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ABSTRACT 

This study identifies the importance of the phosphate moiety and H3O
+ in controlling the ionic 

flux through phospholipid membranes. We show that despite increasing the H3O
+ 

concentration when lowering the pH, the ionic conduction through phospholipid bilayers is 

reduced. Through modifying the lipid structure we show the dominant determinant of 

membrane conduction is hydrogen bonds between the phosphate oxygens on adjacent 

phospholipids. The modulation of conduction with pH is proposed to arise from the varying 

H3O
+ concentrations altering the molecular area per lipid and modifying the geometry of 

conductive defects already present in the membrane. Given the geometrical constraints that 

control the lipid phase structure of membranes, these area changes predict that organisms 

evolving in environments of different pH will select for different phospholipid chain lengths, 

such as is found for organisms near highly acidic volcanic vents (short chains) or in highly 

alkaline salt lakes (long chains). The stabilizing effect of the hydration shells around phosphate 

groups also accounts for the prevalence of phospholipids across biology. Measurement of ion 

permeation through lipid bilayers was made tractable using sparsely tethered bilayer lipid 

membranes (tBLMs) with swept frequency electrical impedance spectroscopy (EIS) and 

ramped DC amperometry. Additional evidence for the effect of pH change on lipid packing 

density is obtained from neutron reflectometry data of tethered membranes containing 

perdeuterated lipids.  
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INTRODUCTION 

In the study of the effects on membrane permeability of both ion channel proteins and peptides 

it is important to identify all factors that impact the membrane conductivity. The objective of 

the present study is to characterise one of the major variables determining membrane structure, 

namely the hydrogen bond strength within and between lipid molecules within the membrane. 

A key variable in hydrogen bond strength is the pH of the bathing solution. Despite the fact 

that the concentration of the hydronium ion being three to four orders of magnitude lower than 

that of others ions (mainly Na+ and Cl-) in the bulk electrolyte solutions, its small size and high 

electric field gradients can result in it being a dominant factor in membrane integrity. To date, 

to the best of our knowledge, the impact of pH on membrane conduction remains unreported. 

In this study we report the dependence of membrane conduction on pH in the range 5 -9 log 

units. We relate changes in membrane conduction to structural features underlying membrane 

morphology. 

The structures formed by aqueous dispersions of lipids are determined by the balance of forces 

within the hydrophobic, hydrophilic and interfacial zones of lipid-water aggregates. For a fluid 

Lα lipid lamellar structure this balance of forces has been described in terms of the hydrated 

molecular area (ao), the lipid leaflet thickness (l) and hydrated lipid molecular volume (v) 1. 

The measure v/(aol) is a qualitative guide to the lipid phases formed by surfactants. The 

structures formed for v/(aol) ~1 are lamella bilayers, for v/(aol) ~ 1/3 the structures formed are 

micelles, for v/(aol) ~ 1/2 cylindrical tubes, and for v/(aol) > 1 a variety of inverted phases 2-3. 

In maintaining an appropriate v/(aol) close to unity for lipid bilayers, the area per phospholipid 

and the resultant membrane thickness will dictate the conformation of all other membrane 

associated proteins and their physiological functions. This balance is dependent on 

contributions from both the hydrophobic and hydrophilic components of the membrane and is 

significantly dependent on the hydration shells surrounding the polar head groups.  

The role of hydrogen bonding in determining the balance of forces is evident in all aqueous 

surfactant assemblies. Increasing the hydrogen ion concentration through lowering the pH is 

known to cause a decrease in the critical micelle concentration (CMC) of sodium dodecyl 

sulphate (SDS) 4. Rupert et al (1998) reported significant changes in vesicle fusion and head 

group clustering for didodecyl phosphate (DDP) vesicles around the effective pKa of 5.2 5. 

They interpret these effects as arising from protonation of the non-ester phosphate of the DDP. 

Siegal et al (1989) have also shown that lowering the pH of a DOPE dispersion caused a phase 

transition from the Lα lamellar phase to the Hexagonal II inverted phase (HII) 
6. This is 

consistent with a reduction in the area of the hydrated polar group driving the Lα phase into the 

highly curved inverted HII lipid phase.  

 The major impediment to the passage of ions across lipid membranes is the hydrophobic, low 

dielectric constant membrane core of the lipid chains. This is a consequence of the high Born 

energy required to cause an ion to partition into the hydrophobic interior of a lipid bilayer.7 
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That there is a source of the background ionic current despite this high energy cost, has been 

suggested to arise from sparse and fluctuating “defects” in the bilayer morphology in which 

hydrophilic pores traverse the non-polar core of the membrane.8 The incidence of such defects 

in homogenous fluid phase lipid bilayers will depend on the lipid molecular geometry. The 

inter-relationship of lipid dimensions, v/(aol), indicates that longer chain lipids with smaller 

areas per molecule will tend to possess fewer pores than short chain lipids with large areas per 

molecule. This is a consequence of the curvature energy required to form a highly curved 

toroidal pore traversing the membrane from the inner and to the outer leaflets of the bilayer. 

