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Abstract  

Similarity measures are fundamental tools for identifying relationships within or across patent portfolios. Many 

bibliometric indicators are used to determine similarity measures; for example, bibliographic coupling, citation 

and co-citation, and co-word distribution. This paper aims to construct a hybrid similarity measure method 

based on multiple indicators to analyze patent portfolios. Two models are proposed: categorical similarity and 

semantic similarity. The categorical similarity model emphasizes international patent classifications (IPCs), 

while the semantic similarity model emphasizes textual elements. We introduce fuzzy set routines to translate 

the rough technical (sub-) categories of IPCs into defined numeric values, and we calculate the categorical 

similarities between patent portfolios using membership grade vectors. In parallel, we identify and highlight 

core terms in a 3-level tree structure and compute the semantic similarities by comparing the tree-based 

structures. A weighting model is designed to consider: 1) the bias that exists between the categorical and 

semantic similarities, and 2) the weighting or integrating strategy for a hybrid method. A case study to measure 

the technological similarities between selected firms in China’s medical device industry is used to demonstrate 

the reliability our method, and the results indicate the practical meaning of our method in a broad range of 

informetric applications. 
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1. Introduction 

Patent statistics serve as an important indicator of the activities and outcomes of research & development 

(R&D) (Tseng, Lin & Lin 2007). Analyzing patents and patent portfolios is increasingly contributing to 

academic research, public policy, and business intelligence. Such analysis can: reveal emphasis in science, 

technology, & innovation (ST&I) endeavours across fields of research (Porter & Detampel 1995); determine 

who is engaging in what research and to what extent (e.g., organizations, regions, and countries), and add value 

to collaborative relationships (Porter & Newman 2011); and provide further insights into a wide range of 

applications, e.g., evaluating the impact of national patent regimes on technology transfer (Intarakumnerd & 

Charoenporn 2015), identifying potential business opportunities or development trends (Fabry et al. 2006; Zhou 

et al. 2014), mapping the R&D landscape and monitoring technological structures (Choi & Park 2009), and 

pinpointing patent strategies that may help shape overall business goals (Su et al. 2009); 
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Similarity measures are fundamental tools for identifying relationships within or across patent portfolios. 

Many bibliometric indicators are used to investigate such analyses; for example, bibliographic coupling (Kessler 

1963), citation (Garfield, Sher & Torpie 1964), co-citation (Small 1973), and co-word distribution (Callon et al. 

1983). Additionally, combining several indicators in patent analysis is currently popular, e.g., blending citations 

with international patent classification (IPC) codes (Kay et al. 2014; Leydesdorff, Kushnir & Rafols 2014), 

bibliographic coupling (Chen et al. 2011), or co-word analyses (Nakamura et al. 2015). As a traditional 

mainstream bibliometric indicator, citations and co-citations connect scientific documents via forward and 

backward links. These direct relationships can easily identify similarities between documents (Zhang et al. 

2016b), but not all patent databases provide citation information. Usually, patents only cite references that are 

directly relevant, and some of them are non-patent documents (Rip 1988). Therefore, patent citations will take 

patents and scientific publications into consideration, and related analysis can be more complex than expected. 

As a unique feature of patents, IPC codes provide a hierarchical taxonomy system to reflect the categories 

and sub-categories of existing technologies. This benefit makes IPCs favorable for similarity measures, and co-

classification analysis is commonly applied (Boyack & Klavans 2008). The IPC system is, however, a “vague” 

classification system, since it defines new and emerging technologies using existing technologies or 

combinations of them. But, it is not always easy to classify one invention according to existing definitions, and 

conservative assignments can lead to uncertainty.  

For a long time, text elements (e.g., words, terms, and phrases) have acted as a supplement to citations and 

IPCs in patentometrics. The rapid development of natural language processing (NLP) and data cleaning 

techniques have enhanced the ability to retrieve precise text elements from patents. Text-based similarity 

measures follow the general idea of co-word analysis, in which patents are seen as similar if there is a high 

degree of common textual elements between two or more patents (Moehrle 2010). However, these free text 

elements are much more complex than human-defined IPCs. The semantic meanings of text elements and the 

potential relationships among them heavily depend on the language environment. Diverse combinations of text 

elements also add difficulties (Zhang et al. 2016b). At the same time, traditional co-word analysis exaggerates 

the importance of term frequency (Peat & Willett 1991), and even the efficiency of term frequency inverse 

document frequency (tf-idf) analysis is debated (Zhang et al. 2014b). 

In an attempt to address the above concerns, our two research questions are: 1) how should a hybrid 

similarity measure method for patent portfolio analysis with multiple indicators be constructed? And 2) how 

should significant terms be identified and weighed to improve the performance of similarity measures? This 

paper emphasizes both IPCs and text elements, and specifically divides the technological similarity between 

patent portfolios into two forms: categorical similarity and semantic similarity.  

We introduce fuzzy set routines (Zadeh 1965) to translate the rough technological categories and sub-

categories of IPCs into defined numeric values, and calculate categorical similarity via vectors that consist of 

membership grades. In parallel, we use an algorithm to group terms into clusters, and represent a patent 

portfolio in a 3-level tree. The tree structure consists of the patent portfolio’s terms and their clusters, and 

semantic similarity is determined by comparing two trees. We have also developed a model that considers the 

two major weighting issues in our method: bias in the two similarities and the strategy of integrating them, and 

also the weights of matching types in a tree-based comparison.  

An empirical study to measure the technological similarities between selected firms in China’s medical 

device industry demonstrates the feasibility and performance of our method. A specific case study that focuses 

on the unexpected results between expert marks and our method further endorses our methods’ reliability and 

efficiency in helping experts discover the underlying technological relationships between patent portfolios. The 

results inform related patent portfolio analyses in a broad range of applications, e.g., general topic analysis for 

technical intelligence, patent mapping, and technology mergers and acquisitions. The main contributions of this 

paper include: 1) a hybrid measure method that combines categorical IPC-driven similarity and semantic text-



based similarity measures; 2) an effective application of fuzzy sets to transform vague IPC categories into 

defined numeric values; and 3) a semantic tree structure to identify and highlight significant terms in an 

interactive hierarchical model for similarity measures.  

This paper is organized according to the following structure. We review previous studies in Section 2. 

Section 3 follows and presents our hybrid similarity measure method for patent portfolio analysis. In Section 4, 

we use our method to measure the technological similarities between selected firms in China’s medical device 

industry from the Web of Science’s Derwent Innovation Index (DII) patent database. Finally, we provide an in-

depth discussion on the strengths and weaknesses of the categorical and semantic similarity measures, possible 

applications, limitations, and future directions of our method in Section 5. 

2. Related Work 

This paper reviews previous literature from two categories: bibliometric similarity measures and related 

techniques; and indicators for bibliometrics and patentometrics. 

2.1. Bibliometric similarity measures and related techniques 

Measuring similarities among bibliometric units (e.g., journals, patents, authors, or words) is a central task in 

bibliometrics (Klavans & Boyack 2006). Despite a series of techniques that have been introduced to investigate 

similarity measures in text mining and related information technology (IT) fields, e.g., corpus- and knowledge-

based approaches, and ontology (Lau, Tsui & Lee 2009; Wu, Lu & Zhang 2011; Sánchez et al. 2012), the main 

analytic approach for bibliometric similarity measures is still vector-based – a data corpus is represented by a 

vector (Boyack, Klavans & Börner 2005). For the past few decades, Salton’s cosine (Salton & Buckley 1988) 

and Jaccard’s index (Braam, Moed & Van Raan 1988) have become two popular techniques for deriving 

similarity measures. Although a number of studies compared their performance (Hamers et al. 1989; 

Leydesdorff 2008; Moehrle 2010), debate over which is best continues. Significantly, a boom of research into 

science maps and the exponential growth of bibliometric data introduce both challenges and opportunities for 

measuring bibliometric similarity. Based on the inter-citation/co-citation distributions in a 1-million-record 

dataset, Klavans & Boyack (2006) compared six approaches for measuring similarity in science maps – raw 

frequency, cosine, Jaccard’s index, Pearson’s coefficient, average relatedness factor (Pudovkin & Garfield 

2002), and their proposed normalized frequency measure, K50. Cosine and K50 with inter-citations was 

recommended as performing better in the experiments. Boyack et al. (2011) also compared the accuracy of 

several text-based approaches to similarity measures, e.g. tf-idf, latent semantic analysis, and topic models, and 

from a technical perspective this comparison provides insights for further topic analysis in bibliometrics. 

2.2. Indicators for bibliometrics and patentometrics 

General indicators for bibliometrics include citations, co-citations, terms and phrases, bibliographic coupling, 

etc. Ahlgren & Colliander (2009) compared each of indicators in a small dataset of only 43 papers. Their dataset 

is too small to easily rank the indicators or the related approaches in any general situation. 

Over the last several decades, citation and co-citation analyses have become the most representative 

indicators, and have been widely applied to various bibliometric studies, e.g., topic analysis (Chen, Ibekwe 

SanJuan & Hou 2010), science maps (Braam, Moed & Van Raan 1991; Boyack, Klavans & Börner 2005; 

Klavans & Boyack 2009), and trend analysis (Garfield, Paris & Stock 2006; Lucio-Arias & Leydesdorff 2008; 

Chen et al. 2012). As a significant subsequent study, Klavans & Boyack (2016) specifically compared the 

accuracy of direct-citation and co-citation for representing knowledge taxonomy, and clarified that direct-

citation analysis shows better performance (Klavans & Boyack 2006).  

Text elements (e.g., words, terms, and phrases) are another important bibliometric resource that plays an 

active role in topic analysis (Wang et al. 2014; Zhang et al. 2016a), bibliometric maps (Noyons & van Raan 

1998; Zhu & Porter 2002; van Eck et al. 2010), and trend analysis (Zhou et al. 2014; Zhang et al. 2016b). 



