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Abstract

Vehicular emission models play a key role in the development of reliable air
quality modelling systems. To minimise uncertainties associated with these
models, it is essential to match the high-resolution requirements of emis-
sion models with up-to-date information. However, these models are usually
based on average trip speed, not on environmental parameters like ambient
temperature, and vehicle’s motion characteristics, such as speed, accelera-
tion, load and power. This contributes to the degradation of its predictive
performance. In this paper, we propose to use the non-parametric Classi-
fication and Regression Trees (CART), the Boosting Multivariate Adaptive
Regression Splines (BMARS) algorithm and a combination of them in hy-
brid models to improve the accuracy of vehicular emission prediction using
on-board measurements and the chassis dynamometer testing. The experi-
mental comparison between the proposed CART-BMARS hybrid model with
the BMARS and artificial neural networks (ANNs) algorithms demonstrates
its effectiveness and efficiency in estimating vehicular emissions.

Keywords: Vehicular emissions, on-board emission measurement, chassis
dynamometer testing, CART-BMARS, ANNs.

1. Introduction

Poor air quality has become a serious problem in recent years in many
cities and their surrounding areas due to increasing population, motor ve-
hicles and industries. To be environmentally-sustainable, efforts have been
made to improve energy efficiency and to reduce air pollutant emissions in
both generation and consumption sides [1]. Among air pollutants coming

Preprint submitted to Transportation Research Part D: Transport and Env.September 19, 2016



from all sources, anthropogenic emissions have been the main concern in
air-quality modelling and control. The problem is exacerbated as the world
demand of transport is projected to increase by 45% by the year 2030 [2]
while the steady growth in vehicular population in the urban areas. This
will involve the increase in the number of motor vehicles and consequently
the emissions impact. As vehicular emissions are produced at the ground
level, they have harmful effects directly on the reception population [3].

It is a fact that the transport sector is growing quickly and providing con-
venient and quick access to any geographical location. However, it also brings
disadvantages like noise, congestion and pollutant emissions such as carbon
monoxide (CO), nitrogen oxides (NOX), total volatile hydrocarbon (THC),
Carbon dioxide (CO2), which are primarily responsible for global warming
([4], [5]). The amount of CO2 emitted from distance traveled is directly pro-
portional to fuel economy with every litre of gasoline burned releasing about
2.4 kg of CO2 [6]. The problem of vehicular emissions becomes more severe
when the traffic flow is congested or interrupted especially when the delays
and disruptions occur frequently. These phenomena are regularly observed
at traffic intersections, junctions, and at signalized roadways, where traffic
related characteristics combined with road and vehicle conditions contribute
to the level of emissions.

Many research initiatives have been undertaken to model and predict the
complexity of vehicle emissions in order to control transport air pollution [7].
However, the mechanisms by which they affect the atmosphere and degrade
the urban air quality are not completely identified. Consequently, the need
of comprehensive and accurate models for vehicle emissions is essential to
safeguard the urban air quality, to recognize any potential changes in the
climate, and to justify imposing new regulations. It is vital to increase the
ability of policy-makers to reach sound and reasonable decisions about vehicle
emissions and air quality in order to maintain environmental sustainability.

Air quality models are indispensable tools to assess the impact of air
pollutants on human health and the urban development. The most critical
part of assessment studies is to know the present as well as future air quality
levels. In this paper, we aim to improve the prediction accuracy of emissions
modelling based on data collected from chassis dynamometer and on-board
measurement systems. The dynamometer testing is one of the three typ-
ical vehicle tailpipe emission measurement methods, where emissions from
vehicles are measured under laboratory conditions during a driving cycle
to simulate vehicle road operations [8]. The real world on-board emissions
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measurement is widely recognised as a desirable approach for quantifying
emissions from vehicles since data are collected under real-world conditions
at any location travelled by the vehicle [9]. Using on-board measurements,
variability in traffic emissions as a result of changes in roadway characteris-
tics, vehicle’s location and operation mode, driver, or other factors can be
represented and analysed more reliably than with the other methods [10].
This is because measurements are obtained during real world driving, elimi-
nating the concern about non-representativeness that is often an issue with
dynamometer testing, and at any location, eliminating the setting restric-
tions inherent in remote sensing. Though the on-board measuring technique
seems to be more promising, the need to improve the prediction accuracy of
emission factor by using effective statistical techniques is important in any
emissions modelling approach.