The lifetime of toroidal pores is discussed by Karatekin et al (2003).9 They address the rupture 

and sealing of liposomes by modelling a balance between the surface pressure arising from 

intense optical illumination balanced by the line tension of a toroidal pore. The steric 

contribution, a consequence of the geometrical constraints embodied in v/(aol), is termed by 

these authors as the curvature, co . For planar membranes co = 0. For membranes possessing 

positive curvature co > 0 and for negative curvature co < 0. This term is then added or subtracted 

from the line tension permitting a calculation of the pore lifetime.  

The measurement of ionic permeability through lipid bilayer membranes is experimentally 

challenging. Patch clamp electrophysiology measures are typically performed on 1 µm 

diameter membrane patches which, at 1 MΩ cm2 membrane leakage, would require 

conductance measures to be performed at impedances of greater than 105 GΩ, far in excess of 

the typically measured values of 1 - 10 GΩ. This suggests the intrinsic membrane conduction 

in patch clamp experiments is dominated by mechanisms other than the intrinsic membrane 

resistance 10. Solvent-based black lipid membranes (BLMs) suffer not only from high 

background resistances due to their small areas, but also from the residual solvent in free 

exchange with the membrane plateau border.11-12 Further approaches to measuring the intrinsic 

membrane conduction includes liposomal release assays, which at best, are limited to 

qualitative measures of conduction due to the uncertainty in the liposome stability. Monolayer 

techniques performed at the interface between two immiscible electrolyte solutions (ITIES) 13 

or measurements employing Langmuir films report on the interfacial properties, but by 

definition, are unable to describe bilayer permeability or conduction.  

The use of electrical impedance spectroscopy (EIS) and ramped direct current amperometry to 

determine the conduction and capacitance of lipid bilayers provides a unique approach to 

quantifying ionic permeability. In the present study the conductance of tethered bilayer lipid 

membranes (tBLMs) is measured in the presence of a range of pH values from 5.0 – 9.0 log 

units.  

In summary we show that decreased pH (increased H3O
+ concentration) reduces the intrinsic 

membrane conduction by an order of magnitude (pH 9 to pH 5) and significantly decreases 

water penetration into the membrane. These effects are interpreted as arising from an increase 

in the hydrogen bond stability caused by neighbouring H3O
+ ions. This interpretation suggests 

that changes in pH will affect the intrinsic conduction of all phospholid membranes. Further 
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data based on neutron reflectometry measures, report on the associated changes in membrane 

geometry. 

MATERIALS AND METHODS 

Tethered bilayer lipid membranes  

Using the solvent exchange technique,14 tBLMs with 10% tethering lipids and 90% spacer 

lipids (T10 tBLM) were formed. The procedure involves using 2.1 mm2 pre-prepared tethered 

benzyl-disulfide (tetra-ethyleneglycol)n=2 C20-phytanyl tethers (DLP) : benzyl-disulfide-tetra-

ethyleneglycol-OH spacers in the ratio of 1:9 coated onto 2 mm2 patterned, 100 nm thick fresh 

5N5 gold surfaces sputter coated onto a polycarbonate slide  (SDx Tethered Membranes Pty 

Ltd, Australia) 15. The ratio of tethering molecules to spacer molecules (eg 1:9) is termed here 

as T10. Similarly, ratios of 1:99 and 0:100 are termed T1 and T100 respectively. Following air 

drying of this tethered monolayer, 8 μL of a 3 mM solution of a mobile lipid phase dissolved 

in ethanol is added to a 0.1 mm high, 1µL volume flow cell chamber, and, after a 2 minute 

incubation, is washed 3 times with 2 x 200 μL of 100 mM NaCl. Mobile lipid phases 

investigated were: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) (Avanti Lipids, 

USA); 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) (Avanti Lipids USA; 100% 

diphytanyl-glycero-phosphatidylcholine (DPEPC) (SDx Tethered Membranes Pty Ltd, 

Australia) (See Fig 2A). As a non-phosphate fully tethered lipid control, tBLMs were prepared 

employing the fully tethered membrane spanning lipid terminated with an OH group  

(MSLOH) previously described 16 (SDx Tethered Membranes Pty Ltd, Australia). Diagrams of 

the tethering chemistries are provided in Figure S1 of the Supplementary Material.  

The pH of the 100mM NaCl solutions was adjusted by the addition of concentrated HCl or 

NaOH to create stock solutions of pH ~ 5.0, pH ~ 7.0 and pH ~ 9.0. Each of these solutions 

was kept in an air-tight container prior to use, and used in within 5 min to minimise any 

subsequent acidification due to atmospheric CO2. The pH of the stock solutions was regularly 

monitored.  

