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This paper studies the dynamics of a simple discounted present-value asset-pricing model
where agents have different risk attitudes and follow different expectation formation
schemes for the price distribution. A market-maker scenario is used as the market-clearing
mechanism, in contrast to the more usual Walrasian scenario. In particular, the paper
concentrates on models of fundamentalists and trend followers who follow recursive
geometric-decay (learning) processes (GDP) with both finite and infinite memory. The
analysis depicts how the dynamics are affected by various key elements (or parameters) of
the model, such as the adjustment speed of the market maker, the extrapolation rate of the
trend followers, the decay rate of the GDP, the lag length used in the learning GDP, and
external random factors.

Keywords: Heterogeneous Beliefs, Market Maker, Asset Pricing, Geometric-Decay
Learning Process

1. INTRODUCTION

Research into the dynamics of financial asset prices resulting from the interaction
of heterogeneous agents having different attitudes about risk and having different
expectations about the future evolution of prices has flourished in recent years [e.g.,
Day and Huang (1990), Bullard (1994), Lux (1995, 1997, 1998), Sethi (1996),
Brock and Hommes (1997a), Franke and Sethi (1998), Bullard and Duffy (1999),
Franke and Nesemann (1999), and Chiarella and He (2002c)]. This literature has
developed as a result of a growing dissatisfaction with (i) models of asset price
dynamics based on the representative-agent paradigm, as expressed, for example,
by Kirman (1992); and (ii) the extreme informational assumptions of rational
expectations.

Recently, Brock and Hommes (1997b, 1998) have introduced the concept of an
adaptively rational equilibrium, where agents base decisions upon predictions of
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future values of endogenous variables whose actual values are determined by equi-
librium equations. A key aspect of these models is that they exhibit expectations
feedback. Agents adapt their beliefs over time by choosing from different predic-
tors or expectations functions, based upon their past performance as measured by
realized profits. The resulting dynamical system is nonlinear and, as Brock and
Hommes (1998) show, capable of generating the entire "zoo" of complex behavior
from local stability to high-order cycles and chaos as various key parameters of
the model change.

The paper builds on the work of Chiarella and He (2002c), who extend the model
of Brock and Hommes (1998) by allowing the agents to have different risk attitudes
and different expectation formation schemes for both first and second moments
of the price distribution. Both papers, in common with much of the earlier cited
literature, use the Walrasian auctioneer scenario as the market-clearing mechanism.
However, this scenario is an unsatisfactory explanation as to how market-clearing
prices are arrived at in financial markets; see in this regard O'Hara (1995), who cites
only one market in which market-clearing prices are arrived at via the Walrasian
auctioneer scenario, and who also highlights the inadequacy of assuming this
type of market-clearing mechanism. The paper presented here takes the model of
Chiarella and He (2oo2c), but uses a market-maker scenario as the mechanism
generating the market-clearing price.

In particular, the present paper investigates a simple model for the price dynamics
involving only a few trading strategies.' It is assumed that there are three types
of participants in the asset market: two groups of traders-fundamentalists and
trend followers-and a market maker. The market maker at the beginning of each
trading period announces a price and then receives all of the buy and sell orders for
the risky asset in that time period formed by agents on the basis of the announced
price. The market maker hence determines the excess demand and then takes an
offsetting long or short position on the risky asset so as to clear the market. The
market maker announces the price for the next trading interval as a function of the
excess demand in the current period. Although this scenario is still highly stylized,
it does bring the analysis closer to the functioning of real markets than does the
Walrasian scenario.

There is a related literature on the behavior of the market maker in securi-
ties markets, starting with Garman (1976) and continuing with Stoll (1978), Beja
and Goldman (1980), Ho and Stoll (1981), Day and Huang (1990), Peck (1990),
Chiarella (1992), Sethi (1996), and Farmer and Joshi (2002). Broadly speaking,
these papers can be categorized into two types. The first type illustrates the trade-
offs faced by the market maker. In Ho and Stoll (1981), holding costs arise from the
return risk faced by risk-averse market makers. Peck (1990) considers the opposite
extreme in which a market maker faces no return risk but a significant risk of being
forced to honor his or her promises as a result of adverse price changes. The second
type belongs to the class of behavioral models for the price dynamics under hetero-
geneous expectations. Assuming linear trading rules for each type of trader, Beja
and Goldman (1980) show that equilibrium is unstable when the fraction of trend
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followers is sufficiently high. Using nonlinear investment rules, Day and Huang
(1990) show that this could result in chaotic price series. The Beja and Goldman
model was extended by Chiarella (1992), who made the trend-following rule non-
linear. It is found that, when the fraction of trend followers is sufficiently low, the
equilibrium is stable, but when it exceeds a critical value, it becomes unstable and
is replaced by a limit cycle. The excess demand of each trader type oscillates as the
cycle is traversed, causing sustained deviations from the equilibrium price. This
model was further enhanced by Sethi (1996), who studied inventory accumula-
tion, cash flow, and the cost of information acquisition. Farmer and Joshi (2002)
use a market-maker-based method of price formation to study the price dynamics
induced by several commonly used financial trading strategies to show how they
amplify noise, induce structure in prices, and cause phenomena such as excess and
clustered volatility.