Therefore, to adequately model traffic emissions, the Multivariate Adap-
tive Regression Splines (MARS) technique has proven to be promising [11].
However, the infulential factors such as vehicles’ speed, acceleration, load,
power and ambient temperature have not been fully considered therein. To
enhance the prediction performance taking into account these emissions fac-
tors, in this paper we focus on integrating the Classification and Regression
Trees (CART) technique with Boosting Multivariate Adaptive Regression
Splines (BMARS) to provide a regression tree to better predict these contin-
uous dependent variables for the regression model with BMARS [12]. Here,
our purpose is to achieve highly-accurate estimates from the emission mod-
els from the dynamometer testing and the on-board measuring data. The
effectiveness of the proposed approach is then determined by grouping the
data into two parts, one for building the model (learning) and the other for
validating the model (testing).

Among machine learning methods, artificial neural networks (ANNs), in
particular, the multilayer feedforward networks with the back-propagation
algorithm, have been widely applied in the last decades to environmental
modelling [13], wherein good performance has been obtained for various ve-
hicular emissions models [14–16] or prediction of air pollution profiles in a
region [17, 18]. Therefore, it is worth comparing the results from the CART-
BMARS hybrid model developed in this paper with those obtained by using
the BMARS and MARS and ANNs techniques.

The organization of this paper is as follows. After the introduction, Sec-
tion 2 presents the development of the CART, MARS, BMARS and ANNs
algorithms. Section 3 includes vehicle information and data collection proce-
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dure. Section 4 shows results obtained by using all the mentioned methods
and dissusses on their advantages. Finally, Section 5 draws a conclusion for
the paper.

2. Vehicular Emissions Models

The proposed model for vehicular emissions modelling is based on a com-
bination of CART and MARS techniques coupled with a boosting algorithm
to improve the learning performance.

2.1. CART modelling

The Classification and Regression Trees (CART) technique is a non-
parametric solution approach to form classifications or regression trees de-
pending on whether the dependent variable is categorical or numerical [19].
CART begins with the root node at the top of the tree, which contains the
entire data for the training run [20]. A node in the CART model is either
a terminal node, i.e. a node without children, or non-terminal node, i.e. a
node with children [21]. The algorithm is intended for the building of a binary
solutions tree consisting of the main splitters in CART. Here, to take into
account not only the speed but also acceleration, load, power, and ambient
temperature in our vehicular emissions model, a regression tree can result
from the CART analysis, as shown typically in Fig. 1. Those cells that meet
the condition within the nodes go to the left side while the remaining cells
go to the right side.

The initial set of observations is divided into groups at the terminal nodes,
or leaves, of the tree. The goal is to find a tree which allows for a good
distribution of data with the lowest possible relative error of prediction. Each
branch of the tree ends with one or two terminal nodes and each observation
falls exactly into one terminal node, defined by a unique set of rules [22].
CART initially build an overgrown model to make sure that stopping rules
do not prevent the model from extracting the correct patterns in data during
the training run to prevent under-fitting. Consequently, the model is pruned
back by penalizing model complexity and removing those splits that do not
improve the accuracy significantly to prevent over-fitting. The tree structure
represents a series of splits for different predictors, where predictor variables
in the emission data are organized hierarchically, i.e. levels in the tree are
representative of the variables’ levels of significance. In CART, splits occur
from the use of search algorithms to classify data into binary or multiple
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Figure 1: Regression tree from CART analysis.

classes [19] by checking all unique values across the range of data values for
different predictors [23].