However, since most bibliometric data is unlabeled, it is always not easy to evaluate the accuracy of term-based 

analysis. Existing validation measures include: 1) constructing labeled training sets based on expert knowledge 

(Harman & Voorhees 2006) or manual validation  (Zhou et al. 2013; Huang et al. 2015); 2) introducing specific 

information as the label, e.g., subject categories in the Web of Science’s databases (Yau et al. 2014), grant 

acknowledgements of the Medline database (Boyack et al. 2011), and program categories of academic proposals 

(Zhang et al. 2016a); and 3) focusing on the ratio of similarity within a cluster and the similarity between 

clusters, in which a higher ratio denotes better performance (Kassab & Lamirel 2008). Although this option 

provides a good design for unsupervised environments, it has not been widely used. 

Similar to bibliometrics, quantitative studies with patent information can be called patentometrics (Stock & 

Stock 2013). Patent similarity measures follow the traditions of bibliometric similarity measures. However, 

considering that patents usually focus on technologies and products, the similarity between patents is usually 

defined in terms of technological distance or technological proximity (Jaffe 1986). IPC is a highly distinctive 

indicator for measuring the technological similarity in patentometrics. The co-occurrence distributions in IPCs 

are specified as co-classifications, and bind with vector-based similarity measures (Boyack & Klavans 2008). 

The basic rule is that patents in a given category should be more similar to each other than to those in other 

categories (Jaffe 1986). There is a trend to blend IPCs with other indicators in patentometrics. For example, Kay 

et al. (2014) and Leydesdorff, Kushnir & Rafols (2014) both constructed a kind of overlay map with IPCs and 

co-citation/citation distributions respectively. Furthermore, IPC is also popular in studies on automated patent 

classification (Fall et al. 2003; Chen & Chang 2012). Text elements are usually combined with certain criteria, 

such as TRIZ principals, subject-action-object structures, or problem/solution patterns (Cong & Tong 2008; Hu, 

Fang & Liang 2013; Yoon, Park & Kim 2013). Applications for patent classification in diverse languages have 

also been addressed (Fall et al. 2004; Kim & Choi 2007).  

3. Methodology 

We aim to construct a hybrid similarity measure method for patent portfolio analysis that includes both IPCs 

and text elements. The method includes: a categorical similarity measure model based on IPC categories and 

sub-categories; a semantic similarity measure model based on tree structures, and a weighting model. The 

framework of our method is shown in Fig. 1. 



 

Fig. 1. The framework of the hybrid similarity measure method for patent portfolio analysis. 

3.1. Inputs: Patent portfolio 

This paper defines a patent portfolio as a group of patents with similar features, i.e., patents that involve 

similar technical topics, or belong to the same entity – individual, organization, region, country, etc. Here we 

simply assume a patent portfolio is a patent corpus. 

3.2. The IPC-based categorical model 

IPC is a core element in this section, so we first take effort to justify the question: Which kind of IPCs is the 

best for our method: 3-digit, 4-digit, or 7-digit? Early studies of patent maps mostly used 3- or 4-digit IPCs for 

classification, since they can act as the basic categories or sub-categories of a classification system (Boyack & 

Klavans 2008; Leydesdorff, Kushnir & Rafols 2014). Kay et al. (2014) proposed a multi-level aggregation 

process involving all 3-digit, 4-digit, and 7-digit IPCs to ensure broad data coverage for patent maps. This 

approach makes sense for research that focuses on a wide range of scientific subjects; however, patent portfolio 

analysis sometimes concentrates on a specific subject or technology, e.g., a comparison between two companies 

in a given technological area. In that situation, almost all patents would belong to the same one or two 3- or 4-

digit IPCs and thus they would be too general to describe detailed technological components. Our method 

therefore uses 7-digit IPCs as its default setting with the aim of capturing multiple dimensional features. It is 

worth noting that 3 or 4-digit IPCs could be an option for multi- or interdisciplinary studies. 

No matter what kind of IPCs are chosen – 3, 4, or 7 digits – the classifications they provide are still 

somewhat vague, and will not precisely represent the detail in technology. For example, if portfolio P contains 

IPC A (with frequency 10) and IPC B (with frequency 1), it is easy to say that portfolio P investigated the 

technologies of IPC A, however the low frequency of IPC B makes a simple ‘involved’ or ‘not involved’ 

classification difficult. It would make better sense to say, “IPC B was investigated a little bit”, but that leaves 

users with the trouble of deriving a numeric value to describe “a little bit”. Fuzzy sets may be an efficient 

solution to this problem (Zadeh 1965), and they have already been applied in a wide range of studies in the 
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fields of information science, decision science, and management science (Ma, Zhang & Lu 2012; Zhang et al. 

2013). We introduce fuzzy set routines to deal with this kind of ambiguity and translate nuanced human 

knowledge into defined numeric values. 

We denote all patent portfolios as the universe 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛−1, 𝑥𝑛}, where n is the total number 

of portfolios. Given that each IPC is defined as a fuzzy set 𝐴𝑗, where 𝑗 ∈ [1, 𝑚] and m is the total number of 

IPCs, the membership function 𝐴𝑗(𝑥𝑖) represents the degree to which portfolio 𝑥𝑖 investigates IPC 𝐴𝑗. Generally, 

there are many approaches to define membership functions – e.g., machine learning techniques or manual 

configuration based on expert knowledge – but using machine learning techniques to train a membership 

function, given the complexity of ST&I data, is still an unsolved task in the field of computer science and 

information systems. In this model, we use expert knowledge to decide the membership function based on 

training sets and experiments. 

Once the membership function is decided, each patent portfolio is represented by an m -dimensional 

vector 𝑉(𝑥𝑖) = {𝜗1,𝑖, 𝜗2,𝑖 , … , 𝜗𝑗,𝑖 , … , 𝜗𝑚−1,𝑖 , 𝜗𝑚,𝑖}, in which 𝜗𝑗,𝑖 is the membership grade that portfolio 𝑥𝑖 belongs 

to the fuzzy set of IPC 𝐴𝑗. We then use the cosine measure (Salton & Buckley 1988) to calculate the categorical 

similarity between two patent portfolios 𝑥𝑖 and 𝑥𝑘 as follows: 

𝐶𝑆(𝑥𝑖 , 𝑥𝑘) =
𝑉(𝑥𝑖) ∙ 𝑉(𝑥𝑘)

|𝑉(𝑥𝑖)||𝑉(𝑥𝑘)|
 

where |𝑉(𝑥𝑖)| is the norm of the vector 𝑉(𝑥𝑖) and can be calculated below: 

|𝑉(𝑥𝑖)| = √(𝜗1,𝑖)
2 + (𝜗2,𝑖)

2 + ⋯ + (𝜗𝑚,𝑖)
2 

3.3. The tree-based semantic model 

Traditional text similarity measures (e.g., vector-based approaches) simply use the frequency of raw terms to 

calculate the similarity between records. Sometimes the tf-idf analysis is used to weight terms. There is no doubt 

that weighting terms is an effective way to highlight important topics, but it is critical to directly identify the 

terms with a high tf-idf value terms as important terms (Zhang et al. 2014a). This section aims to propose 

another way: a 3-level tree to distinguish the importance of textual elements in a hierarchical structure, as shown 

in Fig. 2. 

 

Fig. 2. The 3-level tree structure for the semantic model. 

A brief outline of the stepwise process to construct a 3-level tree structure is given below. More details can 

be found in Appendix A. 

1) Pre-processing: Retrieve core technological terms from a corpus via a term clumping process (Zhang et 

al. 2014a) and construct a portfolio-term matrix to link patent portfolios with contained core terms. One 

patent portfolio is represented as a tree, and its involved terms are the leaves of the tree. 

2) Identifying Level 1 and Level 2 leaves: Apply a clustering algorithm to each patent portfolio separately. 

Group the core technological terms of a portfolio into several clusters, and identify the term with the 
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highest prevalence value in one cluster as a Level 1 leaf (Zhang et al. 2014b). Remaining terms in the 

cluster are linked to the Level 1 leaf as Level 2 leaves. 

3) Tree construction: One tree represents one patent portfolio. It includes a root, a number of Level 1 

leaves linked directly to the root, and a number of Level 2 leaves that are linked as normal to the Level 

1 leaves. 

As an example, given that a 3-level tree structure 𝑇 contains 𝑝 clusters and the 𝑝-th cluster has 𝑞𝑝 terms. We 

denote the tree 𝑇 as  

𝑇 = {𝐵(𝐿11, 𝐿21,1), 𝐵(𝐿11, 𝐿21,2), … , 𝐵(𝐿11, 𝐿21,𝑞1
), … , 𝐵 (𝐿1𝑝, 𝐿2𝑝,𝑞𝑝

)} 

where 𝐵(𝐿1𝑖 , 𝐿2𝑖,𝑗𝑖
) (𝑖 ∈ [0, 𝑝], 𝑗 ∈ [1, 𝑞𝑖]) is one branch of the tree. It consists of one Level 1 leaf 𝐿1𝑖 , and one 

Level 2 leaf 𝐿2𝑖,𝑗𝑖
.  

Note that 𝐿1𝑖 ≠ 𝐿2𝑖,𝑗𝑖
, and in some extreme situations 𝐿1𝑖 can be null and then  𝐿2𝑖,𝑗𝑖

 is linked directly to the 

root. An example of the 3-level tree 𝑇 is given in Table 1. 

Table 1 

An example of the 3-level tree 𝑇 

Patent Portfolio (Root) Level 1 Leaf Level 2 Leaf 

Tree 𝑇 𝐿11 𝐿21,1 

𝐿21,2 

 … 

 𝐿21,𝑞1
 

𝐿12 𝐿22,1 

 𝐿22,2 

 … 

 𝐿22,𝑞2
 

… … 

𝐿1𝑝 𝐿2𝑝,1 

… 

𝐿2𝑝,𝑞𝑝
 

 

The semantic model follows the 3-level tree structure to measure the similarity between patent portfolios. 

We calculate the similarity by comparing the branches of the tree structures representing these portfolios. We 

traverse and compare all branches in both trees and exhaustively list the six matching types 𝑅𝑥(𝐵, 𝐵′), 𝑥 =

{1, … ,6} in Table 2. Typically, it is easy to definitively determine that a match across all the leaves of an entire 

branch in Level 1 and Level 2 is a priority. Since we always highlight the representativeness of a Level 1 leaf in 

one cluster, we also imagine that a Level 1 leaf-based match is better than a Level 2 leaf-based match. We 

specifically discuss bias in Section 3.4 and Section 4.  

