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1. INTRODUCTION

In [2], Brousseau considered sums of the form

'" 1S(kl, k2, ... , km) =L-
F
-
F
---=----

n=1F" n+kl n+k2••• F,,+km

(1.1)

and

(1.2)

where the k, are positive integers with kl < k2 < ... < km. He stated that the sums in (1. 1) and
(1.2) could be written as

(1.3)

and

(1.4)

where rl, r2, r3, and r4 are rational numbers that depend upon k(, k2, ... , km. He arrived at this
conclusion after treating several cases involving small values of m.

Our aim in this paper is to prove Brousseau's claim by providing reduction formulas that
accomplish this task. Recently, Andre-Jeannin [1] treated the case m = 1by giving explicit expres-
sions for the coefficients rl, r2, r3, and r4. Indeed, he worked with a generalization of the Fibo-
nacci sequence, and we will do the same. In light of Andre-Jeannin's results, we consider only
m e Z, We have found, for each of the sums (1.3) and (1.4), that two reduction formulas are
needed for the case m = 2, and three are needed for m ~ 3. Consequently, we treat those cases
separately.

Define the sequences {Un} and {Jv,,} for all integers n by

{
Un: pUn-1 ~ qUn-2, 's:0, U1 : 1,
Jv" - PJv,,-1 qfv,,-2' »0 - a, Wi - b.

Here a, b, p, and q are assumed to be integers with pq i= ° and 11 = p2 - 4q > 0. Consequently,
we can write down closed expressions for U; and Jv" (see [3]):

_ an_pn _ Aan-Bpn
U; - p and fv" - p' (1.5)a- a-

where a = (P+..M)/2, P=(P-..M)/2, A=b-ap, and B=b-aa. Thus, {Jv,,} generalizes
{Un} which, in turn, generalizes {F,,}.
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We note that

a> 1 and a> IPI if P > 0, while p < -1 and IPI > la I if P < o. (1.6)
Consequently,

Jv" ~ Ap an if p > 0, and Jv" ~ -Bppn if p < O.
a- a-

(1.7)

Throughout the remainder of the paper, we take
00 1

so; k2, .", km) =Lww w W
n=1 n n+kl n+k2' .. n+km

(1.8)

and

(1.9)

where the k, are positive integers as described earlier. From (1.6) it follows that U; ::j:. 0 for n ~ 1.
We shall suppose that Jv,,::j:.0 for n ~ 1. Then, by (1.6) and (1.7), use of the ratio test shows that
the series in (1.8) and (1.9) are absolutely convergent.

We require the following identities:

UmJv,,+1- w,,+m= qUm-1w",

U m-k+IJv,,+k- w,,+m= qU m-kJv,,+k-I'

U mJv"+«u.dJv,,-m-d = U m+dJv,,-d,

pJv,,+m+q2Um_2Jv" = Umw,,+2,

U m-I+IJv,,+k- Uk-I+IJv,,+m = qk-I+IU m-kw,,+l-I'

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

Identity (1.11) follows from (1.10), which is essentially (3.14) in [3], where the initial values of
{Un} are shifted. Identities (1.13) and (1.14) follow from (1.12), which occurs as (5.7) in [4].

2. THREE TERMS IN THE DENOMINATOR

Our results for the case in which the denominator consists of a product of three terms are
contained in the following theorem.

Theorem 1: Let kl and k2 be positive integers with kl < k2• Then

1
if 1< kl, (2.1)S(kl> k2) = U [Uk2-kl+lS(kl -1, k2) - S(kl -1, kl)]q k2-kl

S k) P q'U~_, [ 1 ] if2<k2, (2.2)(1, 2 = US(1, 2) + U S(I, k2 -1) - ~W;fv"
k2 k2 12k2

1
if 1< kl, (2.3)T(kl> k2) = U [Uk2-kl+IT(kl -1, k2) - T(kl -1, kl)]q k2-kl

'U [ T(l,k, -1)]T(I, k2) = L T(1, 2) + q kr2 1 if2<k2· (2.4)
Uk2 Uk2 ~~2
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Proof: With the use of (1.11), it follows that

qUk2-k\ = Uk2-kl+l

~~+kl~+k2 ~~+kl-\~+k2

1 (2.5)

and summing both sides we obtain (2.1). Likewise, to obtain (2.3), we first multiply (2.5) by
(_1)n-I and sum both sides.