The CART algorithm calculates the probability (Pk) of the emission vari-
ables in the root node of the tree using relative frequencies in the entire
learning data, Pk = Nk|N ; k = 1, 2, ..., K, where Nk is the number of cells
corresponding to emission variable k from the entire data N [24]. Let P (k, t)
denote the probability of emission variable k and Nk(t) be the number of
cells in node t belonging to class k, then

P (k, t) = Pk ×
Nk(t)

Nk

. (1)

Now let P (k|t) denote the conditional probability that the CART algortihm
classifies correctly the emission variables and P (t) =

∑
k P (k, t)), then

P (k|t) =
P (k, t)

P (t)
. (2)

In this paper, to measure the inequality among values of emission vari-
ables, we use the Gini index as a node impurity function. The splitting rule

5



for each unique value in the predictors is applied to find the best split of frag-
ment data [19] from a uniform cost, i.e. the misclassification cost is equal for
all classes:

d(t) =
K∑
k=1

K−1∑
j=1

P (j|t)P (k|t) =
1

2

(
1−

K∑
k=1

P 2(k|t)
)
, (3)

or a non-uniform cost:

d(t) =
K∑
k=1

K−1∑
j=1

P (j|t)P (k|t) + C(k|t), (4)

where C(j|k) represents the cost of misclassifying a cell that belongs to emis-
sion variable k into emission variable j.

To get the best split in node t, we look for the one that maximizes the
node impurity function, or the misclassification cost d(t), in the children of
node t [24]. To make a more homogeneous subset than the previous node,
the following gain function makes use of a distribution of data before and
after splitting:

4d(s, t) = d(t)− PLd(tL)− PRd(tR), (5)

where PL and PR are the proportions of cells going to left node tL (left) and
right node tR, respectively. The gain function (5) can be used to determine
the goodness of a split, e.g. split s for node t [25]. A splitting value is
adopted at node t to minimize the diversity obtained by the split. All the
predictor data set records are assigned to one of the terminal nodes, which
represent the particular class or subset of emissions variables. The training
data together with this node information are supplied for MARS modelling.

2.2. MARS Modelling

The Multivariate Adaptive Regression Splines (MARS) technique, also
for non-parametric regression, uses a series of basis functions to model com-
plex (such as non-linear) relationships [26]. Its main purpose is to predict
the values of a continuous dependent variable, y(n× 1), from a set of p in-
dependent explanatory variables, X(n× p), which in our case are emissions
factors as mentioned above. The MARS model can be represented as:

y = f(X) + e, (6)
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where f is a weighted sum of basis functions that depend on X and e is
an error vector of dimension (n× 1). MARS provides a greater flexibility to
explore the non-linear relationship between a response variable and predictor
variables by fitting the data into piecewise linear regression functions. It does
not require a priori assumptions about the underlying functional relation-
ship between dependent and independent variables. Instead, this relation is
uncovered from a set of coefficients and piecewise polynomials of degree q ba-
sis functions (BFs) that are entirely driven from the regression data (y,X).
The MARS regression model is constructed by fitting basis functions into
distinct intervals of the independent variables. Generally, piecewise polyno-
mials, also called splines, have pieces smoothly connected together. Here,
the joining points of the polynomials are called knots, nodes or breakdown
points, denoted by t. For a spline of degree q each segment is a polynomial
function. MARS uses two-sided truncated power functions as spline basis
functions, described by the following equations [27]:

[−(x− t)q+] =

{
(t− x)q; if x < t,

0; otherwise.
(7)

[+(x− t)q+] =

{
(x− t)q; if x > t,

0; otherwise,
(8)

where q(≥ 0) is the power to which the splines are raised and which deter-
mines the degree of smoothness of the resultant function estimate. As an
example, a pair of splines for q = 1 at the knot t = 0.5 is presented in Fig. 2.

The two-sided truncated functions of the dependent variable are basis
functions that describe the underlying phenomena. The global MARS model
is defined as [28]:

ŷ = β0 +
M∑
m=1

βmhm(X), (9)

where ŷ is the predicted response; β0 is the coefficient of the constant basis
function; hm(X) is the mth basis function, which can be a single spline func-
tion or an interaction of two (or more) spline functions; βm is the coefficient
of the mth basis function; and M is the number of basis functions included
in the MARS model. To fit a MARS model, three main steps are applied.
In the first step, i.e., the constructive phase, basis functions are added to
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Figure 2: A graphical representation of a spline basis function.