Table 2  

The six matching types between two trees 



No. Matching Type Description Weight 

1 𝑅1(𝐵, 𝐵′): {𝐿1𝑖 = 𝐿1𝑖′ 
′ , 𝐿2𝑖𝑗 = 𝐿2𝑖′𝑗′

′ } The entire branches are the same; 𝑤1 

2 𝑅2(𝐵, 𝐵′): {𝐿1𝑖 = 𝐿1𝑖′ 
′ , 𝐿2𝑖𝑗 ≠ 𝐿2𝑖′𝑗′

′ } Only the Level 1 leaves are the same; 𝑤2 

3 𝑅3(𝐵, 𝐵′): {𝐿1𝑖 ≠ 𝐿1𝑖′ 
′ , 𝐿2𝑖𝑗 = 𝐿2𝑖′𝑗′

′ } Only the Level 2 leaves are the same; 𝑤3 

4 𝑅4(𝐵, 𝐵′): {𝐿1𝑖 ≠ 𝐿1𝑖′ 
′ , 𝐿2𝑖𝑗 ≠ 𝐿2𝑖′𝑗′

′ , 𝐿1𝑖

= 𝐿2𝑖′𝑗′
′ , 𝐿2𝑖𝑗 ≠ 𝐿1𝑖′ 

′ } 

Only a Level 1 leaf matches a Level 2 

leaf in the other tree; 

𝑤4 

5 𝑅5(𝐵, 𝐵′): {𝐿1𝑖 ≠ 𝐿1𝑖′ 
′ , 𝐿2𝑖𝑗 ≠ 𝐿2𝑖′𝑗′

′ , 𝐿1𝑖

≠ 𝐿2𝑖′𝑗′
′ , 𝐿2𝑖𝑗 = 𝐿1𝑖′ 

′ } 

Only a Level 2 leaf matches a Level 1 

leaf in the other tree; 

𝑤5 

6 𝑅6(𝐵, 𝐵′): {𝐿1𝑖 ≠ 𝐿1𝑖′ 
′ , 𝐿2𝑖𝑗 ≠ 𝐿2𝑖′𝑗′

′ , 𝐿1𝑖

= 𝐿2𝑖′𝑗′
′ , 𝐿2𝑖𝑗 = 𝐿1𝑖′ 

′ } 

A Level 1 leaf matches a Level 2 leaf in 

the other tree, and its Level 2 leaf 

matches the Level 1 leaf in the other 

tree. 

𝑤6 

Note. The six matching types include all possible matches between two trees. 

Note that our method follows the basic rule of traditional tree-based similarity measurement, i.e., tree 

traversal, but we replace node-based comparisons with branch-based comparisons to maximize the use of 

significant terms. We also take term frequency and the number of branches into consideration. Referring to 

Table 2, we define 𝑆𝑆(𝑃1, 𝑃2) as the semantic similarity value between portfolio 𝑃1 and 𝑃2. 𝑆𝑈𝑀(𝑅𝑘) is the 

total number of the matching type 𝑅𝑘  between 𝑃1 and 𝑃2. 𝛤(𝑅𝑘) is the frequency of the terms involved in 

matching type 𝑅𝑘. 𝛷𝑃1 and 𝛷𝑃2 are the total number of the branches that portfolio 𝑃1 and 𝑃2 have respectively, 

and 𝛷𝑃1,𝑃2 is the total number of matched branches between the two portfolios. Therefore, 𝑆𝑆(𝑃1, 𝑃2) can be 

calculated as follows: 

𝑆𝑆(𝑃1, 𝑃2) = 𝑆𝑆(𝑇𝑃1, 𝑇𝑃2) =
2Φ𝑃1,𝑃2

Φ𝑃1 + Φ𝑃2

∑(𝑤𝑘 ×
𝑆𝑈𝑀(𝑅𝑘)

∑ 𝑆𝑈𝑀(𝑅𝑘)6
𝑘=1

×
Γ(𝑅𝑘)

∑ Γ(𝑅𝑘)6
𝑘=1

)

6

𝑘=1

  

𝑅𝑘 = {
1, if 𝑅𝑘(𝐵, 𝐵′) matches 
0,                                else 

 

An example of two trees and their branches is given in Fig. 3. The two trees can be described as: 𝑇1 =

{𝐵(𝐿11, 𝐿21,1), 𝐵(𝐿11, 𝐿21,2), 𝐵(𝐿12, 𝐿22,1) and  𝑇1′ = {𝐵(𝐿11′
′ , 𝐿21′1′

′ ), 𝐵(𝐿12′
′ , 𝐿22′1′

′ ), 𝐵(𝐿13′
′ , 𝐿23′1′

′ )} , and 

each leaf consists of a term in the set {t1, t2, t3, t4, t5, t6}.  

 

Fig. 3. Samples of the two trees and their branches. 

We list all matching types between 𝑇1 and 𝑇1′ in Table 3. Note that: 1) if there is more than one match 

between two branches, we only choose the match with the highest weight; and 2) if two or more matches share 

the same weight, we prefer the match with a higher term frequency. 

𝐿11=t1 

𝑅1 

Tree 𝑇1 

𝐿21,2=t3 

𝐿12′
′ =t3 

𝑅1′ 

Tree 𝑇1′ 

 

𝐿22′1′
′ =t1 

 

𝐿12=t2 

𝐿22,1=t5 𝐿21,1=t4 

𝐿13′
′ =t2 

𝐿23′1′
′ =t5 

𝐿11′
′ =t4 

𝐿21′1′
′ =t6 

  



Table 3 

The matches between 𝑇1 and 𝑇1′ in Fig. 3 

No Branch of  𝑇1 Matching Branch of  𝑇1′ Matching Type Note 

1 𝐵(𝐿11, 𝐿21,1) 𝐵(𝐿11′
′ , 𝐿21′1′

′ )  𝑅5 Only the best match is chosen, i.e., 

the matching type with higher 

weights. 𝐵(𝐿12′
′ , 𝐿22′1′

′ )  𝑅4 

2 𝐵(𝐿11, 𝐿21,2) 𝐵(𝐿12′
′ , 𝐿22′1′

′ )  𝑅6 - 

3 𝐵(𝐿12, 𝐿22,1) 𝐵(𝐿13′
′ , 𝐿23′1′

′ )  𝑅1 - 

 

Compared to traditional tree-based approaches, which simply depend on term frequency, we focus on the 

proportion of different matching types and introduce expert knowledge to weight these types. This can improve 

its adaptability to diverse practical requirements. However, while we retain term frequency as an important 

indicator, we also introduce several effective approaches to remove noise and consolidate synonyms. These 

efforts further improve the performance of term-based analyses.  

We also take the frequency of branches and the proportion of matched branches into consideration. One 

branch usually contains two distinct terms, and we set up three options to calculate the frequency of a branch. 1) 

We use the frequency of the Level 1 leaf to represent the frequency of the branch, which highlights the 

importance of Level 1 leaf. 2) We aggressively use the larger frequency between the Level 1 leaf and the Level 

2 leaf; and 3) to conservatively use the smaller frequency between the two leaves. Generally we chose the first 

option as a default setting. The proportion of matched branches is to highlight the importance of the matched 

branch in the entire tree structure, and it is also able to distinguish the following situation: as given in Fig. 3, 

there is one more tree  𝑇1′′ , which contains 𝑇1′  but has much more branches, so the engagement of the 

proportion of matched branches can make sure 𝑆𝑆(𝑇1, 𝑇1′) is larger than 𝑆𝑆(𝑇1, 𝑇1′′), since we believe 𝑇1′ 

concentrates on this technology more than 𝑇1′′. 

3.4. Weighting model 

We use the weighting model for flow design and weight configuration, but emphasize that this configuration 

needs to take actual requirements into consideration. The two main objectives of this section include: the 

weights of the match types in the comparison between tree structures, and the biases between categorical and 

semantic similarities. 

The weights of the matching types in the tree comparison reflect bias in the leaves at different levels. It is 

promising that a match with a Level 1 leaf is better than a match with a Level 2 leaf, and a match with one entire 

branch is the best. Therefore, one strategy for weighting the six matching types is: 𝑤1 > 𝑤2 > 𝑤3 and 𝑤6 >

𝑤4 ≥ 𝑤5. Note that similarity measures are usually indirect, but if they are direct, i.e., the similarity between 

portfolio A and B is different from the similarity between B and A, it is reasonable that 𝑤4 > 𝑤5, otherwise we 

prefer to make  𝑤4 = 𝑤5. However, the strategy for comparing a match type and its inverse (e.g., 𝑤1 and 𝑤6) is 

notable. It is better to leave space for discussion depending on actual cases and situations, but, based on our 

experience and the general requirements of patent analysis, we provide the default setting:  w1 > w2~w6 >

 w4 = w5 > w3. Following this priority, an analytic hierarchy process (AHP) (Saaty 1990) can be a feasible 

option to engage expert knowledge to decide the weights with consideration on actual needs.    

The bias in categorical and semantic similarities is a complicate issue, and varies from case to case. 

Categorical similarity, derived from IPCs, indicates the technological map of a patent portfolio, which can be a 

part of the portfolio’s R&D strategies. Terms can be used effectively to explore technologies and their 

components in detail, which is promising for specific technology-oriented topic analysis, evaluation, and 



forecasting studies. However, a cleaning process is important to ensure accurate semantic similarity measures. 

Thus, the categorical model performs better in a raw dataset, while the semantic model makes great sense with 

deeply-cleaned data situation, and we expect benefits if both methods can be combined. One strategy for using 

both models to complement each other within the flow is to apply categorical similarity measures to pre-

processing and filtering, and use semantic similarity measures for further accurate similarity identification. The 

formula below calculates technological similarities using both methods and is extended in Section 4.   

𝑆(𝐴, 𝐵) = 𝑆(𝐶𝑆(𝐴, 𝐵), 𝑆𝑆(𝐴, 𝐵))  

Note that, although both 𝐶𝑆(𝐴, 𝐵) and 𝑆𝑆(𝐴, 𝐵) have been normalized separately, and the values of both are 

within the interval [0, 1], we aim to ensure that the integration stands on the same stage, so further normalization 

in this model may be required. 