Gramicidin containing membranes were formed as described previously.15 Briefly, 100 nM of 

Gramicidin-A (BioAustralis Pty Ltd, Australia) was included in the 3mM mobile phase lipid 

from which the tBLM was formed. Covalently linked bis-gramicidin tBLMs were synthesized 

as described previously 17. 

AC impedance spectroscopy measures were performed using an SDx tethaPod™ operated with 

SDx tethaQuick™ software (SDx Tethered Membranes Pty Ltd).  Swept frequency impedance 

spectrometry was employed using a 50 mV peak-to-peak AC excitation at 0.1, 0.2, 0.5, 1, 2, 5, 

40, 100, 200, 500, and 1000 Hz and zero bias potential. The data were fitted to a Constant 

Phase Element in series with an Resistor/Capacitor network 15 using a proprietary adaptation 

of a Lev Mar fitting routine. This model provided excellent agreement with the data. The use 

of more complex equivalent circuits16, 18 to model the defect distribution upon which the 
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membrane conduction is based was considered to be beyond the scope of the present study. 

Examples of Bode plots are given in Figure S2 and the equivalent circuit in Figure S3 of the 

Supplementary Material.  

DC ramped amperometry measures were performed an eDAQ ER466 Potentiostat.14 Ramps of 

100 V sec-1 from 0 to 500 mV over 5 ms were applied to T1, T10 and T100 DPEPC tBLMs 

and to T100 MSLOH tBLMs at pH 5, 7 and 9. The initial current step provides an estimate of 

the membrane capacitance and the following slope an estimate of the membrane conduction 

and the onset of additional voltage dependent changes in the membrane conduction. 

Neutron Reflectometry (NR) and Data Fitting 

The NR data was collected on the PLATYPUS time-of-flight instrument19 located at the 20 

MW OPAL research reactor (Australian Nuclear Science and Technology Organisation 

(ANSTO), Sydney, Australia). PLATYPUS is located on a cold neutron guide and as such is 

supplied with a neutron bandwidth ranging from 2.5 – 18.0 Å with the cut-off being determined 

by the instrument disc choppers. The Q resolution of the experiment was set at ΔQ/Q of 3.3 % 

where Q, the scattering vector is defined as 

 Q = (4π sinθ) / λ 

where θ is the scattering angle and λ is the wavelength of the incident radiation. Incident angles 

of 0.5, 0.85 and 3.8° were used with the data spliced together after normalisation to the direct 

beam and background subtraction to produce a single absolutely scaled reflectivity dataset over 

a Q range of 0.006 to 0.25 Å-1 using the SLIM reduction package.20 

Tethered bilayers were formed on 50 mm diameter, 7mm thick, conductive silicon disks that 

had been coated with chromium then gold at the Melbourne Centre for Nanotechnology. Half 

membrane spanning T100 tBLMs comprising an inner monolayer of tethered hydrogenated 

DLP and a perdeuterated DPEPC outer monolayer.21 Coated disks were clamped to a bespoke 

perfusion chamber for assembly and measurement at the PLATYPUS sample position.  

The hydrogenated and deuterated lipid tails were employed to give neutron contrast between 

the two leaflets. Further contrast was provided by bathing solutions of 100 mM NaCl in either 

D2O, H2O or a HDO mixtures that nominally matched the gold layer. Because of the necessity 

for measures over extended time periods (~3 hours) the effects arising from dissolved CO2 

causing a drop in pH, 100 mM buffer solutions were employed. For pH 5 acetate buffer was 

used which was adjusted to the final pH using glacial acetic acid; for pH 7 phosphate buffer 

was used, and for pH 9 [(cyclohexylamino)ethane sulfonic acid] CHES buffer was used, and 

both were adjusted to their designated pH value using a NaOH solution. The difference between 

pH and pD was taken into account when preparing D2O-containing buffers and adjusted 

accordingly so that they were equivalent.    
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The absolutely scaled data sets were modelled using RasCAL (version 1, A. Hughes, ISIS 

Spallation Neutron Source, Rutherford Appleton Laboratory) operating within the MATLAB 

environment. RasCAL uses the standard optical matrix approach of Abeles22 to calculate the 

reflectivity. The data modelling was carried out assuming that the interface was composed of 

a series of parallel layers where the model parameters fitted to the data were scattering length 

density (SLD), layer thickness and interfacial roughness. Data were simultaneously fitted 

whereby the structural parameters of the layers were constrained to be equivalent but the SLD 

allowed to vary with buffer contrast. The SLD for silicon was constrained to 2.07 ×10-6 Å-2. 