the model using a forward stepwise procedure. The predictor and the knot
location that contribute significantly to the model accuracy are selected. In
this stage, interactions are also introduced to examine if they could improve
the model fit. To improve the prediction, the redundant basis functions are
removed one at a time using the backward stepwise procedure, in the second
stage. MARS utilizes the generalized cross-validation (GVC), incorporat-
ing the criterion for finding the overall best model from a sequence of fitted
models, and is estimated by the lack-of-fit [29]:

GCV =
1

N

N∑
i=1

(
yi − f̂(Xi)

)2

[
1− C̃(M)

N

]2 , (10)

where

[
1− C̃(M)

N

]2
is a complexity function, and C̃(M) is defined as C̃(M) =

C(M) + dM , in which C(M) is the number of parameters to be fit and
smoothing parameter d is a user-defined cost for each basis function opti-
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mization. The higher the cost d is, the more basis functions will be elimi-
nated [28]. Finally, the third step to select the optimal MARS model, based
on an evaluation of the prediction characteristics of different fitted MARS
models.

2.3. BMARS modelling

Boosting has been widely-used for predictive modelling as it offers an
efficient, simple technique to manipulate additive modelling [19], that can
convert weak learners to potentially a strong learner, i.e. a classifier well-
correlated with the true classification. A succession of models can be built
iteratively from boosting. At this point, the examples are being trained and
re-weighted. Finally, each model or a weak classifier is weighted according to
its performance and combined with other weak classifiers using voting (for
classification) or averaging (for regression) to create a final model. The main
advantages of boosting are that it can use any classification algorithm as a
base learner, reduce model instability and have high predictive performance.
For this, the boosting algorithm, based on a multiplicative weight-update
technique [30], has been successfully applied to several benchmark machine
learning problems using supervised learning. Basically, a minimization al-
gorithm such as the least square (LS) can be used to boost for a strong
learner from combining multiple weak learners whereby a new classifier is
created based on the result of the previously generated classifiers by focusing
on misclassified samples. The algorithm increases the weights of incorrectly
classified samples and decreases the weights of those classified correctly. The
LS boosting problem can be formulated as follows. Let x denote the feature
vector and y the alignment accuracy. Given an input variable x, a response
variable y and some samples {yi, xi}Ni=1, the goal is to obtain an estimate or
approximation F̂ (x), of the function F ∗(x) mapping x to y, that minimizes
some specified loss function (L(y, F (x)) over the joint distribution of all (y, x)
values.

F ∗ = arg min
F
L(y, F (x)), (11)

where the squared error loss is given by L(y, F ) = (y−F )2/2 and the pseudo-
response is obtained as

ỹ = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

= yi − Fm−1(x), i = 1, 2, ..., N. (12)

9



Thus, for i = 1, 2, ..., N the minimization of the data based estimate of
the expected loss gives

(ρm, am) = arg min
a,ρ

N∑
i=1

[ỹi − ρh(xi; a)]2, (13)

where h(x; a) is the weak learner with basis functions {h(x, am)}Mm=1 and ρm
is the corresponding multiplier. The LS-boost algorithm [31], tuned to the
problem of vehicular emissions prediction, has been described in [11], using
Boosting Multivariate Adaptive Regression Splines (BMARS).

2.4. CART-BMARS hybrid modelling

Here, we propose to incorporate a regression tree with CART modelling
to the BMARS algorithm [11] for improving the performance of air pollu-
tion prediction. CART builds the regression trees for predicting continuous
dependent variables in the regression model. In this hybrid technique, the
data sets are first passed through CART to generate node information. The
training data together with node information are then supplied for training
the BMARS. A rationale for the integration of CART and BMARS is that
from a practical point of view, CART has the ability to handle missing values
in the database by substituting surrogate splitters which are back-up rules
to closely mimic the action of the primary splitting rule. This feature is not
shared by many artificial intelligence approaches [12]. A flowchart of the
proposed CART-BMARS hybrid model is shown in Fig. 3, wherein boosting
is adopted to improve estimation performance by adjusting the weights of
the classifiers.