4. Empirical Study 

Approaches to similarity measures hold a strong capability to identify technological similarities that assist in 

a wide range of patent portfolio analyses, e.g., patent maps (Kay et al. 2014; Leydesdorff, Kushnir & Rafols 

2014), technology mergers and acquisitions (Makri, Hitt & Lane 2010; Park, Yoon & Kim 2013; Yoon & Song 

2014), and general topic analysis for technical intelligence (Fabry et al. 2006; Zhou et al. 2014). This paper 

applies our hybrid similarity measure method to analyze the technological similarities between selected firms in 

China’s medical device industry, where each firm is represented by a patent portfolio. This empirical study 

serves to demonstrate the feasibility, reliability, and performance of our method. 

4.1. Data 

Based on a list of firms in China’s medical device industry from the Wind Financial Terminal financial 

database1, we divided a total of 709 firms into 3 groups as shown in Table 4. Group A contains 15 firms (1 

billion RMB to +∞). Group B contains 56 firms (1 million RMB to 1 billion RMB). Group C contains 638 firms 

(0 to 1 million RMB). The purpose of this scenario is to consider technological similarity in technology mergers 

and acquisitions (Makri, Hitt & Lane 2010), where the level of an acquirer’s capital cannot be ignored. Note that 

although the empirical study concentrates on the methodology, the standard concerns that arise during 

technology mergers and acquisitions are a way to further illustrate the reliability and practical implementation of 

the method. Since it is unrealistic to expect all firms to have hundreds or thousands of patents, we selected firms 

based on the following criteria: 1) we limited the total number of firms within the interval [50, 100], since 

experts will be invited to mark the technological similarities between selected firms, and such scale can be 

appropriate; 2) we basically followed the share of the three groups, and randomly selected firms holding with 

more than one patent; and 3) based on patent analysis, it is easier to seek the technological similarities between 

large firms than small ones. Thus, we increased the share of Groups A and B to better demonstrate the benefits 

of our method (but the share of Group C was still significant larger than the sum of the other groups). At this 

stage, we randomly selected 10, 15, and 40 firms from the three groups respectively as shown in Table 4.  

Table 4 

Firm information for China’s medical device industry and our empirical dataset 

Group Total Assets (RMB) Num. of Firms (%) Num. of Selected Firms (%) 

A more than 1 billion 15 (2.1%) 10 (15.4%) 

B between 1 million and 1 billion 56 (7.9%) 15 (23.1%) 

C less than 1 million 638 (90.0%) 40 (61.5%) 

 

                                                           
1 http://www.wind.com.cn/Default.aspx 

http://www.wind.com.cn/Default.aspx


We collected patents from the Derwent Innovation Index (DII) database2 in Web of Science. A search on 

assignee codes, assignee names, and IPCs was performed. Assignee codes are available for most firms, assignee 

names were used when a standard assignee code did not exist, and variations in assignee name were 

consolidated. We referred to the Australian Medical Devices: A Patent Analytics Report3 and selected 4-digit 

IPCs in the following range: A61B, A61C, A61D, A61F, A61G, A61H, A61J, A61K, A61L, A61M, A61N, 

A62B, B01L, G01N, G03B, G06F, G06Q, and H04R. As of March 1, 2016, we retrieved 1632 patent records 

which constitute our corpus.  

4.2. Data Pre-processing 

We pre-processed the data using: 1) a term clumping process (Zhang et al. 2014a) to identify the core 

technological terms; and 2) expert knowledge to label the data, which was used for measuring validation. 

4.2.1. Term clumping process 

The term clumping process was designed to clean, consolidate, and cluster scientific and technological terms, 

and both association rules and expert knowledge are required (Zhang et al. 2014a). We specifically applied the 

term clumping process to identify the core technological terms, which constitute the data foundation of the 

semantic model. The stepwise results of the term clumping process are shown in Table 5.  

Table 5 

Stepwise results of the term clumping process 

No Step # Terms 

1 Natural language processing (NLP) via VantagePoint (VantagePoint 2016) 20,423 

2 Basic cleaning with thesaurus 18,781 

3 Fuzzy matching 16,258 

4 Pruning (remove terms appearing only in one record) 3,653 

5 
Association rules-based consolidation (combine low-frequency terms to high-

frequency terms that appear in the same records) 
2,204 

6 
Association rules-based consolidation (combine terms with more than 2 or 3 

sharing words) 
1,072 

7 Tf-idf weighting 1,072 

8 Expert knowledge-based selection 512 

 

Note that we applied an NLP technique to a combined content of abstract and title fields rather than the full 

text. We are fully aware that the accuracy of further similarity measures might be lower than that conducted by 

the full text, but considering new issues introduced by the full text (e.g., noisy terms and techniques of 

processing images or PDF files), we only focused on the combined content of abstracts and titles in this paper. 

In addition, we used terms derived by the NLP technique rather than individual words, which can provide more 

specific semantic meanings and reduce some negative influence due to the use of abstracts and titles. 

The tf-idf weighting ranked terms via tf-idf values, and the classical tf-idf formula (Salton & Buckley 1988) 

was introduced. We denote: the entire dataset (i.e., the 1632 patent records) as a corpus 𝐷, i.e., 𝐷 = 1632; the 

                                                           
2 http://thomsonreuters.com/en/products-services/scholarly-scientific-research/scholarly-search-and-discovery/derwent-

innovations-index.html 
3 More detail can be seen at the website: 

http://www.industry.gov.au/industry/IndustrySectors/PharmaceuticalsandHealthTechnologies/Pages/Australian-Medical-

Devices-Patent-Analytics-Report.aspx 



frequency of a term 𝑖 as 𝑡𝑖; the number of the patent records that contain the term 𝑖 as 𝐷𝑖; and the total term 

frequency of the patent records that contain the term 𝑖 as 𝑇𝑖 . Hence, the tf-idf value of term 𝑖 can be calculated as 

follows: 

𝑇𝐹𝐼𝐷𝐹(𝑖) =
 𝑡𝑖

𝑇𝑖

× 𝑙𝑜𝑔
𝐷

𝐷𝑖  
 

Based on 1072 terms with tf-idf weights, the expert panel helped us establish 512 core terms – more detail is 

provided in Section 4.2.2. The 512 core terms were used as basic inputs for the semantic model, and an IPC-

record matrix was used for the categorical model. The statistical information, including the number of patents, 

the number of IPCs, the total IPC frequency, the number of terms, and the total term frequency for the three 

groups is given in Table 6. Detailed information about the 65 firms is provided in Appendix B.   

Table 6 

The statistical information of the three groups 

Group Variable Min Max Mean Standard Deviation 

A Number of patents 2 239 79 67.2 

Number of IPCs 1 18 10.1 5.3 

Total IPC frequency 3 269 82.3 71.0 

Number of terms 0 124 46.2 33.9 

Total term frequency 0 374 126.6 105.6 

B Number of patents 2 97 27.9 26.2 

Number of IPCs 2 15 6.6 3.5 

Total IPC frequency 12 135 44.5 34.8 

Number of terms 0 26 15.1 8.6 

Total term frequency 0 74 39.5 24.6 

C Number of patents 1 56 11.0 13.4 

Number of IPCs 1 10 3.7 3.0 

Total IPC frequency 1 98 14.0 19.9 

Number of terms 0 20 9.5 4.8 

Total term frequency 0 59 26.6 15.3 

 

Generally, a larger firm will have more patents, but several firms in Groups A and B only had few patents 

while some in Group C had a large number of patents. As shown in Table 6, all variables in Group C had the 

smallest values of standard deviation. In addition, since we applied a relatively strict term-cleaning and 

identification process (i.e., the term clumping process), it is reasonable that several firms holding few patents 

had no core terms. This real-life situation highlights our efforts to integrate the categorical and semantic models 

for patent portfolio analysis – IPC-based similarity measures may be noisy, but sometimes one portfolio might 

have no terms and be unsuitable for term-based similarity measures. 

4.2.2. Validation measures 

Validation measures are the way to test the performance and reliability of our methodology. In particular, we 

aimed to avoid possible over-fitting issues, and hence divided the data set into a training set and a test set. The 



training set consisted of 50 portfolios with 1315 patents, which were randomly selected from the entire portfolio 

list. The remaining 15 portfolios, with 317 patents, were grouped in the test set. We used the training set to 

decide the parameters and weights, and the test set was designed to reveal the adaptability of our method. 

An expert panel was organized to help label data. Two technical experts from General Electric Medical 

Systems (China) Co., Ltd. and one Master student from the School of Management and Economics at the 

Beijing Institute of Technology, whose research concentrated on technology mergers and acquisitions in China’s 

medical device industry, were involved. Based on their technical background and understanding of the selected 

65 firms, the three experts scored the technological similarities between the 2080 firm-pairs with values. The 

criterion for labelling data was: if the experts thought the technological foci of two patent portfolios were similar, 

they would score the similarity value of the firm-pair as 1; if they were not sure, 0.5 would be given; and if 

irrelevant, they would score it as 0. The inter-rater agreement in scores between the three experts is shown in 

Table 7. 

Table 7 

The inter-rater agreement in scores between the three experts 

 Expert 1 Expert 2 Expert 3 

Expert 1 1 0.89 0.79 

Expert 2   1 0.76 

Expert 3     1 

 

As shown in Table 7, Expert 1 and Expert 2 shared close correlation, In fact, Experts 1 and 2 are the 

technical experts we invited from General Electrical Medical Systems (China) Co., Ltd. Although the scores 

given by Expert 3, the Masters student, were not as similar to the other two, these correlation values are still 

acceptable as a validation measure. Furthermore, considering that some experts issued a score of ‘1’ 

conservatively, while others were liberal, we weighed the experts’ scores in the following manner. Given the 

total number of 1 that the i-th expert scored is λi (i ≤ 3), the weight of the expert can be calculated as: 

𝜀𝑖 =

1
λ𝑖

⁄

∑
1
λ𝑘

3
𝑘=1

 

We collected the expert scores for the 2080 pairs of firms, but found it extremely difficult to use the 

similarity values calculated by our method to directly match the scores given by the experts, even across a small 

range. Therefore, we used the validation rankings, and the 2080 firm-pairs were extended to 45,760 rankings. As 

an example, the firm-pair of Portfolio 𝑃1 and 𝑃2 will become the rankings (i.e., higher, lower, or equal) derived 

by the comparisons between the similarity of Portfolio 𝑃1  and 𝑃2 [the similarity can be either  𝑆(𝑃1, 𝑃2) , 

or 𝐶𝑆(𝑃1, 𝑃2), or 𝑆𝑆(𝑃1, 𝑃2)] and the similarities of Portfolio 𝑃1 and other 63 portfolios. 