The market maker in this paper still remains highly stylized in that he or she does
not change behavior, irrespective of the size of his or her long or short position. We
assume that the market maker is risk neutral, setting the price in response to excess
demands from the traders, without worrying about accumulated inventory. The
market framework and price formation mechanism are similar to those of Kyle
(1985) and Farmer and Joshi (2002). Farmer and Joshi (2002) regard a trading
strategy as a signal-processing element that uses external information and past
prices as inputs and incorporates them into future prices. They show numerically
how trading strategies can amplify noise, induce structure in prices, and cause
phenomena such as excess and clustered volatility.

Our focus in this paper is on both the theoretical and numerical behavior of asset
prices resulting from the interaction of heterogeneous investors under a (admit-
tedly stylized) market-maker price-setting mechanism. The analysis below seeks
to determine how the results of Brock and Hommes (1998) and Chiarella and He
(2002c) are affected by this alternative market-clearing mechanism and how the
price dynamics change under boundedly rational geometric-decay learning pro-
cesses with finite and infinite memory. The focus is on a number of aspects of the
modeling framework. First, as in Chiarella and He (2oo2c), traders are allowed to
have differing attitudes toward risk.? Second, the trend followers are assumed to
use a geometric-decay (learning) process, based on past observations, to form their
forecast rule on the price of the risky asset. With homogeneous beliefs and traders
following moving-average learning processes, Balasko and Royer (1996) show that
the intuition, that the larger the lag length of past information used the more stable
is the Walrasian equilibrium, is essentially correct. However, with heterogeneous
beliefs, the influence of the lag length becomes more complicated. For a gen-
eral discussion on the dynamics of homogeneous and heterogeneous beliefs under
various recursive (learning) processes, the reader is referred to Chiarella and He
(2oo2a,b). In some learning analysis, such as that of Grandmont (1985), Balasko
and Royer (1996) and Honkapohja and Mitra (2000), memory is bounded because
the agents forget data that has occurred far enough in the past. In other analyses of
learning, such as that of Evans and Honkapohja (1994, 1999) and Barucci (2001),
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memory is unbounded or, alternatively, past data are discounted geometrically.
This paper first introduces the geometric decay processes (GDP) with bounded or
unbounded memory into the asset-pricing model with heterogeneous agents and
then considers the learning dynamics when the trend followers use GDP. A feature
of the analysis is that adaptive learning is considered in a framework that allows
the fractions of the agents to vary, as in Brock and Hommes (1998) and Chiarella
and He (2002c).

The plan of the paper is as follows. Section 2 outlines the model of interacting
heterogeneous agents with the market-clearing price set by a market maker, in-
troduces the expectations function and learning mechanisms of the heterogeneous
groups, and sets up the adaptive beliefs system (ABS). Section 3 considers the
existence of steady states of the deterministic ABS. In Section 4, the local stability
and bifurcation of the fundamental steady state are analyzed when the trend fol-
lowers use the GDP with finite memory. In Section 5, various numerical tools are
employed to obtain global information about the dynamics when the fundamental
steady state is locally unstable, focusing in particular on how the dynamics are
affected by various key elements (or parameters) of the model, such as the ad-
justment speed of the market maker, the extrapolation rate of the trend followers,
the decay rate of the GDP, the lag length used in the learning GDP, and external
random factors. A discussion on the price dynamics when the memory is infinite
is included in Section 6. Section 7 concludes, and all proofs are included in the
Appendix.

2. A HETEROGENEOUS-AGENTS MODEL UNDER A MARKET MAKER

This section sets up a standard discounted-value asset-pricing model with hetero-
geneous agents, which is closely related to the frameworks of Brock and Hommes
(1997b, 1998) and Chiarella and He (2002c). However, as stated in the Introduc-
tion, the market-clearing price is arrived at via a market-maker scenario rather than
the Walrasian scenario used in the studies just cited. We focus on the simple case
in which there are three classes of participants in the asset market: two groups of
traders-fundamentalists and trend chasers-and a market maker.

2.1. Market Equilibrium Price Under a Market Maker

Following the framework of Brock and Hommes (1998), consider an asset-pricing
model with one risky asset and one risk-free asset. It is assumed that the risk-free
asset is perfectly elastically supplied at gross return R = 1 + r > 1 (with a fixed
risk-free rate r) for each period. Let Pt be the price (ex dividend) per share ofthe
risky asset at time t and {Yt} be the stochastic dividend process of the risky asset.
Then, the wealth of a typical investor at t + 1 is given by

(1)
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where Wt is wealth at time t and Zt is the number of shares of the risky asset
purchased by the investor at t.

Denote by F, = {Pt, Pt-l, ... ; Yt, Yt-l, ... } the information set at time t. Let
Et, Vt be the conditional expectation and variance, respectively, based on Flo and
Eh,t and Vh,t be the "beliefs" of investor type h about the conditional expectation
and variance of quantities at t + 1. Denote by Rt+ 1 the excess return at t + 1; that is,

Rt+1 = Pt+l + Yt+l - Rp., (2)

Then, it follows from (1) and (2) that

Eh,t(Wt+d = RWt + Eh,t(Pt+l + Yt+l - RPt)Zh,t

= RWt + Eh,t(Rt+1)zh,t,

Vh,t(Wt+d = zL Vh,t(Pt+l + Yt+l - Rp.)