The SLD of the D2O buffer solution was fitted based upon the position of the critical edge in 

the datasets. The final data fits were then assessed via a Markov Chain Monte Carlo resampling 

method. In this procedure the fitting stating points are randomised and the data fitting repeated 

40,000 times The output from these fits are histogrammed for each parameter with the midpoint 

taken as the parameter value and the 95% confidence level determined from the distribution. 

In order to maximise the observable effects of pH change on the membrane lipid geometry, a 

fully tethered hydrogenated inner monolayer membrane leaflet and a mobile deuterated outer 

membrane leaflet was employed. Outer tail thickness and hydration, and headgroup hydration 

were permitted to vary for a layer model.   

RESULTS 

Tether density 

Figures 1A-C show the effect of pH values of 5, 7 and 9 on the EIS derived conduction values 

obtained from a phytanyl ether phosphatidyl choline (DPEPC). Tether densities ranged from 1 

tether to 99 mobile lipids (1% tethered) to 10 per 90 (10% tethered) to a tBLM in which the 

inner monolayer was fully tethered and the outer monolayer was mobile (100% tethered). 

Figure 1D shows similar EIS derived conduction data obtained from MSLOH tBLMs, a full 

membrane spanning non-phosphate containing control.  Figures 1E-H show current voltage 

curves (I-V) measures on the same samples using DC ramped amperommetry. DC ramped 

amperommetry provides a measure of the voltage dependent changes in conduction for each 

membrane configuration. It is evident that the overall membrane conduction increases with 

increasing pH in all cases. In addition, as the pH is raised the membrane conduction becomes 

more sensitive to the voltage ramp. However, with the increase in tethering density both the 

pH dependence and the voltage dependencies are reduced. In the extreme case of a fully 

tethered membrane spanning MSLOH, tBLM, the membrane conduction is effectively 

unaltered by pH or the voltage ramp. In Figures 1E-H, the electroporative responses to a 5 ms 

linear ramp 0 - 500 mV, the initial step reports on the capacitance of the tBLM and the 

subsequent slope reports on the membrane conduction. A steeper slope reflects a greater 

conduction. The non-linearity in slope seen at higher voltages14, 23 reflect an increase in 

conduction. Smith et al (1984)24 using free standing lipid bilayers, and later Valincius et al 

(2008)25 using sparsely tethered tBLMs, interpret the low activation energy observed for the 
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intrinsic membrane conduction as ruling out electric field induced channel formation as the 

mechanism for the induced changes in conduction. Thus, we propose that the non-linear current 

increases observed here arise, not from the creation of new pores, but from the modulation of 

existing pores. It is significant that with reduced tethering density the effects of electroporative 

responses are seen at progressively lower voltages. In particular the voltage dependent 

background conduction rises steeply as the tether density is lowered below 10% tethers. This 

is consistent with the dimension required to form a membrane spanning pore between the 

membrane tethers. These results support the now generally accepted notion that toroidal pores 

provide the primary mechanism for ionic transport across lipid bilayers.    

Lipid class 

The effect of pH on the membrane conduction for bilayers formed from, POPC, DPEPC, EPC 

and MSLOH is shown in Figure 2. The number of potential interfacial hydrogen bonding sites 

is systematically varied across this family of tBLMs. POPC possesses four types of hydrogen 

bonding identified in the figure and suffers the largest change (X245) in conduction between 

pH 5 and pH 9 (Figure 2C). DPEPC has the carbonyl sites replaced by the non-hydrogen 

bonding ethers which results in an intermediate change in conduction (X8.4) between pH 5 and 

pH 9, and EPC has the non-ester phosphate oxygen-hydrogen bonding site blocked by a ethyl 

group has a small change in the conduction ratio between pH 5 and pH 9 (X2.9). The MSLOH 

is a hydroxyl terminated membrane spanning lipid with the potential for only a single hydrogen 

bond at the outer surface of the tBLM interface with the bulk solvent. This resulted in the 

smallest change in the conduction ratio between pH 5 and pH 9 (X1.3). Relatively little 

variation was observed for the membrane capacitance, however, as also seen in Figure 2C, the 

same trend occurs for the change in capacitance as occurred for conduction across the four lipid 

types.  

pH dependence of the reservoir space 

Krishna et al (2003)16 and Cornell et al (1997)26 have identified conditions under which the 

apparent membrane conduction is largely determined by the properties of the reservoir space 

between the membrane and the supporting electrode. However, as described in Krishna et al 