We introduced an F Measure as an indicator of performance, which can be calculated below. The Precision 

value measures how many rankings calculated by our method are the same as those given by the experts. For 

example, if the results in our similarity of Portfolio 𝑃1 and 𝑃2 were larger than that of 𝑃1 and 𝑃3, and the 

experts’ scores were the same as our method, we can say that ranking is correct. The Recall value measures how 

many rankings of “higher” can be correctly calculated by our method. 

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

4.3. Experiments with the training set 

4.3.1. The categorical similarity measures 



The entire corpus contains 41 4-digit IPCs and 119 7-digit IPCs, at this stage, we set the universe as 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥64, 𝑥65}, where 𝑥𝑖 is the 𝑖-th patent portfolio, and denoted each 7-digit IPC 𝑗 as a fuzzy set 𝐴𝑗, 

where 𝑗 ∈ [1,119]. A basic membership function 𝐴𝑗(𝑥𝑖) is set below, where 𝑃𝑁(𝑥𝑖) represents the number of 

the patents held by portfolio 𝑥𝑖 , and 𝑃𝑁(𝑗|𝑥𝑖) is the number of the patents that were held by portfolio 𝑥𝑖  and 

belonged to IPC 𝑗. 

𝐴𝑗(𝑥𝑖) =
𝑃𝑁(𝑗|𝑥𝑖)

𝑃𝑁(𝑥𝑖)
 

It is clear that  Aj(xi)  calculates membership grades in a linear way and, we tested several non-linear 

functions, based on the training set, to reconstruct  𝐴𝑗(𝑥𝑖)  to seek the most suitable function for the best 

performance.  

 

Fig. 4. Fuzzy set  𝐴𝑗 with different membership functions 

 

This model uses the cosine measure (given in Section 3.2) for vector-based similarity measures; however, 

we allocated a 0.5 weight when a 7-digit IPC did not match but its superordinate 4-digit IPC was the same. For 

example, portfolio A contains A61B001, while portfolio B does not but it has A61B005, which shares the same 

superordinate 4-digit IPC A61B with A61B001. At this stage, the cross product 4 of A61B001 𝑐𝑝(𝐴, 𝐵)  is 

calculated as below: 

𝑐𝑝(𝐴, 𝐵) = 𝜗𝐴(A61B001) × (0.5 × 𝜗𝐵
𝑀𝑖𝑛) 

where 𝜗𝐴(𝐴61𝐵001)  is the membership grade of A61B001 in vector 𝑉(𝐴) , and 𝜗𝐵
𝑀𝑖𝑛 is the minimum 

membership grade in vector 𝑉(𝐵). 

We also compared with traditional cosine and Jaccard approaches with raw IPC frequency, where the cosine 

approach follows the definition given in Section 3.2 and the Jaccard approach is further described as follows: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑥𝑖 , 𝑥𝑘) =
𝑉(𝑥𝑖) ∙ 𝑉(𝑥𝑘)

|𝑉(𝑥𝑖)| + |𝑉(𝑥𝑘)| − 𝑉(𝑥𝑖) ∙ 𝑉(𝑥𝑘)
 

The results of the experiments are given in Table 8.  

Table 8 

Performance of the categorical model vs. traditional cosine & Jaccard approaches 

                                                           
4 Note that the norm of the related vector will also be changed. 



No Membership Function Precision Recall F Measure 

1 A traditional Jaccard approach with raw IPC frequency 0.659 0.690 0.674 

2 A traditional cosine approach with raw IPC frequency 0.659 0.691 0.675 

3 𝑦 = 𝐴𝑗(𝑥𝑖) 0.674 0.711 0.692 

4 
𝑦 = √𝐴𝑗(𝑥𝑖) 

0.684 0.728 0.705 

5 
𝑦 = √𝐴𝑗(𝑥𝑖)

3
 

0.686 0.731 0.708 

6 𝑦 = 𝐴𝑗(𝑥𝑖)2 0.666 0.699 0.682 

7 𝑦 = 𝐴𝑗(𝑥𝑖)3 0.664 0.698 0.681 

8 𝑦 = 𝑒−𝜋(𝐴𝑗(𝑥𝑖)−1)2
 0.679 0.718 0.698 

 

Several interesting observations are summarised as follows: 1) the comparison between Approaches 1 and 2 

endorse the argument given by Leydesdorff (2008), in which the cosine measure demonstrates tiny advantages 

over the Jaccard approach; 2) the engagement of fuzzy sets provided a benefit to the categorical model, and non-

linear deformations further improved the performance; and 3) the reconstruction with the cube root function 

(Approach 5) obtained the highest F Measure (with the highest values in both Precision and Recall), which 

illustrated the best performance in the experiments with the training set. 

4.3.2. The semantic similarity measures 

Based on the 512 core terms derived by the term clumping process and their co-occurrence relationships, we 

generated a term co-occurrence map (shown in Fig. 5) via VOSviewer (van Eck & Waltman 2009; Waltman, 

van Eck & Noyons 2010). According to Fig. 5, we could easily address several “hot” topics, and this figure 

provided an overview of the landscape of China’s medical device industry, which could be a reference to help 

understand the diverse technical foci of the corpus and better explore their similarities. 



 

Fig. 5. Term co-occurrence map of China’s medical device industry (generated by VOSviewer). 

 



An improved K-means algorithm (Zhang et al. 2016a) was introduced to cluster terms in each patent 

portfolio. We used raw term frequency directly and returned a local optimum K value of 5 in the interval [3, 10]. 

In this context, we created a 3-level tree structure for each patent portfolio. We set the cluster label as a Level 1 

leaf and the remaining terms in the cluster were set as Level 2 leaves. If the total number of terms in a portfolio 

was fewer than 5, we treated them all as Level 2 leaves. A sample of the tree structure is shown in Table 9. 

Table 9 

Sample tree structure of a patent portfolio 

Patent Portfolio (Root) Level 1 Leaf Level 2 Leaf 

Firm X magnetic resonance x ray photography system 

control unit 

medical image device CT 

magnetic resonance image 

magnetic resonance system 

medical image system 

MRI system 

 

Before we calculated the semantic similarity, we introduced AHP to set the weights of the six matching 

types (given in Table 2). As discussed, we chose 𝑤1 > 𝑤2 > 𝑤6 >  𝑤4 = 𝑤5 > 𝑤3 as the basis of our case: an 

entire match is best (𝑤1 > 𝑤2~ 𝑤6); matches with Level 1 leaves are always better than matches with Level 2 

leaves (𝑤2 >  𝑤6 and  𝑤4 & 𝑤5 > 𝑤3); and there is no direction for the similarity measure ( 𝑤4 = 𝑤5). At this 

stage, following the basic steps and the AHP fundamental scale proposed by Saaty (1990), we compared the 

pairwise values and constructed the matrix in Table 10. Since the consistency ratio (CR) was less than 0.1, the 

estimate of the pairwise comparison matrix was acceptable. Therefore, we set the priority vector as the vector of 

the weights, where 𝑊 = {𝑤1, … , 𝑤6} = {0.43, 0.21, 0.04, 0.08, 0.08, 0.16}. 

Table 10 

The pairwise comparison matrix 

 
R1 R2 R3 R4 R5 R6 Priority Vector 

R1 1 3 6 5 5 4 0.43 

R2 1/3 1 5 3 3 2 0.21 

R3 1/6 1/5 1 1/3 1/3 1/4 0.04 

R4 1/5 1/3 3 1 1 1/3 0.08 

R5 1/5 1/3 3 1 1 1/3 0.08 

R6 1/4 2 4 3 3 1 0.16 

𝜆𝑚𝑎𝑥=6.25, CR=0.04 

 

The semantic similarity values 𝑆𝑆(𝑃1, 𝑃2) were then calculated. The performance of our semantic similarity 

measure approach compared with the raw frequency-based cosine and Jaccard approaches is shown in Table 11.  

Table 11 

Performance of the semantic model vs. traditional cosine/Jaccard approaches 



No Method Precision Recall F Measure 

1 Raw frequency & cosine 0.729 0.819 0.771 

2 Raw frequency & Jaccard 0.726 0.815 0.768 

3 Tree 0.751 0.841 0.793 

 

As shown in Table 11, the tree-based sematic model improved the performance in both Precision and Recall, 

and demonstrates the efficiency of this experiment. Delving into the reasons why, we conclude: 1) the tree 

structure provided a way to effectively retrieve and identify the most significant concepts of patent portfolios, 

which could be core technologies or the technological components of related companies. The comparison 

between these structures further highlights such concepts and makes the results accurate; 2) the basic elements 

of the trees in this case were the core terms identified by our expert panel, and it is clear that the influence of 

these deep-cleaned terms cannot be ignored; and 3) despite not being the main focus of this paper, the 

comparison between the cosine and Jaccard approaches is a hotspot in bibliometrics. In our experiments, the 

results of both the categorical and semantic models support the arguments stated by previous studies, although 

we found the advantage of cosine approaches to be extremely weak. 

4.3.3. Similarity score calculation 

Before calculating similarity scores, we normalized the results derived from the categorical and semantic 

similarity measures to make sure they were within the same scale for further integration. A min-max 

normalization approach was applied, and the formula is described as follows: 

𝑥′ =
𝑥 − 𝑚𝑖𝑛 (𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛 (𝑥)
 

where 𝑥  is an original value, 𝑥′  is the normalized value, and 𝑚𝑖𝑛 (𝑥)  and 𝑚𝑎𝑥(𝑥)  is the minimum and 

maximum value of the feature 𝑥 respectively. 