= zL Vh,t(Rt+d,

where Zh,t is the demand by agent h for the risky asset.
Assume each investor type is an expected-utility maximizer, but different in-

vestors (e.g., type h) have different attitudes toward risk, characterized by the
risk-aversion coefficient, ai: Then, for type h, the demand Zh,t of the risky asset is
given by3

(3)

Zh t = Eh,t(Rt+d . (4)
, ai; Vh,t(Rt+d

Let nh,t be the fraction of investors of type h at t (so that Lh nh,t = 1). The
fraction nh,t is updated on the basis of the fitness function, which is specified in
the following discussion. Assume zero supply of outside shares. Then, the excess
demand Ze,t is given by

Ze,t = Lnh,tZh,t,
h

(5)

or [using (4)]

'"' Eh,r[RtH]Ze t = L...J nh t •
, h 'ah Vh,r[Rt+Il

To complete the model the price changes must be made explicit. The role of the
market maker is to take a long (when Ze,t < 0) or short (when Ze,t > 0) position so
as to clear the market. At the end of period t, after the market maker has carried
out all transactions, he or she adjusts the price for the next period in the direction
of the observed excess demand. Using u. to denote the corresponding speed of
adjustment for each period, then, with a simple linear price adjustment process,
the price would be given by

(6)

Pt+l = Pt + P,Ze,t,
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which by use of (5) becomes

Pt+l = Pt + J.1-Lnh,tZh,t·
h

(7)

Note that the market-maker behavior in this model is highly stylized. For instance,
the inventory of the market maker built up as a result of the accumulation of various
long and short positions is not considered. This could affect his or her behavior;
for example, the market-maker price-setting role in (7) could be a function of the
inventory. Allowing J.1- to be a function of inventory would be one way to model such
behavior. Such considerations are left to future research. Future research should
also seek to explore the microfoundations of the coefficient J.1-. In the present paper,
it is best thought of as a market friction, and an aim of our analysis is to understand
how this friction affects the market dynamics.

2.2. Heterogeneous Beliefs

To get a benchmark notion of the rational-expectation fundamental solution P:,
consider the equation

Rp; = Et[p;+l + Yt+d,

where E, is expectation conditional on the information set Ft. In the case in
which the dividend process {yr} is i.i.d., Et(Yt+d = Y (assumed constant), the
only solution satisfying the "no bubbles" condition" (1imt~oo Ep.] R' =0) is the
constant solution p = y / r .

Regarding the heterogeneous beliefs of fundamentalists (type I) and trend
chasers (type 2) about the deviations from the fundamental solution, we assume
that expectations are formed according to

E1t(pt+l + Yt+d = Et(P;+1 + Yt+l),

E2t(pt+l + Yt+d = Et(P;+1 + Yt+d + df.,
with expected variances

(8)
(9)

(10)

Here, d > 0, a2 are constant, and

L-l

it = LbiPt-i - P;,
i=O

bi 2: 0, (11)

is a weighted moving-average price process with a window length L 2: 1. This
type of process, known as a general aL process is considered by Chiarella and
He (2002a,b), where the dynamics of (Walrasian) steady states with both ho-
mogeneous and heterogeneous aL processes are studied in detail. It is found
that such recursive (learning) processes can generate very rich and complicated
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dynamics. In the following discussion, three simple weighted averaging processes
are considered:

(i) Moving-average process (MAP),

L-l

1 ~ *it = L LJ pt-i - Pt ;

i=O

(12)

(ii) Geometric decay process (GDP),

it = b [Pt + WPt-l + (J}Pt-2 + ... +W
L

-
1

Pt-(L-l)] - p7, (13)

where b = 1/[1 +W +w2 +...+WL-1], WE [0, 1] measures the decay rate of the
memory;

(iii) Limiting geometric decay process (LGDP),

it = W!t-l + (l - W)[Pt - p7], W E [0, 1). (14)

One could interpret GDP as one of bounded memory. As L ---+ 00, the limiting
process of GDP becomes LGDP, in which memory is unbounded. For to = 1,
GDP leads to MAP and hence MAP can be treated as a degenerate case of GDP.
Therefore, the following discussion concentrates on the geometric decay processes
with both finite and infinite memory.

Under assumptions (8) and (9) with d =0, the fundamentalists believe that
the prices will return to their fundamental values. Under the same assumption but
with d > 0, the trend chasers chase the trend of the prices by extrapolating from the
weighted moving-average prices It at an extrapolation rate of d. Here, a, (i = 1, 2)
are allowed to be different to characterize the different risk attitudes of the two
types of investors. Typically, as pointed by Campbell and Kyle (1993), one would
expect the fundamentalists to be more risk averse than the trend chasers (that is,
a =a2/al < 1).

2.3. Adaptive Belief System

Let the benchmark fundamental price be the no-bubble constant price p and let
x, = Pt - P denote the deviation of Pt from the no-bubble fundamental price p.
Rewrite the excess return at period t in the form

R, = x, - RXt-l + 8(, (15)

where

(16)

is a martingale difference sequence with respect to Ft; that is, E [8t IFt] =° for
all t. Then, under (8)-(11), one obtains

(17)
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where
L-l

s. = L biXt-i,

i=O

bi ~ 0,
L-lLbi = 1.
i=O

(18)

In particular, gt = (1/ L) ~f~(} Xt-i for MAP, gt = b[Xt +WXt-l + ... +ul-l
Xt-(L-l) for GDP and gt = Wgt-l + (1- w)Xt for LGDP.