(1997), provided all-ether chemistries are employed in the fabrication of the tethers these 

effects are essentially eliminated. In addition, by contrast to these earlier studies, the present 

report focuses on the pH dependence of membrane conduction rather than the ionic species 

dependence of membrane conduction. Were the pH dependence of conduction primarily arising 

from the properties of the reservoir space between the tBLM and the tethering gold electrode, 

the observed effects would be independent of the presence of an ion channel, or of variations 

in the lipid class employed to form the tBLM. In Figure 3 we show the pH dependence of 

conduction for diphytanyl PC tBLMs with and without a covalently linked dimer analogue of 

the bacterial ion channel gramicidin-A. The concentration of the ion channel employed here is 

such that the conduction has increased by an amount in excess of two orders of magnitude. As 
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seen in Figure 3A, the pH dependence is less than two-fold when the pH is adjusted from 5 to 

9. This is to be compared with the seven-fold change in conduction over the same pH range 

when employing a diphytanyl PC tBLM (Figure 3B), and in excess of a 200-fold change when 

employing POPC membrane lipids. Furthermore, the reduction of the pH dependence of 

conduction to less than a two-fold variation over this pH range is consistent with the reported 

pH dependence of the intrinsic cesium conduction of gramicidin-A channels within diphytanyl 

PC bilayers.27 These data argue against a pH dependence of the conduction of the reservoir 

space as the primary source of conduction variation observed in the current studies. To quantify 

in detail any residual reservoir effects would require insertion of  an ion channel with even 

smaller pH dependent conductance. 

The effect of pH on the conduction of monomeric gramicidin-A channels is shown in Figure 

3C. Unlike the case of the covalently linked gramicidin dimer, the membrane conduction will 

now depend upon membrane thickness as has been reported by Mobashery et al (1997).28 The 

conduction caused by monomeric Gramicidin-A within lipid bilayers arises from the 

gramicidin monomers aligning within each membrane leaflet to form a conducting dimer.29 

Increasing the H3O
+concentration from pH 9 to pH 5 caused a 2.7 fold decrease in the 

gramicidin-A induced conduction. The greater pH dependence seen here compared to that for 

the covalently linked gramicidin dimer (Figure 3A) is interpreted as arising from a modulation 

of the dimer lifetime. The proposed reduction in the area per molecule on reducing the pH from 

9 to 5 is further suggested to cause a consequent thickening of the membrane, leading to a 

reduction in the monomer to dimer on-rate due to a weakening of the hydrogen bonds between 

the gramicidin-A monomers.28 In addition, thickening the membrane will increase the dimer to 

monomer off-rate of the channel. The relatively high concentration of gramicidin-A employed 

here will minimise these effects, however, it is evident that lowering the pH still induces a 

significant additional conduction decrease beyond the intrinsic pH dependence of gramicidin 

conduction.  

Neutron Reflectometry  

In order to further explore the effect of pH on the geometry of lipid bilayers, neutron 

reflectometry measures were acquired using a tBLM comprising a fully hydrogenated inner 

leaflet and a fully deuterated outer leaflet. These measures were obtained for aqueous bathing 

solutions comprising various ratios of HDO. The results are presented as the one-

dimensional SLD plot for solutions at pH 5, 7 and 9 for three HDO ratios (Figure 4A).  

Figure 4B shows the outer tail thickness. As pH is reduced from 9 to 5, the outer leaflet tail 

thickness is increased by ~4%. Associated with this area thickening of the outer layer leaflet 

tails is an increase in the lipid volume fraction of 0.95 at pH 5 from 0.89 at pH 9 (Figure 

4C). In addition, the volume fraction of the outer layer leaflet head groups show an even 

more dramatic dependence on pH ranging from ~0.87 at pH 5 to ~0.59 at pH 9 (Figure 4D 

and Table S1 in Supplementary Material). At pH = 9 the outer head group volume fraction 

was essentially indeterminate.   
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DISCUSSION 

Relative ionic impact of H3O
+ 

At pH 5 the 55 M concentration of water and the 100 mM Na+ concentration greatly exceed 

the 10 µM H3O
+ concentration. However, the biological significance of pH arises from the 

smaller dimensions of the H3O
+ resulting in higher field strengths, and thus more potent non-

covalent interactions. Kotyńska and Figaszewski (2005) have reported the electrophoretic 

measures of monovalent cations across liposomal surfaces of phosphatidylcholine.30 From 

these measures they derive the binding density of Na+ at the membrane surface for a pH 

range from 0-11. Over the range of pH 6 – 8 they observe a shift in the sodium ion ‘degree 

of coverage’ from essentially zero to approaching 90%, respectively, indicating a dominant 

contribution by the H3O
+ ions to the Na+ distribution. These observations are consistent with 

the results reported here in which the H3O
+ concentration also dominates the membrane 

conduction. The change in the surface Na+ concentration, as a result of pH changes, may 

well contribute to morphological changes in the membrane resulting in variations in 

membrane conduction. Others have proposed, based on molecular dynamics modelling, that 

the distribution of Na+ and K+ at the membrane surface are very different.31 It is suggested 

that the Na+ is located adjacent to the PO4
- groups whereas K+ is excluded from the lipid 

interface. Our conduction results fail to show any significant difference between Na+ and K+ 

at 100 mM despite a similar pH dependence (data not shown). This suggests that the H3O
+ 

ions have the dominant effect on conduction.  

