleton hand employ EMG signal for 

simple motions such opening hand and closing hand. This thesis proposed a myoelectric 

controller that enables the exoskeleton hand to move the individual movement as well as 

the combined finger motions. The proposed myoelectric controller consists of M-PR plus 

proportional controller. The M-PR consists of TD-AR, SRDA, and RBF-ELM-R, while 

the proportional controller consists of a proportional controller for the linear motor of the 

hand. The experimental result shows the efficacy of the controller for controlling the 

exoskeleton hand by an accuracy of around 89 % from four trials on one subject.   

Overall, all experiments conducted in this thesis have been presented in various high-

quality conference and have been published online. This indicates that the contributions 

have been widely acknowledged internationally. 
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