Let Jrh,t be the "fitness function," which is defined by the realized profits of
trader type h at period t so that

Jrh,t = RtZh,t-l = [Xt - Rx.i., + Dt]Zh,t-l,

with

It is assumed that the fractions are updated on the basis of discrete-choice proba-
bility, as in Manski and McFadden (1981), Anderson et al. (1993), and Brock and
Hommes (1997b, 1998); that is,

z, = L exp[,8(Jrh,t - Ch)], (19)
h

where Ch ~ 0 is the constant cost incurred by the investors of type h, and ,8(>0)
is the intensity of choice measuring how fast agents switch between different
prediction strategies. In particular, ,8= +00 means the entire mass of traders uses
the strategy that has highest fitness; ,8= 0 means that the mass of traders distributes
itself evenly across the set of available strategies. Typically, it is assumed that, as
informed traders, the fundamentalists incur greater costs than the chartists in the
gathering of information in the formation of expectations. Here, set C1 = C and
C2=0.

To sum up, the dynamics of the time evolution of the market are described by
the ABS,

{

Xt+l = Xt + JLL nh,tZh,t,

nh,t = exp[,8(Jr:,t - Ch)]/Zt (h = 1,2),
(20)

where

z, = L exp[,8(Jrh,t - Ch)],

h
Jrh,t = [Xt - Rx.c, + Dt]Zh,t-l,

-RXt
Zl,t = --2'

al(j

d gt - RXt
Z2,t =

a2(j2

(21)
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Let m, = nl,t - n2,t· Then, nl,t = (1 +mt)/2, n2,t = (1 - mt)/2 and hence the
ABS (20) can be expressed as

(

Xt+! = x, + ~[(1 + mt)Zl,t + (1 - mt)Z2,t],
(22)

m, = tanh(~ [Xt - Rx.c, + 8tl[Zl,t-l - Z2,t-!l- ,B~).

Because of the random term 8t, (22) is a nonlinear stochastic difference system.
When 8t = 0, the ABS (22) becomes a deterministic difference system of order
L + 1.An analysis of this deterministic system is some guide in understanding the
underlying dynamics of the corresponding stochastic system.

The following sections consider the dynamic behavior of the ABS (22) under
the geometric decay processes with both finite and infinite memory. As pointed
out earlier, the moving-average process can be considered as a degenerate case of
GDP when to = 1. The existence of fundamental and nonfundamental steady states
is considered first. The local stability of the fundamental steady state is analyzed.
Numerical simulations are then used to verify the local stability and to demonstrate
the global dynamics of the nonlinear model. In particular, the analysis depicts how
the dynamics are affected by various key elements (or parameters) of the model,
such as the adjustment speed of the market maker u, the extrapolation rate of the
trend followers d, the decay rate of the GDP to, the lag length used in the learning
GDP L, and external random factors. Some comparison with the results of Brock
and Hommes (1998) and Chiarella and He (2002c) under the Walrasian scenario
are also made.

3. EXISTENCE OF STEADY STATE OF THE DETERMINISTIC ABS

Consider the existence of the steady state of the deterministic ABS (22) when gt
follows the general aL process (18). Let

* (l+a)R-d
m = ,

(l-a)R-d
J-t

y=--,
4a2a2

(23)

and

d* = R [1 + 1+ m
eq

a] * = 1 (24)
1- meq' Y (1 - meq)d*

PROPOSmON 1. Let 8 =°and x* be the positive solution (if it exists) of

tanh [_,B_(R - l)[d - (1- a)R](x*)2 - ,Be] = m*. (25)
2a2a2 2

Then, the (deterministic) ABS (22) of(xt, mt) with gt defined by (18) always has
a (fundamental) steady state E(O, meq). In addition, the ABS (22) has another
two nonfundamental steady states E±(x*, m*) if d > d".
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(All proofs, unless otherwise stated, are given in the Appendix.)
Proposition 1 corresponds to the existence results obtained by Brock and

Hommes (1998) and Chiarella and He (2002c) under the Walrasian scenario.
Therefore, in terms of the existence of fixed equilibria, both the Walrasian and
market-maker scenarios lead to the same outcomes. Proposition 1 indicates that
the existence of the nonfundamental steady states depends on how the trend chasers
extrapolate the trend and are independent of the adjustment of the market maker.
When the trend chasers extrapolate weakly (i.e., d < d*), the fundamental steady
state is the only steady state. However, when the trend chasers extrapolate strongly
(i.e., d > d*), the system generates two other nonfundamental steady states. Intu-
itively, the fundamental steady state is stable when the trend traders extrapolate
weakly; otherwise, it becomes unstable and the nonfundamental steady states may
become stable or the prices may become more volatile. The discussion in the fol-
lowing sections shows that this is indeed the case in general. Moreover, a broad
and precise characterization of the roles of the traders and the market maker is
drawn through stability and bifurcation analysis and numerical simulations.

4. DYNAMICS OF ABS UNDER THE GEOMETRIC DECAY PROCESS
WITH FINITE MEMORY

This section considers the dynamic behavior of the ABS (22) under the geometric
decay process with finite memory.