Actually, this case showed no clear bias between IPCs and text elements, but did leave concern that the 

scope was concentrated on a relatively limited technology (i.e., medical device), and text elements might be 

preferable. However, aiming to seek the best way to combine the results of the two models, we first chose the 

best results of the two models, i.e., Approach 5 in Table 8 and Approach 3 in Table 11, and applied a traditional 

weighting approach to functionally integrate the results. The similarity score 𝑆(𝐴, 𝐵)  can be calculated as 

follows: 

𝑆(𝐴, 𝐵) = 𝑆(𝐶𝑆(𝐴, 𝐵), 𝑆𝑆(𝐴, 𝐵)) = 𝑤𝑐𝑠 × 𝐶𝑆(𝐴, 𝐵) + 𝑤𝑠𝑠 × 𝑆𝑆(𝐴, 𝐵) 

where 𝑤𝑐𝑠 and 𝑤𝑠𝑠 is the weight of 𝐶𝑆(𝐴, 𝐵) and 𝑆𝑆(𝐴, 𝐵) respectively, and 𝑤𝑐𝑠 + 𝑤𝑠𝑠 = 1. 

Our considerations follow. 1) Since the performance of the semantic model was better than the categorical 

model, we set several observation points to detect change in performance. 2) Despite a continuity interval of 

between 0 and 1, the most interesting thing to test was whether the semantic model and the categorical model 

could work in a complementary fashion to achieve better performance than applying the results individually. 

The performance of the traditional weighting approach-based similarity calculation is shown in Fig. 6. 



 

Fig. 6. Performance of the traditional weighting approach-based similarity calculation. 

Unfortunately, the categorical similarity measures and the semantic similarity measures did not complement 

each other if we simply combined their results with certain weights. Performance of the combinations was even 

worse than when applied individually. One argument to explain the reason is: we validated the results by the 

rankings, but such combinations broke basic rules in the two models despite normalization. Therefore, we 

designed several assembled sets to integrate the two types of similarity values in a milder way, and their 

performance is given in Table 12. 

Table 12 

Performance of the assembled sets for the categorical and semantic similarity measures  

No Method Precision Recall F Measure 

1 
𝑆1(𝐴, 𝐵) = {

𝐶𝑆(𝐴, 𝐵)     𝑖𝑓 𝐶𝑆(𝐴, 𝐵) > 0

𝑆𝑆(𝐴, 𝐵)                           𝑒𝑙𝑠𝑒
 

0.65 0.66 0.66 

2 
𝑆2(𝐴, 𝐵) = {

𝑆𝑆(𝐴, 𝐵)      𝑖𝑓 𝑆𝑆(𝐴, 𝐵)  > 0

𝐶𝑆(𝐴, 𝐵)                           𝑒𝑙𝑠𝑒
 

0.67 0.69 0.68 

3 
𝑆3(𝐴, 𝐵) = {

𝑆𝑆(𝐴, 𝐵)      𝑖𝑓 𝑆𝑆(𝐴, 𝐵)  > 𝐶𝑆(𝐴, 𝐵) 

𝐶𝑆(𝐴, 𝐵)                                          𝑒𝑙𝑠𝑒
 

0.68 0.71 0.69 

4 
𝑆4(𝐴, 𝐵) = {

𝑆𝑆(𝐴, 𝐵)      𝑖𝑓 0 < 𝑆𝑆(𝐴, 𝐵) < 𝐶𝑆(𝐴, 𝐵)

𝐶𝑆(𝐴, 𝐵)                                                𝑒𝑙𝑠𝑒
 

0.79 0.92 0.85 

 

The four assembled sets hold diverse priorities, e.g., 𝑆1(𝐴, 𝐵)  is prior to the results of the categorical 

similarity measures while 𝑆2(𝐴, 𝐵) emphasizes the semantic model, and 𝑆3(𝐴, 𝐵) prefers a larger similarity 

value but 𝑆4(𝐴, 𝐵) uses smaller values. The first three assembled sets did not achieve our expectation, but the 

performance of 𝑆4(𝐴, 𝐵) was good and illustrates the complementarity of the categorical and semantic similarity 

measures. However, it is intriguing that smaller values worked better than larger values. We consulted the expert 

panel on this issue, and one reasonable explanation was provided: it is difficult for experts to use a numeric 

value to evaluate the technological similarity between portfolios, and a large number of portfolios were marked 

as having limited or no similarity to the others. Thus, in some senses, the similarity derived from terms or IPCs 

might be deeper and broader than the marks given by experts. In another words, using smaller values to increase 

the threshold of exploring similarity might be able to cater to expert scores. However, one remaining concern 

here is, whether similarities derived by either of the models that are different from expert knowledge can be 

meaningful or not. We specifically focus on this question in Section 4.5. 

4.4. Experiments with the test set 



Based on the results of the experiments with the training set, the parameters for the case were decided as 

follows: 1) the membership function 𝑦 = √𝐴𝑗(𝑥𝑖)
3

 and cosine measure for the categorical model; 2) the tree 

structure with the weights of the six matching types 𝑊 = {𝑤1 , … , 𝑤6} = {0.43, 0.21, 0.04, 0.08, 0.08, 0.16} for 

the semantic model; and 3) the assembled set 𝑆4(𝐴, 𝐵)  to integrate the results of the two models. The 

performance of the test set with the parameters above is given in Table 13. 

Table 13 

Performance of the test set with the given parameters 

No Method Precision Recall F 

1 The categorical model 0.75 0.81 0.78 

2 The semantic model 0.84 0.91 0.87 

3 The hybrid similarity measure method 0.84 0.95 0.89 

 

Shown in Table 13, the performance of the semantic model was better than that of the categorical model, and 

the hybrid similarity measure method further improved performance. Similar to the results of the experiments 

with the training set, Table 13 demonstrates the adaptability of our methodology. Considering the risk of over-

fitting, we used a training set to choose the parameters, and the test set acted as an independent dataset for 

evaluating the performance of our method. Clearly, the results of the test set were consistent with those from the 

training set, which supports the point that our methodology is not only suitable for this case study but can be 

adaptable to a wide range of related data sources and cases. However, such adaptability does not clarify that our 

method can take the place of any other approaches for measuring similarities. Instead, we emphasize that our 

method had the best performance in this case and holds the capability to work well in other situations.   

4.5. Case study on Shanghai United Imaging Healthcare Co. 

Even though the performance of our methodology has been demonstrated by experiments with training and 

testing sets, it is still interesting to delve into the case of China’s medical device industry. The foci of this case 

study in Section 4.5 are: 1) to visualize the technological relationships between the selected portfolios in China’s 

medical device industry based on the results of the hybrid similarity measure method; and 2) to address concerns 

on certain discrepancies between the calculated method and the expert knowledge, and explore possible 

industrial implications from the perspective of technology mergers and acquisitions. 

We applied the parameters decided by the training set to the entire dataset and obtained 389 links between 

the 65 portfolios. We used VOSviewer (van Eck & Waltman 2009; Waltman, van Eck & Noyons 2010) to 

generate a portfolio correlation map of China’s medical device industry, shown in Fig. 7 (comparably, the 

portfolio correlation maps respectively generated by the results of the categorical model and the semantic model 

are given in Appendix C). Note that, based on the hybrid similarity measure method, there are nine portfolios 

that do not share links to any other portfolios, thus, Fig. 7 only contains 53 nodes, which represents the 53 

remaining portfolios. In addition, the size of node is used to describe the total link strength of a node.  



 

Fig. 7. Portfolio correlation map of China’s medical device industry (based on hybrid similarity measure method 

with IPCs and terms derived from DII database). 

The portfolios within the red circle all concentrate on medical imaging devices, and UnitedImage is the 

leading one among them. Known as United Imaging Healthcare (UIH) Co., UIH is a high-tech company in 

Shanghai, South China, and dedicates to the development, manufacturing and sales of innovative medical 

imaging equipment and technologies. Its major business units include: components, computed tomography, 

molecular imaging, magnetic resonance, radiotherapy, X-ray, mobile health, and software5. Although some of 

the other portfolios in the circle are also listed companies, medical imaging is only one of their major products, 

e.g., Neusoft is involved with medical imaging equipment and information systems6; Lepu mainly focuses on 

cardiac therapy, but angiographic equipment is one of its major products7; the major business direction of Hejia 

is minimally invasive treatment, and digital subtraction angiography is one important auxiliary product 8 . 

Similarly, small and medium size companies such as Well.D, Sanwe, Sainty, and Chengguang are also within 

this scope. These results were calculated by our hybrid similarity measure method and visualized in Fig. 7, and 

they exactly match the scores given by the expert panel, and the reliability of our method in identifying 

technological similarities from patent documents is effectively demonstrated. 

It is definitely more interesting to discuss the unexpected results – those that were different from the expert 

scores. Concentrating on UIH, the remaining portfolios in the circle, i.e., Xinle, Kindly, Kodon, and HerMedical, 

are such examples. Our expert panel thought the four firms should have no technological similarities to UIH, 

since their main business sectors are not within the scope of medical imaging, but the method’s analysis of the 

patent corpus and the websites of those four companies revealed intriguing results. 1) Shanghai Kindly Co. is a 

                                                           
5 More details can be seen on the website: http://www.united-imaging.com/ 
6 More details can be seen on the website: http://medical.neusoft.com/en/ 
7 More details can be seen on the website: http://en.lepumedical.com/ 
8 More details can be seen on the website: http://en.hokai.com/ 



listed company in Group A and is famous for medical appliances. It has no apparent direct relationship with 

UIH. However, “angiography catheter” is one of the items included in the category of intervention accessories9 

and linked both companies. Considering they have similar geographic locations, enterprise size, and diverse 

divisions for angiography, UIH and Shanghai Kindly Co. could seek opportunities to cooperate in the sector of 

angiography. This potential relationship belongs to certain of technological similarity, and represents a 

promising recommendation that may result from this method. 2) HerMedical is a small company in Wuhan, 

Central China and belongs to Group C in our set. This company started with patents in optical imaging, but has 

been dedicated specifically to imaging for gynaecological oncology10. By contrast, mammography supported by 

previous patents is new business for UIH, and new methods for detecting lung cancer in early stages have 

already been commercialized11. Therefore, it is reasonable for UIH to consider HerMedical as the target of 

technology mergers or acquisitions if UIH plans to advance to the field of gynaecological oncology and holds 

interest to the market of Central China. 3) Hebei Xinle Sci & Tech Co., in Group B, specifically focuses on the 

manufacturing of blood collection tube systems, which also appears to have no relationship to UIH. However, 

on the Chinese version of its website, a new direction for one of its major products is an intelligent blood 

collection management system, which could form a part of hospital or laboratory information systems12. This 

case definitely matches with UIH’s focus on mobile health and software. Similarly, the main products of Kodon 

(also known as Tianjin Andon) are monitors for blood pressure and diabetes, but its current strategy is to 

promote i-health products, including a series of smart bracelets and applications in Apple Stores13. Xinle and 

Kodon have geographic advantage in collaboration, and considering the capital of Kodon and existing 

successful products of both companies in mobile health, we could imagine possible competition between UIH 

and Kodon if UIH attempts to enter the mobile health market in North China – Both Xinle and Kodon are 

located in the Bohai rim, the most famous economic region surrounding Beijing. 