Area per lipid 

In the major biological phospholipid families, the fluid Lα phase area per lipid molecule is in 

the range of 65 ~75 Ǻ2 .32 Lewis and Engelman (1983) report that for lipid chains from C10 – 

C24:1 the area per molecule (ao) was 68 ± 2 Ǻ2 and the lipid bilayer thickness (l) was proportional 

to acyl chain length.33 In the crystalline Lβ phase the area per lipid molecule is typically in the 

range of ~50 Ǻ2 and dominated by the inter-chain packing 34. Paresgian et al (1979) have 

shown, for the fluid phase, that below ~68 Ǻ2 a significant increase in energy is required to 

further reduce the hydrated molecular area.35 Pasenkiewicz-Gierula et al. (1997) report a 

molecular dynamics simulation of the hydrogen bonding of water to phosphatidylcholine lipids 
36. From their simulation the radial distribution function for the non-ester oxygens bound to the 

phosphate are within 0.3 % as that for liquid water.37 Collectively, these reports indicate that 

the area per lipid in a fluid phospholipid bilayer is dominated by the hydrated lipid headgroup.  

Hydration shells 

Pasenkiewicz-Gierula et al. (1997) identify the dominant hydrogen bonding pattern for the 

water populations surrounding the PC headgroup as water molecules directly hydrogen-bonded 

to the non-ester oxygens of the phosphate group.38 A further population of associated water 

molecules, not hydrogen bonded to the lipids, are identified as being consistent with transient 
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clathrate cages surrounding the choline group. Lopez et al (2004) have extended the 

Pasenkiewicz-Gierula et al (1997) study and include the extended lifetimes of both the 

hydrogen bonding and diffusional jumps associated with water in the lipid hydration shells 39. 

These molecular dynamic simulations closely correspond to the experimental observations of 

White and King (1985)40 who identify a hydration barrier comprising 11-13 water molecules 

per lipid. One of the few approaches to permit measure of the order of the various populations 

of water molecules is Sum Frequency Generation Spectroscopy which observes the water order 

on a time that is short compared to the exchange rate.41 Using this technique Sovago et al (2009) 

identify a water population that is isolated from the bulk water and buried between the 

phosphate and acyl groups of the phospholipid. Collectively, these studies demonstrate the 

existence of a population of water molecules surrounding the lipid head-groups that is 

significantly more ordered that bulk water. 

Effect of pH on phospholipid area 

The results presented here from EIS, amperometry and neutron reflectometry support a model 

in which the area per molecule within a lipid assembly is modulated by pH. The primary 

mechanism for these effects is interpreted in terms of the interaction of the lipid phosphate 

groups with a hydrating network at the lipid-water interface (Figure 5).  

Molecular dynamic studies have identified potential hydrogen bonding patterns of water 

bridging between adjacent phospholipid molecules via the non-ester oxygens of the lipid 

phosphate groups.36, 38 Further hydrogen bonded bridging water molecules are proposed to exist 

between the non-ester phosphate oxygens and the carbonyl oxygens in esterified phospholipids. 

In the present study it is shown that substantial changes in conduction occur over the two to 

four orders of magnitude change in the H3O
+ concentration, with the conduction being reduced 

at the highest H3O
+ concentrations (low pH) across all phospholipid species studied here. It is 

proposed that the H3O
+ ions compete with and disrupt the hydrogen bonding pattern of the 

intermolecular bridging water molecules causing the observed variation in membrane 

conductivity, primarily through variations in the molecular area. A further insight by molecular 

dynamics is the contribution made by bridging water molecules for an ether or ester linked 

phospholipid.36, 38 Figure 2A shows a mechanism whereby the hydrogen bonds between 

individual water molecules and their neighbouring phospholipid phosphate or carbonyl 

oxygens can be disrupted by a less anisotropic H3O
+ ion causing a disruption in the bridging 

hydrogen bonds and a condensation of the phospholipid onto the positively charged H3O
+ 

resulting in a reduction in the area occupied per phospholipid. In addition, the conduction at 

pH ~ 5 in sparsely 10% tethered tBLMs comprising 100% EPC or 100% DPEPC or 100% 

POPC is shown in Figure 2B. The conduction is found to progressively increase in the order 

of POPC < DPEPC < EPC. In the case of POPC it is proposed that the conduction is the smallest 

due to the attraction of the H3O
+ ions to both carbonyl and non-ester phosphate oxygens. The 

~ 2-fold higher conduction seen in DPEPC is proposed to be as a result of the elimination of 

the negative carbonyl oxygen creating a smaller reduction in the molecular area. The ~ 5-fold 
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higher conduction seen in EPC is proposed to arise from the blocking effects of the non-ester 

phosphate oxygen bound ethyl group both reducing the attractive charge and sterically 

impeding the area reduction.  