Assume that the expectations of the trend chasers follow the geometric decay
process

gt = b [Xt + WXt-l + W
2
Xt_2 + ... + wL

-
1

Xt-(L-l)]' (26)

where b = 1/[1 + W +w2 + ... +wL-l], wE [0, 1]. Then, the deterministic ABS
(22) assumes the form

{

Xt+l = Xt + ~[2[(1 + m, )Zl,t + (1 - m, )Z2,1] ] (27)

mt+l = tanh ~(Xt+l - RXt + Ot+I)(Z1.t - Z2.t) _ f3~ ,

where
-R

ZI,t = --2Xt,
ala

4.1. Stability Analysis

It is generally difficult to derive sufficient conditions for the local stability of the
fundamental steady state E for general lag length. Some insights into the stability
when the trend chasers follow the GDP may be gained by considering the simple
cases when L = 2 and 3. For L :::4, Rouche's theorem (see Appendix A.3) can be
used to obtain some stability results.
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The stability analysis of the fundamental steady state can be conducted by the
eigenvalues analysis of the corresponding characteristic equations. The following
Proposition 2 gives the necessary and sufficient conditions for all the eigenvalues
(e.g., Ai) to satisfy IAiI < 1.

PROPOSmON 2. Let 81=O. Then, the fundamental steady state E of (27) is
locally asymptotically stable (LAS) if (d, y) E DL for L = 1, 2, 3, respectively,
where

DL = {(d, y), 0 < d < d*, 0 < y < yi}

and

* 1
YI = (1 - meq)(d* - d)

1Y2 = -----;--------:-
(1 - meq) (d* __ 1 -_W d)

l+w
1

Y3* = ----------:---
(1 - meq) (d* _ 1 - to + w

2
d) .

1+w+w2

In addition, along y = yt(i = 1, 2, 3), flip bifurcations (with -1 as one of the
eigenvalues) occur and, along d = d*, saddle-node bifurcations (with 1 as one of
the eigenvalues) occur. Furthermore,

With the Walrasian market-clearing scenario in Brock and Hommes (1998) and
Chiarella and He (2002c), the local stability of the fundamental steady state is
completely characterized by the extrapolation rate of the trend followers and the
relative risk -aversion ratio between the fundamentalists and the trend followers, not
the lag length used in the moving-average learning process for the trend followers.
Also, complicated price dynamics can only be generated through saddle-node-
type bifurcations. However, Proposition 2 tells us that, with the market-maker
scenario, the stability of the fundamental steady state is maintained only when
the speed of the adjustment of the market maker is low and is balanced with the
extrapolation rate of the trend followers. In addition, complicated price dynamics
can be generated through either saddle-node or flip-type bifurcations.

In general, for any lag length, the following result on the local stability of the
fundamental steady state can be derived.

PROPOSmON 3. Let 81 = 0 and L > 1.
(i) Thefundamental steady state E of the ABS (22) is LAS if 0 < d < d* and

1
o < Y < y* = ---------

4 - (1 - meq)(d + d* - 2bd)
(28)
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7 +-w =0
w=l

27* w=t
h* w=~
7* w=l

d d
d*

(A)
+-w =0 +- L= 1

w=l +- L= 3
w=l

+- L= 2w=~ 7*

d d
d* d*

(C) (D)
FIGURE 1. Unstable region (as indicated by U) and local stability regions (whose up-
per bounds are given by the various curves) of the fundamental steady state: (A) L = 1;
(B) L = 2 with different to E [0, 1]; (C) L = 3 with different values of w; (D) Comparison
of the local stability regions for L = 1, 2, 3 with fixed io E (0, 1).

(ii) The fundamental steady state E of the ABS (22) is unstable if °<d < d*
and v s-v]:

Based on Propositions 2 and 3, the local unstable and stable regions of the
fundamental steady state are plotted in Figure 1for different lag length and different
values of the decay rate. One can see the following:

• In terms of the stability of the fundamental steady state, it follows from
Dz C D3 C D1 (as indicated by Figure ID) that an increase in the lag length
of the GDP does not necessarily enlarge the stability region for the extrapo-
lation rates and the adjustment speed of the market maker. In fact, DI is the
largest stability region when d < d* for all the lag lengths L 2: 2 (as indicated
by Figure IB for L = 2 and Figure lC for L = 3). This contradicts a com-
mon belief that the stability regions are enlarged when agents include more
historical data in forecasting rules.

• For fixed lag length L =2, 3, a decrease in the memory decay rate to enlarges
the local stability region in terms of d and y, as indicated by Figures IB
and lC.

• When co = 0, rt = yt for L = 1, 2, 3, implying that the stability regions DL

for L = 2, 3 become DI as the decay rate of the GDP tends to zero. At (j) = 1,
yi = y* = 1/[(1- meq) d*] and Y3*= Y3= 1/[(1- meq)(d* - d/3)], which
leads to the same stability regions when the trend chasers follow MAP with
L =2 and 3, respectively. Therefore, the MAP can be treated as a degener-
ate case of the GDP. The following discussion illustrates those two special
cases.
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4.2. The Case of L = 1

Consider first the simplest case when either L = 1or to = 0; that is, the trend chasers
follow the forecasting rule

E2,t(pt+d = P; + d[Pt - p;l.