2.5. ANN modelling

In order to verify merits of the CART-BMARS hybrid model, an ANN-
based model is constructed to compare their predictive capabilities. In the
present study, the multilayer feedforward neural network is trained by the
back-propagation network (BPN) algorithm to correctly classify the training
pair. Here, the Levenberg-Marquardt algorithm with a log-sigmoid activation
function is used to update the network weights due to its high generalization
capability. It is important to determine the optimum network architecture to
achieve reliable results. This task still relies on trial-and-error even though
several heuristic relations have been proposed to determine appropriately
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Figure 3: Flowchart of CART-BMARS hybrid model.

the number of neurons to be included in the hidden layer [32]. The archi-
tecture of the proposed ANNs is presented in Fig. 4, wherein the inputs are
vehicles’ speed, acceleration, load, power, and ambient temperature, and the
outputs include NOX , CO, CO2 and THC. Here, the Root Mean Square
Error (RMSE) is chosen as the loss function to be minimized, as RMSE pos-
sesses properties of convexity, symmetry, and differentiability for an excellent
metric in the context of optimization.
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Figure 4: Proposed ANN architecture

3. Vehicular emission information and statistical evaluation

This section presents the collection of vehicular emissions data and prepa-
ration of datasets as well as the statistical evaluation of the output parame-
ters.

3.1. Data collection

Vehicular emissions data used in this study were supplied by the Road
and Maritime Service (RMS) of the New South Wales (NSW) Department
of Vehicle Emission, Compliance Technology Operation. Ten (10) vehicles
were used for the test, whereby emissions data were collected on the second
by second basis. The test vehicles include Toyota, Mitsubishi, Holden, Ford
and Nissan from 2009 and 2010 models with an engine displacement ranging
from 1.8 L to 2.0 L. Emissions from these vehicles were recorded in two
ways, by using a chassis dynamometer set-up and using a Horiba On-Board
Measurement System (OBS-2000). Each drive cycle lasted for 556 seconds
with the corresponding measurement of 556 data points.

The laboratorial dynamometer set-up was coupled to drive lines con-
nected directly to the wheel hubs of the vehicle via a set of rollers upon
which the vehicle was placed. These rollers can be adjusted to simulate driv-
ing resistance. During testing, the vehicle was tied down so that it remained
stationary as a driver operated it according to a predetermined time-speed
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profile for a given gear change pattern displayed on a monitor. The vehi-
cle was considered as being driven to match the speed required at different
stages of the driving cycle since experienced drivers are able to closely match
an established speed profile.

The same vehicles were also tested with the Horiba On-Board Measure-
ment System (OBS-2000). The equipment was composed of two on-board gas
analysers, a laptop computer equipped with a data logger software, a power
supply unit, a tailpipe attachment, and other accessories. The OBS-2000
collected the emission data via a global positioning system (GPS). Although
the instrument measured other air pollutants, the focus of this paper was on
such gases as CO, CO2, THC and NOX emissions. For logging the correct
values of the measured emissions and other required parameters, the soft-
ware was configured to a set of values provided by the Horiba Instruments,
Inc. In addition, a delay in the logging attributed to the time it took to con-
vert the measured concentrations from the analog to digital output was also
accounted for by Horiba with appropriate adjustments in the data analysis
spreadsheets.

3.2. Preparation of training datasets

The same datasets used for CART-BMARS hybrid model analysis are
applied here for modelling and evaluating the prediction performance of the
ANN-based model. Training a neural network architecture can be seen as
a nonlinear optimization problem in which the task is to find out the set of
parameters, i.e. synaptic weights, such that the network output is as close as
to the desired output. Notably, the 556 values in the experimental dataset
obtained were subject to a secondary emission correction by NSW RMS.
Previous studies have shown that different ratios for training and testing
data were required [33]. In the present study, 70% (390) of total experimental
data was randomly selected for training the neural network, 15% (83) for the
network cross-validation to avoid over-fitting, and the remaining 15% (83) of
the data for testing the performance of the trained network. The data were
first normalized as

RN =
RA −Rmin

Rmax −Rmin

, (14)

where RA is the actual value, Rmin and Rmax are the minimum and maximum
values of R, and RN is the normalized value of R obtained within the range
from 0 to 1.
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3.3. Statistical evaluation of output parameters

After normalization, data were randomized and the ANN was trained
and tested against the experimental data of vehicular emissions. In order to
evaluate the prediction performance of the proposed ANN model, we have
considered the R-squared, or correlation coefficient of determination (R2) as
a validation criterion:

R2 = 1−


N∑
i=1

(ti − yi)2

N∑
i=1

(yi)2

 . (15)

The performance of the ANN-based predictions is evaluated by regression
analysis of the predicted outputs and the target outputs. The correlation co-
efficient R2 is used to assess the strength of this relationship, of which values
closer to + 1 indicate a stronger positive linear relationship. Discrepancies
between the predicted outputs (y) and the target outputs (t) are judged by
the root mean squared error (RMSE):

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ti)2, (16)

where N is the number of the data used for validation, t is actual output and
y is the predicted output value.

4. Results and discussions

Based on the experimental data from the on-board system (OBS) and
dynamometer (DYN) testing, the proposed CART-BMARS hybrid model
is implemented for emissions prediction, where speed, acceleration, power,
load and ambient temperature are used as predictors with different air pol-
lutant emissions such as NOX , CO, CO2 and THC emissions. The results of
the hybrid model computed using all the available data for on-board and dy-
namometer testing appear to have similar interpretations. It can be observed
that all the five predictor variables play crucial roles in predicting the vehicle
emissions by using all mentioned models. However, an analysis of variance
(ANOVA) from the MARS model indicated that the two most important
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variables were load and speed with acceleration, power and ambient temper-
ature having less effects to emissions. To ensure a fair comparison, each time,
the same training and test datasets were used for each model. The LS-boost
algorithm for regressions with squared error loss is implemented in this pa-
per. In the following, predictive performance of the models are compared
in two perspectives. First, three learning techniques, namely CART, MARS
and BMARS, are compared with the hybrid one to examine the best perfor-
mance for emissions prediction. Then, a comprehensive analysis is conducted
to demonstrate the predictive performance of the proposed CART-BMARS
model against the ANNs one.

4.1. Comparison of CART-BMARS with BMARS, MARS and CART

Table 1 and Table 2 list respectively the RMSE and R-squared of the pro-
posed CART-BMARS hybrid model in comparison with CART, MARS and
BMARS models in terms of such pollutants as NOX , CO, CO2 and THC for
both on-board system (OBS) and dynamometer testing (DYN). By analyz-
ing the results in these tables, we can see that hybrid and BMARS models
have smaller RMSE as compared to CART and MARS ones. Combining
CART and MARS with boosting techniques as the hybrid model makes the
algorithm relatively insensitive to the number of iterations, and their R2 and
RMSE values remain within a relatively stable range. Because both algo-
rithms are forward additive, they can adaptively search for optimal results
during the modelling process; this makes the model stable throughout the
iteration range. Here, boosting turns the weaker classifier in the emission
predicted variables into stronger classifier [19] and then builds many comple-
ment classifiers in order to find a highly accurate classifier on the training

Table 1: Comparison of HYBRID, BMARS, MARS and CART model (RMSE).

Model HYBRID (RMSE) BMARS (RMSE) MARS (RMSE) CART (RMSE)
NOX-OBS 1.001× 10−4 3.367× 10−4 4.243× 10−4 4.244× 10−4

NOX-DYN 2.478× 10−4 3.411× 10−4 4.652× 10−4 5.276× 10−4

CO-OBS 1.041× 10−4 2.945× 10−4 3.872× 10−4 4.145× 10−4

CO-DYN 2.143× 10−4 3.254× 10−4 5.276× 10−4 6.243× 10−4

CO2-OBS 1.214× 10−4 2.845× 10−4 3.992× 10−4 4.249× 10−4

CO2-DYN 2.478× 10−4 3.214× 10−4 4.652× 10−4 4.356× 10−4

THC-OBS 1.015× 10−4 2.946× 10−4 3.978× 10−4 3.284× 10−4

THC-DYN 2.784× 10−4 4.002× 10−4 5.115× 10−4 5.013× 10−4
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Table 2: Comparison of HYBRID, BMARS, MARS and CART model (R2).