Further consequences of this model are demonstrated in Figure 2B where the conduction at 

pH ~ 9 is shown for the same family of lipids. At this high pH the POPC the carbonyl and 

oxygen sites would thus be surrounded by un-dissociated water resulting in the largest 

molecular area and therefore highest conductivity. The lower conductances seen for EPC and 

DPEPC would arise from the hydrophobic and steric blocking caused by the non-ester 

phosphate oxygen ethyl group for the EPC, and the absence of the ester carbonyls for the 

DPEPC. 

Membrane Thickness and pH 

The effect of pH on tBLM thickness was further investigated by including the ion channel 

gramicidin-A 28. It can be seen in Figure 3C that lowering the pH caused a decrease in 

conduction consistent with a thicker membrane causing a reduction in the gramicidin-A dimer 

lifetime. It should be noted, the similar reduction seen for the same tBLM in the absence of 

gramicidin-A also arises from a reduction in the molecular area, however, we propose these 

effects in the absence of gramicidin-A arise from the modulation of the toroidal pore defect 

diameter driven by changes in the molecular geometry of the lipid. These observations are 

supported by a direct measure of the contraction of the area of a monolayer of phospholipid on 

a Langmuir trough as reported by Gong et al (2002). 42 Measurements of variations in 

membrane thickness based on capacitance observations are complicated by uncertainties of the 

interfacial dielectric constant for the different values of pH.  Other contributions to the pH 

dependence of the gramicidin-A conduction may arise from a small modulation of the diffusion 

coefficient of both the lipid and gramicidin-A impacting the monomer to dimer on-rate.  

From the neutron reflectometry results additional evidence is available on the pH dependence 

of the outer bilayer lipid leaflet. It was observed that over the pH range from 5 – 9 log units the 

outer bilayer leaflet thickness decreased by ~3 – 4 %. This is an indication that the molecular 

area has increased over this pH range by ~6 – 8 %. These changes in molecular geometry will 

be reflected in changes in the geometry of membrane spanning defects described here as 

toroidal pores. Increasing the intrinsic molecular area across the tBLM drives an increase in 

the average pore diameter, causing an increase in conduction.  

The Modulation of Toroidal Pores by pH  

The tBLM conduction is modelled here as arising from the modulation of fluctuating toroidal 

pores that are already present within the membrane and traverse the otherwise essentially ion 

impermeable hydrocarbon core of the lipid bilayer.  That the conduction variation arises from 

existing toroidal pores rather than the creation of new pores is demonstrated by the 

approximately 35-38 kJ/mol activation energy for the intrinsic bilayer conduction.24-25 This low 
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value of activation energy for conduction eliminates other explanations requiring the creation 

of new pores for which activation energies in excess of 100 kJ/mol are required.24, 43  

Increasing the pH results in both an increase in the molecular area per hydrated molecule and 

in the intrinsic membrane conduction. We assign the conduction increase to the primary effect 

of pH increasing the local hydrated molecular area resulting in a re-distribution of the 

membrane lipids between the bilayer regions and the toroidal pores favouring greater numbers 

within toroidal pore defects already within the membrane. This causes the average diameter 

and conduction of these defects to increase. The origin of the increase in diameter of the 

toroidal pores is a result of relaxing the critical packing parameter (CPP), or v/(a0l), to nearer 

unity as the pH drives an increase in hydrated molecular area. Within the toroidal pore the CPP 

is between 1/2 and 1/3. With the increased hydrated molecular area driving the CPP away from 

the bilayer geometry a lateral pressure is introduced that is relaxed by the lipids diffusing into 

the curved regions of the pore. With the increased area caused by the increased pH, an increase 

in the pore diameter occurs, permitting more membrane lipids to be accommodated within the 

highly curved low CPP region, with the associated effect of causing an increase in the 

membrane conduction (Figure 6). This effect will relax the geometrical constraints on the 

overall membrane until the lateral redistribution of membrane lipid causes the pore diameter to 

approach the bilayer thickness at which point the process is no longer reversible and the 

membrane conduction irreversibly increases. This effect was evident following excursions to 

pH values exceeding 9 log units (data not shown).  