The trend chasers predict that prices will rise (or fall) by a constant rate d. Cor-
respondingly, gt = Xt and L = 1 for MAP or w = 0 for GDP. In this case, the
deterministic ABS (22) has the form

Xt+l = Fl (Xt, mt)

[ ~ ~C]mt+l = tanh - --2 (F1 (Xt, mt) - RXt + 8t+l)(d - (1 - a)R)xt - -2 '
2a2CT

(29)

where

F1 (x, m) = x [1 - ~(aR(1 + m) + (R - d)(1 - m))].
2a2CT

COROLLARY 1. The fundamental steady state E of the (deterministic) ABS
(29) is locally asymptotically stable (LAS) if

0< d < d*, 0< y < yt. (30)

In addition, along y = rt, flip bifurcations occur and, along d = d* , saddle-node
bifurcations occur. Furthermore, if 0 < d < R, then E is globally asymptotically
stable under anyone of the following conditions:

a ::::1,0< y < 1/[2aR];

a < 1, d > (1 - a)R, 0 < y < 1/[2aR];

a < 1, d < (1 - a)R, 0 < y < 1/[2(R - d)].

Corollary 1 indicates that, with the market-maker scenario, the stability of the
fundamental steady state E depends on the speed of the adjustment of the market
maker, the extrapolation rate of the trend chasers, and the relative risk-aversion
ratio between the fundamentalists and trend chasers. Following from Corollary 1,
E is LAS in a region of (d, y), defined by 0 < y < yt and 0 < d < d*. Stability
regions (both local and global) of the fundamental equilibrium E are shown in
Figure 2 in which

yl,O = 1/[2aR], Y2,O= 1/[2R], Y3,O= 1/[(1 - meq) d*].

One can verify that both d* and r; are increasing functions of a and hence, as
a increases, the local stability region becomes larger. The condition (30) can be
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FIGURE 2. Stability regions of the fundamental steady state S; a 2: I, global stability region
A and local stability region AU S; a < I, global stability region B U C and local stability
region B U CUD.

rewritten as 0 < d < d* and 0 < J.l < J.l*, with

* 4alaO'2

u. = aR(1 + meq) + (R - d)(l - meq)

One can verify that both d* and u.* are increasing functions of a. This shows that,
to maintain the (local) stability of the fundamental price, the speed of adjustment
of the market maker must be proportional to the relative risk ratio a. Recall that
a high risk ratio a indicates that the trend followers are more risk averse than
the fundamentalists. When the trend followers become less risk averse (relative
to the fundamentalists), a lower speed of the adjustment is needed for the market
maker to stabilize the fundamental price. The intuition behind this result is that
an overreaction of the trend followers accompanied by a quick price adjustment
(toward the fundamental price) by the market maker can in fact cause the price to
be pushed away from the fundamental price.

When the trend chasers follow naive expectations, that is, L = 1 or (J) =0, the
global dynamics can be characterized by bifurcation diagrams and Lyapunov ex-
ponent plots. Let the risk-free rate r = 10% (i.e., R = 1.1) and the cost coefficient
C for the fundamentalists be standardized at C = 1. We also standardize the vari-
ance 0'2 and the risk-aversion coefficients al and a2 so that al 0'2 = 1 and a = ad al.
Consider first the situation in which both fundamentalists and trend followers have
the same risk-aversion coefficients a = 1. Choose the intensity-of-choice coeffi-
cient f3 = 3.5 and the extrapolation rate of the trend followers d = 1.2. Assume
that the speed of the adjustment J.l of the market maker varies. One can ver-
ify that the fundamental steady state is E(O, -0.9414) and d* = 1.13322, as de-
fined in (24). Since d = 1.2> d", it follows from Proposition 1 that there exist
two other nonfundamental steady states E±(±x*, m*) = E±(±1.62, -0.83). For
the parameter u, Figure 3A indicates that there exist J.lI E (0.82, 0.83) and
J.l2 E (1.06, 1.07) such that (i) for J.l < J.lI, all the solutions converge to either
one of the two nonfundamental equilibria E±, depending on the initial values;
(ii) for J.lI < u. < J.l2, the model has either two attracting invariant circles around
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E± or strange attractors (which is indicated by the positive Lyapunov exponent
in the plot); (iii) for JL > JL2, the invariant circles and strange attractors cover both
sides of the x-axis. Thus, the dynamics of the market-maker model are similar to
Brock and Hommes' Walrasian model when JL is small, in that prices converge
to or fluctuate around one or another of the nonfundamental equilibria. However,
differences between the two market-clearing scenarios appear for large JL when
fluctuations between both nonfundamental equilibria occur.

In Figure 3B, the intensity-of-choice parameter 13 is selected as the bifurcation
parameter. For fixed a = 1, JL = 1.2, and d = 1.2, the figure indicates that all the
solutions converge to the fundamental steady state when 13 is small (13 < 2.4). As
13 increases further (up to 3.14), solutions converge to either one of the nonfunda-
mental equilibria and, for large 13, the solutions display chaotic behavior, which
is indicated by the positive Lyapunov exponent. Under the Walrasian scenario,
the bifurcation diagrams have similar features, but the attractors for the solutions
can only stay either nonpositive or nonnegative. With the market-maker scenario,
the attractors can extend into both positive and negative phases. In Figure 3C,
a = 1, 13 = 3.5, JL = 1.2, and d is selected as the bifurcation parameter. It illustrates
that all the solutions converge to the fundamental equilibrium for d < 1.132 and to
one of the nonfundamental equilibria for 1.132 < d < 1.18. As d increases further,
the solutions either converge to some strange attractor or explode. In Figure 3D,
13 = 3.5, JL = 1.2, d = 1.2, and a = a2 is selected as the bifurcation parameter. The
figure indicates that the fundamental value is attracting when the fundamentalists
are more risk averse than the trend followers [i.e., when a(::::3.0) is large], and
it becomes unstable, whereas the nonfundamental equilibria are stable as a de-
creases. As a decreases further, periodic cycles, quasi-periodic orbits, and even
chaotic behavior are observed.