Model HYBRID (R2) BMARS (R2) MARS (R2) CART (R2)
NOX-OBS 0.951 0.739 0.624 0.624
NOX-DYN 0.818 0.706 0.593 0.504
CO-OBS 0.962 0.757 0.656 0.608
CO-DYN 0.881 0.723 0.504 0.476
CO2-OBS 0.906 0.774 0.642 0.623
CO2-DYN 0.854 0.656 0.608 0.608
THC-OBS 0.907 0.757 0.672 0.656
THC-DYN 0.809 0.608 0.518 0.534

set by ensembling the weak hypotheses. The outcome of the proposed model
is a higher R2 value and lower RMSE. The selection of the generalized cross-
validation GCV criterion in both models tends to be sensitive and can overfit
the model. Obviously, these relatively poor selections will degrade the model
results in CART or MARS models, so the results are unstable with a lower
accuracy [29]. This suggests the robustness of the hybrid algorithm and its
capability of improving accuracy of the MARS model in vehicular emissions
prediction.

In general, boosting can improve the prediction accuracy of a particular
learning model. As can be seen, the performance of CART-BMARS hybrid
and BMARS is better than that of CART or MARS alone. Comprehensive
analysis shows that, combining CART with BMARS to form a hybrid model
is superior to a non-boosting strategy, or a strategy without a regression
tree. Furthermore, this proves that the hybrid model strategy used in this
paper has effectively improved the prediction accuracy and generalization
ability of the emission models. From Tables 1 and 2, it can be observed that
the hybrid model for all pollutants NOX , CO, CO2 and THC using both
DYN and OBS systems outperformed the BMARS in terms of goodness of
fit and prediction accuracy. The hybrid model also takes the advantage of
BMARS in its capability of handling non-linearity in the data. However, since
boosting is sensitive to noise within data, its performance may be affected
in the presence of noise, depending on the boosting method used. While
the MARS have a potential problem of over-fitting the model and hence,
subject to computational complexity, the CART-BMARS hybrid model can
effectively handle the corresponding noise interval and the missing values
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within the database at every step. Thus, the proposed technique is able
to adequately solve the problem of boosting’s sensitivity to data noise and
ultimately improve the prediction performance of the emissions model. This
explains why its prediction performance is better than BMARS.

4.2. Comparison of CART-BMARS with ANNs

In this work, we use the BPN which is adequate for predicting vehicular
emissions. The accuracy of neural network prediction is generally dependent
on the number of hidden layers and the numbers of neurons in each layer. To
find out the suitable architecture, a number of neural network architectures
have been tested by varying the number of hidden neurons from 2 to 15 with
5 inputs (speed, acceleration, load, power and ambient temperature) and 1
output respectively for each pollutant (NOX , CO, CO2 and THC).

Table 3: ANNs architecture and prediction accuracy.

Model Hidden layer neuron number RMSE
ANN-NOX-OBS 11 2.244× 10−4

ANN-NOX-DYN 12 3.921× 10−4

ANN-CO-OBS 8 2.278× 10−4

ANN-CO-DYN 10 3.651× 10−4

ANN-CO2-OBS 9 2.375× 10−4

ANN-CO2-DYN 13 2.952× 10−4

ANN-THC-OBS 7 2.662× 10−4

ANN-THC-DYN 14 2.978× 10−4

The results are listed in Table 3, showing the air pollutant models, the
number of hidden neurons correspondingly, and the accuracy in terms of
RMSE. The remaining data, set aside for testing and validation purposes,
were then used to check the predictive capabilities of the trained model.
Comparison of the output obtained by the ANNs and the target values of
the experimental data are shown in regression plots of Figs. 5 and 6 for
all four air pollutants with on-board and dynamometer testing systems. As
observed from the graphs, a high correlation between the predicted and the
experimental values demonstrates that the model succeeded in predicting
major emissions from vehicles. The regression plots yield high R2 values
closer to 1 for both on-board and dynamometer tests, indicating that ANNs
are a useful method for prediction of vehicular emissions.