Next we have

(2.6)

which follows from (1.13). Now, if we sum both sides of(2.6) and note that

ro 1 1L = S(I, k2 -1) ,
n=\ ~+\~+2~+k2 Wi~~2

we obtain (2.2). Finally, to establish (2.4), we multiply (2.6) by (-lr-\, sum both sides, and note
that

T(I, k2 -1).

This proves Theorem 1. 0

It is instructive to work through some examples. Taking ~ = F" and using (2.1) and (2.2)
repeatedly, we find that S(3, 6) = - l;~O+tS(1, 2), and this agrees with the corresponding entry in
Table III of [2]. Again, with ~ =F",we have T(3, 6) = - \liio +t T(1, 2).

3. MORE THAN THREE TERMS IN THE DENOMINATOR

Let k\, k2, ... , km be positive integers and put P(kI> ... , km) = ~~+k ... ~+k . With this nota-
I m

tion, the work that follows will be more succinct. The main result of this section is contained in
the theorem that follows, where we give only the reduction formulas for S(k\, k2, •.. , km). After
the proof, we will indicate how the corresponding reduction formulas for T(k1, k2, ... , km) can be
obtained.

(3.1)

(3.2)
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(3.3)

Proof: With the use of (1. 14), we see that

k l-k.+IU Uq m- J km-km_1 _ km-kj+I
P(kl> ... , km) - P(k}, ... , kj_1, kj -1, kj, ... , km-2' km)

Ukm_l-kj+I

and summing both sides we obtain (3.1).
Next we have

qUkm-km_1 _ Ukm-km_I+I 1
P(k1, •.. , km) - P(k}, ... , km-2, km-I -1, km) P(kI, ... , km-2, km-1 -1, km_}) ,

which can be proved with the use of (1.11). Summing both sides, we obtain (3.2).
Finally, with the aid of (1.12) we see that

U mukm = Um + q km-m
P(1,2, ... , m-I, km) P(1, 2, ... , m) ~+1~+2'" ~+m~+km

The reduction formula (3.3) follows if we sum both sides and observe that

00 1 1Lw: w: w: w: =S(1,2, ... ,m-I,km-I)- .
n=} n+I n+2'" n+m n+km ~ ... WmWkm

This completes the proof of Theorem 2. 0

As was the case in Theorem 1, the reduction formulas for T can be obtained from those for S.
In (3.1) and (3.2), we simply replace S by T. In (3.3), weftrst replace the term in square brackets
by

S(1, 2, ... ,m-I, km -1)

and then replace S by T.
As an application of Theorem 2 we have, with w" = F",

S(1, 2, 4, 6, 7) = - 3S(1, 2, 3, 4, 7) + 2S(1, 2, 3, 4, 6) by (3.1); (3.4)

151
S(1, 2, 3, 4, 7) = 5070 +13S(I, 2, 3,4, 5) -13S(1, 2, 3, 4, 6) by (3.3); (3.5)

1 1
S(1,2, 3,4, 6) = 1920 +2'S(1,2,3,4,5) by (3.3). (3.6)

Together (3.4)-(3.6) imply that

37 1
S(1, 2, 4, 6, 7) = 64896 - 26 S(1, 2, 3, 4, 5).
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4. CONCLUDING COMMENTS

Recently, Rabinowitz [5] considered the finite sums associated with (1.1) and (1.2). That is,
he took the upper limit of summation to be N, and gave an algorithm for expressing the resulting
sums in terms of

In addition, he posed a number of interesting open questions.
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