4.3. The Case of the GDP with w = 1 and L = 2, 3

Recall that with ill= 1 the GDP degenerates to the MAP.

COROLLARY 2. The fundamental steady state E of the (deterministic) ABS
(22) is LAS if d < d* and

0< Y < Y2 = 1/[(1- meq)d*] (31)

for L=2, and
o < Y < Y3 = 1/[(1 - meq)(d* - d/3)] (32)

for L=3.
Furthermore, Y = Yi corresponds to ajlip-type bifurcation and d = d* (i = 1, 2)

corresponds to a saddle-node-type bifurcation.

Note that condition (31) for L = 2 implies the conditions (30) and (32) for L = 1
and L = 3, respectively. Therefore, the local stability of E1 for L = 2 implies that
for L = 1 and L = 3. It is difficult to obtain explicit conditions on local stability for
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general lag length. However, Appendix A.6 gives a sufficient condition on local
stability if /-1 is chosen from a specific set of values.

Overall, these results suggest that, all other things being equal, the fundamental
steady state of the ABS with the GDP is stabilized as the trend chasers put more
weight on the most recent prices. Also, increasing the extrapolation rate d up to
d* enlarges the local stability region. However, there does not seem to be any
connection between the lag length and the size of the stability region.

5. NUMERICAL ANALYSIS OF THE DYNAMICS OF ABS UNDER THE
GEOMETRIC DECAY PROCESS WITH FINITE MEMORY

To verify the stability result established in Proposition 2 and, more importantly,
to gain some insights into the price dynamics when either the market maker over-
adjusts the price or the trend chasers extrapolate strongly, the nonlinear adaptive
beliefs system is simulated numerically.

The effect of the intensity of the choice and the relative risk-aversion (between
the two traders) on the price dynamics has been studied by Brock and Hommes
(1998) and Chiarella and He (2002c). The following discussion concentrates on
the effect on the nonlinear dynamics of various key elements (or parameters) of
the model, such as the adjustment speed of the market maker u., the extrapolation
rate of the trend followers d., the decay rate of the GDP co, the lag length used in
the GDP L, and external random factors (e.g., a noisy dividend process). Let

R=1.1. C = 1.0. f3 = 3.5.

In this case, both the fundamentalists and the trend chasers have the same risk-
aversion coefficient. Then, the fundamental steady state is £(0. -0.9414) and
d* = 1.13322, as defined in (24). When Proposition 3 is applied, the fundamental
steady state £(0, -0.9414) is LAS for d < d* = 1.13322 and Y < YL and unstable
for either d > d* or Y > YL (L = 1,2,3). This result is confirmed numerically. The
solutions become explosive when Y crosses the flip boundary Y = YL' implying
that weak extrapolation from the trend chasers and overadjustment from the market
maker can lead to unbounded prices.

In the following discussion," we consider situations when the trend chasers
extrapolate strongly d = 1.2 > d*. In such cases, it follows from Proposition 1 that
there exist two other nonfundamental steady states £± (±x*. 111*) = £± (±1.62.
-0.83).

5.1. Effect of the Speed of Adjustment of the Market Maker J..L

For L = 1, Figure 4 illustrates the corresponding time series for f1 = 0.6,0.9, and
1.2 without noise (left panel). It indicates that, when the trend chasers extrapolate
strongly, a small adjustment from the market maker (e.g., /-1 = 0.6) leads the prices
to converge to one of the nonfundamental steady states. However, as the market
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FIGURE 5. Time series of the GDP for L =2 with different values of f..L =0.9, 1.2, and 1.5
without noise (left panel) and with noise (right panel) for (i)=0.5.

maker adjusts more strongly in a way such that both the forces from extrapola-
tion of the trend chasers and the adjustment of the market maker are balanced,
the prices fluctuate periodically or quasi-periodically around one of the nonfunda-
mental steady states, as indicated when JL =0.9. Large adjustment from the market
maker results in the breaking of such balance, leading the prices to fluctuate among
the three steady states, as indicated when JL = 1.2.

For L =2, let (J) = 0.5 be fixed. The price dynamics are similar to the case of
L = 1, as shown in Figure 5. However, for d = 1.2> d", an increase in L (from 1
to 2) can dampen the price fluctuations in terms of the adjustment speed JL of the
market maker, which is indicated by comparing the time series of L = 1 and L = 2
in Figures 4 and 5, respectively, for JL = 0.9 and JL = 1.2.

5.2. Effect of the Decay Rate w in the GOP

To demonstrate the effect of the decay rate (J) on the price dynamics when the
trend chasers extrapolate strongly, for fixed d = 1.2 and JL = 0.95, we selected
co = 0.01, 0.3, and 0.95, successively. Without noise, the price series converge
to one of the nonfundamental steady states for (J) =0.95, as shown in Figure 6
(top plot on left panel). However, for (J) =0.3 and 0.01, the price series display
quasi-periodic cycles or even chaotic behavior, which can be characterized by
the phase plots in the (Xt-l, Xt) plane. In these cases, trajectories converge
to either closed orbits or strange attractors. We have generally observed that
large decay rates co stabilize the price dynamics, whereas small decay rates
co destabilize the price dynamics, leading to quasi-periodic cycles and chaotic
behavior.
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5.3. Effect of the Lag Length L