17



(a) NOX on-board (b) NOX dynamometer

(c) CO on-board (d) CO dynamometer

Figure 5: Regression plots corresponding to the designed ANNs model.
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(a) CO2 on-board (b) CO2 dynamometer

(c) THC on-board (d) THC dyanmometer

Figure 6: Regression plots corresponding to the designed ANNs model

The performance of the proposed CART-BMARS and ANNs models were
compared with the experimental dataset, as shown in Figs. 7 and 8, respec-
tively for NOX , CO, CO2 and THC. As observed, the results obtained show
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Table 4: Performance Comparison between Hybrid and ANNs models

Model Processing Time (s) R2

Hybrid-NOX-OBS 6 0.951
Hybrid-NOX-DYN 8 0.817
ANN-NOX-OBS 22 0.814
ANN-NOX-DYN 23 0.659
Hybrid-CO-OBS 7 0.962
Hybrid-CO-DYN 9 0.879
ANN-CO-OBS 19 0.859
ANN-CO-DYN 20 0.701
Hybrid-CO2-OBS 7 0.904
Hybrid-CO2-DYN 9 0.854
ANN-CO2-OBS 21 0.843
ANN-CO2-DYN 24 0.783
Hybrid-THC-OBS 7 0.906
Hybrid-THC-DYN 10 0.808
ANN-THC-OBS 23 0.803
ANN-THC-DYN 25 0.767

excellent performance indices for both CART-BMARS hybrid and ANNs
models and are also in agreement with other researchers using the same
methodology for different applications ([34], [35]).

The models’ performance and the efficiency features are listed in Table
4 for comparison of CART-MARS and ANNs merits. The results therein
together with those in Table 1 and Table 3 confirm the advantages of the
CART-BMARS hybrid model method for all pollutant emissions considered.
In addition, it appears to be faster than ANNs as the processing speed (CPU
time) remains smaller for all cases, as shown in Table 4. Another distinctive
aspect is that it can identify the contribution of each variable to the emis-
sions prediction through the analysis of variance (ANOVA) decomposition.
The model output is expressed in a more interpretable way in the form of
“segmented” defined on different intervals and may provide additional infor-
mation about how changes in the input data can affect the output.
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(a) NOX on-board (b) NOX dynamometer

(c) CO on-board (d) CO dynamometer

Figure 7: Comparison of Hybrid and ANNs models with experimental data for
NOX and CO emissions.
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(a) CO2 on-board (b) CO2 dynamometer

(c) THC on-board (d) THC dynamometer

Figure 8: Comparison of Hybrid and ANNs with experimental data for CO2 and
THC emissions.
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(a) On-board (b) Dynamometer

Figure 9: Performance evaluation of Hybrid and ANN models.

The effectiveness of the combination of CART and BMARS as a hybrid
method for vehicular emissions can be explained as (i) the proposed hybrid
model is computationally more efficient owing to the capability of dividing
the predictors space into multiple knots and then fitting a spline function
between them, and hence, requiring less trial and error as compared to the
ANNs model, and (ii) the CART-BMARS technique allows for effectively
removing data noise and reducing the sensitivity of boosting to noise in the
emissions data, while the final number of basis functions can be determined
form a preset maximum value. The performance of the proposed method in
comparison against the ANNs model is further evaluated in terms of RMSE,
as shown in Fig. 9. Therein, the hybrid model RMSE (in blue) reduces
gradually and gets closer to the validation data (in green) unlike that of
the ANNs model (in red) for both the on-board and dynamometer testing
systems. These results suggest that the CART-BMARS hybrid model can
constitute a valuable alternative for predicting vehicular emissions.

5. Conclusion

In this paper, a CART-BMARS hybrid method has been proposed to es-
timate the nonlinear relationship between vehicular pollutant emissions and
predictor variables such as speed, acceleration, load, power and ambient tem-
perature as predictor variables. The hybrid model is implemented with effec-
tive piecewise-linear BFs which effectively solve the problem of non-linearity
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and uncertainty in the emissions data and improve the prediction accuracy
of the model. The new hybrid model is developed to overcome the shortcom-
ings of MARS and BMARS models, effectively improving the performance
the emissions model. The proposed hybrid algorithm is then compared with
a multilayer BPN trained and tested by the Levenberg-Marquardt optimiza-
tion algorithm. It can be observed that among all techniques mentioned,
the proposed CART-BMARS hybrid model exhibits excellent prediction per-
formance for all pollutant emissions using both on-board and dynamometer
testing systems.
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