As discussed above, from the perspective of technology mergers and acquisitions, the results given by our 

hybrid method demonstrated capability to explore underlying technological similarities from patent documents 

in an objective way. The valuable intelligence gained from this case study also proves the benefits of our 

method in practical applications. 

5. Discussion and Conclusions 

This paper proposes a hybrid method for measuring similarity in patent portfolios. Similarity measures are 

separated into categorical similarities and semantic similarities to account for both IPCs and text elements. 

Fuzzy sets are introduced to transform vague IPC definitions into numeric values, and a semantic tree is 

constructed to calculate the similarities between hierarchical structures. Considering the diverse definitions of 

patent portfolios (e.g., patent assignee, country and region, and technical topic), the patent corpus of selected 

firms in China’s medical device industry was used to demonstrate the reliability, adaptability, and performance 

of our method. We measured the technological similarities between different firms, and validated the results 

using an expert ranking matrix. A case study, from the perspective of technology mergers and acquisitions, was 

conducted to examine some unexpected results, which differed to the scores given by the expert panel. The 

                                                           
9 The product information of Shanghai Kindly can be seen on the website: http://www.kdlchina.com/kdlnews.aspx?id=55, at 

the same time, since UIH does not directly mention angiography as its major direction of products, we locate UIH’s patents 

focusing on this sector, and the results include CN103054580 B, CN105640583 A, etc.  
10 Unfortunately, this small company only has a website of Chinese version: http://www.heer.com.cn/index.asp 
11 News of UIH’s efforts on mammography and early-stage cancer detection can be addressed at the websites: 

http://www.united-imaging.com/vm/company-news-article/items/uih-honored-with-three-red-dot-product-design-

awards.html and http://www.united-imaging.com/vm/news-archive.html?year=2015,  and such new business are supported 

by UIH’s previous patents, such as CN103845816 A, CN104766340 A, CN 105748161 A, and CN 104182965 A. 
12 More detail can be seen on the websites: http://en.hbxinle.com/index.asp and http://www.hbxinle.com/product/ (product 

information in Chinese) 
13 More detail can be seen on the websites: http://www.andonhealth.com/index.htm and 

http://www.jiuan.com/index.php?case=archive&act=list&catid=25 (i-health products) 

http://www.kdlchina.com/kdlnews.aspx?id=55
http://www.united-imaging.com/vm/company-news-article/items/uih-honored-with-three-red-dot-product-design-awards.html
http://www.united-imaging.com/vm/company-news-article/items/uih-honored-with-three-red-dot-product-design-awards.html
http://www.united-imaging.com/vm/news-archive.html?year=2015
http://en.hbxinle.com/index.asp
http://www.hbxinle.com/product/
http://www.andonhealth.com/index.htm
http://www.jiuan.com/index.php?case=archive&act=list&catid=25


discussion describes the benefits in identifying underlying technological similarities between patent portfolios 

gained from our method. 

5.1. The strengths and weaknesses of categorical and semantic similarity measure models 

Similarity measures are basic tools for a wide range of bibliometric studies and, as such, detailed 

comparisons and discussion on the strengths and weaknesses of different approaches to similarity measures have 

been conducted (Leydesdorff 2008; Boyack & Klavans 2010; Moehrle 2010; Boyack et al. 2011). Yet, in-depth 

insights for patent-oriented similarity measures are still elusive. At this stage, a comparison between IPC- and 

word or term-based similarity measures can be meaningful to further patentometric studies. In particular, both 

categorical and semantic similarity measure models act as representations and, through experiments we 

compared these two models in a variety of criteria as follows.  

Data Sources – both models can adapt to suit popular patent data sources, such as the United States Patent 

and Trademark Office (USPTO) database, the European Patent Office (EPO) database, and DII patents. 

However, considering similar situations in textual content, the semantic model can be used for a broader range 

of ST&I data sources, such as scientific publications and academic proposals. 

Data Scope – data scope is one of the most important issues to influence the efficiency of both models. 

Generally, both show better performance on data with a relatively wide scope and low-coupled sub-domains, 

like multidisciplinary studies, than on data with a narrow scope with high-coupled sub-domains, like a particular 

technological area.  

Data Size – We did not conduct direct experiments to test for scalability, but we feel that both models are 

suitable for large-scale datasets, since we fully considered time and space complexity when designing our 

algorithms. In addition, our experiments involved three groups of portfolios with a diverse number of patents, 

and diversity would not change significantly with an increase in data size. Therefore, it is reasonable to imagine 

that performance levels in large-scale datasets would be acceptable. The only concern regarding data size is that 

the semantic model does not work smoothly on portfolios with only a few patents. The semantic model requires 

a minimum threshold of terms to be effective, but the categorical model can always retrieve at least one IPC 

from one patent that is workable.   

Expert Knowledge – Engaging sufficient experts to supervise data is not always possible, but the degree of 

expert engagement is a point that helps us compare the categorical and semantic similarity measure models. As 

shown in our experiments, the only expert knowledge required in the categorical model is for the selection of 

membership functions. An alternative solution is to use a training set to traverse a number of optional 

membership functions before deciding which one is best. By contrast, the semantic model needs relatively heavy 

expert engagement. On one hand, we need expert help to identify core terms for the term clumping process 

which significantly influence the accuracy of further analyses. On the other hand, although the weights of the six 

matching types can be settled and are reusable in most cases, it still makes sense to invite experts to confirm or 

refine these weights according to the actual requirements of research questions. In short, the categorical 

similarity measure model is more suitable for situations that lack expert support, while the semantic similarity 

measure model provides higher accuracy if sufficient expert knowledge is available. 

Accuracy – IPC is a technological classification system designed and maintained by the World Intellectual 

Property Organization (WIPO). Patent applicants need to match their inventions with existing classification 

codes and in some cases such subjective judgment might add noise. Similarly, an assembled set of patents with a 

number of core terms could represent an invention in more than one field, and expert engagement would further 

improve accuracy in these situations. Given these considerations, the categorical model can perform well in 

relatively unsupervised environments, but will reach a bottleneck given enough noise in the IPC system. By 

contrast, the semantic model cannot be easily adapted to highly unsupervised environments, and the negative 

effects that result from meaningless terms and synonyms could serve as a fatal blow for this method. However, 



the accuracy of the semantic model is rapidly improved with the engagement of experts – even limited expert 

knowledge – and at this stage its accuracy has the potential to be better than the categorical model, which has 

been demonstrated by the experiments in this paper. 

Based on the discussion of the strengths and weaknesses of both models, it may be more promising to 

consider a strategy that integrates both. One feasible option is to use categorical similarity measure to pre-

process the raw data, which would be effective for filtering noise or features, and then apply semantic similarity 

measures to deep-clean the data for accurate similarity measures and insight discovery. Given real-world 

research questions, cases, and data, another option is to decide the way to consolidate the results of the two 

models in 𝑆(𝐴, 𝐵), as we did in the empirical study.  

5.2. Implementation and possible applications 

Similarity measures are basic techniques that have been widely applied to patent analyses, and especially to 

patentometric studies with cluster- or classification-based analyses. Concentrating on patent portfolio analysis, 

there are multiple entities with which to define the portfolio (e.g., individual, organization, region, and country), 

and no matter which entity the portfolio reflects, it is necessary to identify relationships between the portfolios 

via similarity measures. In this context, we could visualize the applications of our method based on multiple 

needs, and we attempt to summarize as follows: 

Multidisciplinary Studies – patent maps based on similarity measures are one important scholarly direction 

for multidisciplinary studies. Similarity measures are also fundamental parts of identifying relationships 

between different disciplines, which are packaged as portfolios. Related works currently emphasize IPCs (or 

UPCs for the patents from the USPTO) for similarity measures (Leydesdorff & Bornmann 2012; Kay et al. 2014; 

Leydesdorff, Kushnir & Rafols 2014), and our method supports those tasks. 

Competitive Technical Intelligence (CTI) Studies – CTI emphasizes tasks in technology-related competition 

and collaboration analyses for a specific company, industry, or country (Porter & Newman 2011). It is easy to 

link patent portfolios with those entities and, compared to traditional co-occurrence analysis with bibliography 

couplings and IPCs, our method is able to delve into textual content to discover the underlying relationships in 

detail. The empirical study, in particular the case study of technology mergers and acquisitions, is within this 

scope.  

5.3. Limitations and future research 

Measuring the technological similarity between patent portfolios is not an easy task for purely quantitative 

computation, and there are many internal and external factors that influence the performance of our method. It is 

therefore meaningful to discuss such sensitive items in detail and provide a reference for applications and 

further studies.  

The Expert Scores for Validation – We believe that technical experts know much more than machines and 

the scores given by experts are credible. However, we must also agree that such subjective judgement, derived 

from the diverse research experience of experts, is a key issue that heavily influences the validation of our 

methods. Despite our use of rankings to validate the results, bias still exists. In addition, technological similarity 

itself is a fuzzy concept, and such uncertainty also increases the difficulty of processing expert scores. We 

attempted to reduce the fuzziness by asking experts to categorize similarity into “similar,” “not sure,” and 

“irrelevant” via 1, 0.5, and 0 respectively, but it is well-known in fuzzy set theory that the term “similar” is 

rough. Therefore, the expert scores in our experiments are open to criticism, but do act as a fair platform to 

compare our methods with other traditional approaches. 