CONCLUSIONS 

A clear conclusion from this study is the significant decrease in membrane conduction at low 

pH across all phospholipid types. In the absence of a phosphate group there was no significant 

change in conduction with the same changes in pH. We propose the role of the phosphate in 

membrane geometry and stability arises from the hydration shells associated with the 

phosphate groups being commensurate with the hydrogen bonding geometry of water 

molecules. The area decrease according to this model primarily arises from the progressively 

greater attractive force between the phosphate and carbonyl oxygens mediated by the different 

charged states of water. The introduction of H3O
+ ions sequestered to the region of the 

negatively charged phosphate oxygens strengthens the hydrogen bonding network, reducing 

the hydrated molecular area, increasing membrane thickness, and reducing the ionic 

conduction. In this model the observed decrease in membrane conduction is proposed to arise 

from a decrease in the average toroidal pore diameter due to a redistribution of lipids between 

the highly curved region within the toroidal pores (CPP 1/2 - 1/3) and the planar regions (CPP 

~ 1) of the bilayer. This supports the proposition that an important factor in the evolution of 

stable biological membranes across plants, bacteria and animals has been the occurrence of a 

phosphate group within the primordial surfactant population. It could be significant that 

bacteria found in highly alkaline salt lakes possess longer chained lipids 44. This may be in 

order to sustain the geometrical constraint of the CPP close to unity to permit the formation of 
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lamellar structures at high pH. Similarly, some extremophile bacteria found adjacent to 

volcanic vents may possess short chain lipids 45 to accommodate the same geometrical 

constraint for the very low pH conditions resulting from vented sulphur dioxide. In conclusion, 

the ubiquity of phospholipid bilayers in biology poses the question of the evolutionary 

advantage of a phosphate group and its hydration shell within the composition of lipidic 

biomembranes. As the present study suggests, this phosphate hydration shell plays an important 

role in determining the membrane structure, stability and conductivity.  
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Figure 1 A-D, conductance (µS) at pH 5, 7, and 9. A, 1% mol:mol tethers:spacers (n=4); B, 

10% mol:mol tethers:spacers (n=6); C, 100% tethers anchoring a mobile DPEPC lipid 
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bilayer (n=5). In C, the DPEPC forms a monolayer over the fully tethered inner leaflet. D, 

100% MSLOH fully membrane spanning tBLM (n=5). E-H, select examples of ramped 

amperometry spectra of the same membrane architectures at pH 5, 7 and 9. All measures 

taken at room temperature of 20-22°C. 
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Figure 2. A  POPC, DPEPC, EPC and MSLOH molecules in which 4 hydrogen bonding sites 

are identified: at 1) the non-ester phosphate oxygen, at 2) the ester phosphate oxygen at 3) the 

carbonyl oxygens and at 4) the hydroxyl group of the MSLOH; all of which may hydrogen 

bond cross-link through water to similar sites on adjacent phospholipids. At 5) a further 

population is identified with a weakly hydrogen-bonded clathrate hydration shell surrounding 
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the choline group. B, conductance (µS) for each lipid POPC (n=4), DPEPC (n=6), EPC (n=3) 

as 10% tethered tBLMs and 100% tethered MSLOH (n=5), at pH 5 and at pH 9 (N.B. the scale 

difference). C, table shows the ratios of both conduction and capacitance between pH 5 and pH 

9 for the three lipids and MSLOH. 

 

 

Figure 3 A, mean conduction in a fully tethered membrane spanning tBLM containing 

covalently linked bis-gramicidin (n=3). B, mean conduction in an equivalent membrane 

without gramicidin (N.B. the scale difference) (n=5). C, mean conduction (µS) of 10% tethered 

diphytanyl PC tBLMs containing 100 nM gramicidin-A at pH 5, 7 and 9 (n=5). D, table shows 

the ratios of conduction between pH 5 and pH 9 for the three cases depicted in A, B, C. 
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Figure 4 A, Distance versus SLD plots at pH values of 5, 7 and 9 for three contrasts of H2O, 

D2O and a gold matched mixture of H2O (25%) and D2O (75%). An enlarged version of this 

figure from 250 Å – 500 Å is provided as S4 in Supplementary Material. B, histogram of 

40,000 modelled fits of the outer deuterated lipid leaflet tail thickness at pH 5, 7 and 9. C, 

histogram of 40,000 modelled fits of the outer deuterated lipid leaflet tails volume fraction at 

pH 5, 7 and 9. D,. histogram of 40,000 modelled fits of the outer deuterated lipid leaflet head 

group volume fraction at pH 5, 7 and 9. 
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Figure 5, Schematic of phosphatidyl cholines hydrogen bonded through the phosphate and 

carbonyl oxygens of adjacent lipids through water intermediaries. A, at high pH the charged 

intermediary being a hydroxyl molecule (OH-). B, at neutral pH the prevalent intermediary 

being a water molecule (H2O). C, at low pH the charged intermediary being an hydronium 

ion (H3O
+). 
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Figure 6, Schematic of proposed toroidal pore variations due to pH. In order to accommodate 

a decrease in the CPP at high pH more lipids diffuse into the curved regions of toroidal pores 

increasing their surface area and making the bilayer more conductive to ions.  
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