The Weights and Parameters – Establishing weights and parameters is always a fundamental task. In our 

methods these efforts include: the selection of the membership functions; weighting the six matching types; and 

the method for integrating the results from the categorical and semantic models. We attempted to use the most 



promising manner to decide these weights and parameters either quantitatively or qualitatively, but machine 

learning and optimization techniques might be required in future studies.  

The Empirical Study – We chose real-world data in China’s medical device industry for the empirical study, 

but the number of selected patents may not be sufficient for testing our method at every point. Although this 

case study demonstrated that our method provides insights into technology mergers and acquisitions, using real-

world data also introduced unexpected challenges, such as appropriate validation measures. It would therefore 

be interesting to apply our methods to a broad range of cases to test their reliability and robustness.  
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Appendix A. Details of the construction of the 3-level tree structure 

In this appendix, we provide the technical details of the construction of the 3-level tree structure, which includes 

related algorithms and some examples. 

1) The term clumping process 

We proposed a term clumping process (Zhang et al. 2014a) to combine quantitative analyses and expert 

knowledge for the cleaning, consolidating, and clustering of scientific and technological terms. The related 

efforts applied in this paper include: 

 Thesaurus-based meaningless term removal (e.g., pronoun, preposition, and common academic terms, 

such as methodology, conclusion, and comment);  

 Stem-based term consolidation (e.g., singular/plural, and other variations of nouns); 

 Association rule-based term consolidation: terms sharing more than two words are consolidated (e.g., 

dye sensitized solar cell and dye sensitive solar cell), and low-frequency terms are consolidated with 

the high-frequency terms that appear together in a number of records; 

 Expert knowledge-based pruning. 

2) The portfolio-term matrix 

The portfolio-term matrix describes the direct relationships between patent portfolios and the core terms. We 

denote the number of the patent portfolios and the core terms as 𝑛 and 𝑓 respectively. 𝛿𝑖,𝑗 is the term frequency 

of the core term 𝑡𝑗 (𝑗 ≤ 𝑓)  in the patent portfolio  𝑥𝑖  (𝑖 ≤ 𝑛) . Thus, the portfolio-term matrix 𝛭  could be 

described as:   

Μ = [

𝛿1,1 ⋯ 𝛿1,𝑓

⋮ ⋱ ⋮
𝛿𝑛,1 ⋯ 𝛿𝑛,𝑓

] 

3) The ST&I data-oriented K-means clustering algorithm 

This algorithm was first proposed for a high accuracy clustering performance for the United States (US) 

National Science Foundation (NSF) granted proposal data (Zhang et al. 2016a). We divided the features of 

ST&I data into general features (e.g., title and abstract terms) and specific features (e.g., program element code 

of the US NSF proposals, and the IPC of the patents). We also compared normal term frequency (TF) and the 

TFIDF-weighted values of terms. For best performance, we automatically calculated a K-value within a selected 

interval and assembled the best feature set. Specifically, the improved K-means clustering algorithm applied in 

this paper includes the following steps: 

 Build assembled sets with blended features. Since the dataset only includes title and abstract terms, we 

only built 4 assembled sets (i.e., title terms + abstract terms (with normal TF or TFIDF); and inverse 

ratio weighted title terms + abstract terms (with normal TF or TFIDF)); 

 Build the training set with expert knowledge (in some cases several training sets would be better). We 

designated all the terms in one patent portfolio as the training set, which would usually number 

approximately 50–100, and asked technical experts to help classify these terms into several groups; 

 Establish the parameters for best performance. This process was aided by a validation model to ensure 

clustering accuracy (e.g., the local optimum K-value and the best feature set); 

 Apply the algorithm to the rest of the data set. Technical experts helped to validate the results manually, 

and if the results of some portfolios did not perform well, we would change the K value by plus or 

minus 1 and re-run the algorithm. The best feature set remained fixed. 



The algorithm in this paper is applied to each patent portfolio, and the terms in each are grouped into several 

clusters. An extreme situation occurs if the total number of terms in one patent portfolio is smaller than a 

threshold. In these cases, each term is considered to be a cluster and all are set as Level 2 leaves linked directly 

to the root. The threshold level depends on the specific data corpus, but we set it at a default value of 5.  

4) The prevalence value 

We designed the prevalence value to take term frequency and the proportion that the term occupies in each 

related record into consideration. We also provide a way to highlight the most representative terms (Zhang et al. 

2014b). We denote that the patent portfolio 𝑥𝑖 contains a corpus with 𝜙 records and a number of terms. If a 

cluster 𝐶 = {𝑡1, 𝑡2, … , 𝑡𝑖, … , 𝑡𝛼−1, 𝑡𝛼}  includes 𝛼  distinct terms that relate to the record corpus  𝐷 =

{𝑑1, 𝑑2, … , 𝑑𝑗 , … , 𝑑𝛽−1, 𝑑𝛽}, the prevalence value of the term 𝑡𝑖 could be calculated as: 

𝑃(𝑡𝑖) =
𝛽

𝜙
× ∑

the frequency that 𝑡𝑖  appears in 𝑑𝑗

the total number of terms that appears in 𝑑𝑗

𝛽

𝑗=1

  

  



Appendix B. Statistical information of the entire firms 

Table  

Statistical information of the entire firms 

Group FirmName #Patent #Term  *Term  #IPC  *IPC 

C Aikekai Technology (Beijing) 3 11 30 3 7 

C Beijing Boren Yongtai Medical 2 8 23 2 2 

B Beijing Choice Electronic Tech 97 19 60 10 108 

C Beijing Transeasy 21 18 46 7 32 

B Capitol Bio Group 11 6 12 5 12 

A Changchun Dirui 103 47 136 11 100 

C Changzhou Huawei medical supplies 4 9 25 3 4 

C DINO Medical & Rehabilitation 13 9 24 10 42 

C Foshan anle medical apparatus 1 0 0 1 1 

C Guangzhou Baizhou Medical Technology 2 8 20 1 1 

C Guangzhou Di Ao Biotechnology 8 9 29 4 59 

B Guangzhou Weili 21 14 37 7 22 

B Guangzhou wondfo biotech 8 0 0 5 58 

C HEBEI XINLE SCI&TECH 14 20 59 9 24 

C Jiangsu Aiyuan Medical 9 15 44 2 2 

C Jiangsu Sanwe Medical Science and 

Technology 

16 14 39 2 6 

C Jiangsu sainty Medical 9 10 34 10 98 

C Jiangyin EVERISE Medical Equipment 53 11 35 1 5 

A Lepu Beijing 94 71 157 18 83 

C Liaoning Jiuzhou 10 14 51 4 10 

C LinaTech 1 12 43 5 53 

B Micro Tech (Nanjing) 74 26 73 10 135 

C Nanjing Fuzhong medical 5 13 40 1 1 

C Nanjing Xufei Medical 2 13 36 1 2 

B Ningbo David 21 7 15 7 22 

B Rayto Life and Analytical Sciences 16 22 65 10 37 

C SID Medical Technology 2 9 30 1 1 

A Sannuo Biological Sensor 16 11 25 5 17 

B Shaanxi Qinming Medical 6 15 38 2 18 

B Shandong Dazheng 5 23 52 7 25 

C Shandong Huge Dental Material 12 9 26 9 12 

C Shandong Jihai Medical 18 13 33 10 20 

C Shanghai Bai Jin medical 5 9 19 2 3 

B Shanghai Chenguang Medical Technologies 32 24 74 5 49 

C Shanghai Comermy Medical Devices 4 11 31 2 5 

C Shanghai Guanghao medical instrument 4 10 35 1 1 

A Shanghai Kindly 100 71 243 15 104 

A Shanghai Kinetic 31 23 62 4 33 

B Shanghai Medical Instr 36 21 44 15 39 

C Shanghai Puyi Medical Instruments 6 10 25 2 5 

C Shanghai Shuangshen Medical Instrument 4 12 41 2 3 

A Shanghai United Image 239 124 374 15 269 



C Shanghai yodo medical technology 8 0 0 5 7 

C Shanghai Zhenghua Medical Equipment 24 8 23 10 36 

A Shenyang Neusoft 98 47 103 12 102 

C Shenyang Xinsong 5 7 9 4 6 

C Shenyang Yonglin medical 1 12 35 1 3 

C Shenzhen new industries biomedical 

engineering 

2 0 0 6 28 

C Shenzhen jumper medical equip 12 0 0 2 13 

C Shenzhe Genius 56 15 21 6 37 

B Shenzhen Well.D 35 23 56 3 32 

C Suzhou Nissei 6 2 2 2 4 

C Suzhou branch of medical science and 

Technology 

5 8 19 1 1 

C The sage (Beijing) Medical Technology 7 9 21 1 2 

A Tianjin Kodon 6 34 105 7 57 

C Tianjin MEDA 12 16 46 3 7 

C Tianjin zhixin hongda medical equip dev 15 0 0 1 1 

C UNIMED Medical Supplies 4 11 37 1 3 

A Wandong Medical Equipment 2 0 0 7 20 

C Wuhan Her Medical 4 4 4 1 3 

C Zhangjiagang Hualing Medical Equipment 

Manufacturing 

55 7 15 2 2 

C Zhangjiagang Jinxiang Medical Equipment 8 13 40 3 6 

B Zhejiang Jimin 26 12 27 2 12 

A Zhuhai Hejia 101 34 61 13 55 

B Zhejiang tiansong medical instrument 2 0 0 4 5 

Note. #Patent: the number of patents; #Term: the number of terms; *Term: the frequency of terms; #IPC: the number of IPCs; 

*IPC: the frequency of IPCs. 

  



Appendix C. Portfolio Correlation Maps 

 

Figure D-1. Portfolio correlation map (based on the results of categorical similarity measure model). 

 

Figure D-2. Portfolio correlation map (based on the results of semantic similarity measure model). 