To demonstrate the effect of the leg length L on the price dynamics, we select
d = 1.2, J1, = 1.2, (J) =0.95, and L = 3, 5, and 10, respectively. The corresponding
time series and phase plots are shown in Figure 7. Without noise, the price series
converge to one of the nonfundamental equilibria for L =3. However, for L =5
and 10, the phase plots of the price series tend to closed orbits encircling the
nonfundamental steady states.
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For the MAP, unlike the asset price model under the Walrasian scenario in
Chiarella and He (2002c), the stability conditions are much more related to the
speed of the adjustment of the market maker for different lag lengths and, in
general, increasing the lag length does not necessary increase the stability of the
fundamental steady state. It mayor may not be the case that the stability of the
nonfundamental equilibria are improved as lag length increases, as indicated by
the time-series plots in Figure 8, where the time series for L = 1 is stabilized to one
of the nonfundamental equilibria for L = 2 and 3, but increasing L further to 5 and
10 leads to some periodic cycles, which can be regarded as bifurcations from the
nonfundamental equilibria." Figure 8 has been generated using the parameter set

R = 1.1, C = 1.0, d = 1.2, fJ = 3.5, Jl = 1.2

and L = 1, 2, 3, 5, and 10.

5.4. Effect of the Noise

The analysis of this paper (and indeed that of most of the cited literature) has fo-
cused on the dynamics of ABS purely as deterministic difference equation systems.
Of course, such systems will be impacted by external random factors (e.g., a noisy
dividend process). The way in which these highly nonlinear ABS difference equa-
tions process external noise is an important topic for future research. Here, a very
preliminary attempt is made to gauge the impact of a noisy dividend process. To this
end, Figures 4-8 show the corresponding time-series plots with noise. The noise
comes from a stochastic dividend process Yt = Y +Et with i.i.d. noise Et, uniformly
distributed on the interval [-0.05,0.05], added to the constant dividend process y.
For L = 1 and 2, prices are characterized by switching between a phase with prices
close to the fundamental price and phases of upward and downward trends near
the nonfundamental steady states. This result is different from the Breck-Hommes
model under the Walrasian scenario, where the switching is between a phase with
prices close to the fundamental price and a phase of upward (or downward) trend.
In both the noise-free and noisy cases, the switching among the fundamental and
nonfundamental steady states seems to be irregular. The prices fluctuate around
one of the nonfundamental steady states when the market maker adjusts the prices
weakly (e.g., u. = 0.6 for L = 1 in Figure 4 and Jl = 0.9 for L = 2 in Figure 5, re-
spectively). When such a price adjustment of the market maker is balanced by the
extrapolation from the trend followers, the addition of a noisy process can cause
the price to fluctuate around the nonfundamental equilibrium with occasional ex-
cursions to a neighborhood of the fundamental equilibrium. When such balanced
forces disappear, the noisy process causes the prices to fluctuate among the three
equilibria (Jl = 1.2 for L = 1in Figure 4 and Jl = 1.5 for L = 2 in Figure 5). Similar
price dynamics are observed as the decay rate of the GDP (J) decreases (as shown
in Figure 6) and the lag length of the GDP L increases. More importantly, addition
of the noise process causes prices to take a longer time to come to the level near the
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nonfundamental steady state for long lags and, more interestingly, increases the
intensity of the apparent volatility clustering (see Figure 7). As might be expected,
the addition of noise makes the deterministic dynamic patterns irregular. What is
of interest are the occasional excursions to the other nonfundamental steady state;
see, for example, the L = 3 case in Figure 8, which suggests bimodality of the
price distribution.

All of these very preliminary simulations of the noisy nonlinear adaptive belief
systems are, of course, very tentative. A worthwhile future research agenda would
be to conduct a Monte Carlo-type analysis of the noisy nonlinear ABS with a
view to studying its statistical characteristics in terms of price distribution under
the noisy dividend process.

6. DYNAMICS OF ABS UNDER THE GEOMETRIC DECAY PROCESS
WITH INFINITE MEMORY

Considering the limit of the geometric decay process (when L -+ (0), it follows
from (14) that

gt+l = cog, + (1 - W)Xt+l.

The ABS (22) then becomes

JL
Xt+l = x, + "2[(1 + mt)Zl,t + (1 - mt)Z2,t],

mt+l = tanh(~ [Xt+l - RXt + 8t+1Hzl,t - Z2,t] - .8;), (34)

gt+l = cog, + (1 - W)Xt+l,

(33)

where
-RXt

Zl,t = --2'
ala

which is a third-order nonlinear difference equation system. With regard to the
existence of steady state E (x*, m * , g*), it can be seen that the result of Proposition 1
still holds with g* = x* .

6.1. Stability Analysis

The eigenvalue analysis of the fundamental steady state in this case shows that
the stability region is given by D2 (d, y), corresponding to the case of L = 2 for
theGDP.

PROPOSITION 4. Let S, =0, WE (0,1). Then the fundamental steady state £1

of the ABS (34) is LAS if

(d, y) E D(d, y) = D2(d, y) = {(d, y): 0 < d < d*,O < Y < rn· (35)

It is perhaps surprising that, when the memory is infinite, the stabllity region
of the fundamental steady state is the same as the GDP with tag
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Comparison of the stability regions of GDP with L = 1, 2, and 3, when memory
is infinite leads to the smallest stability region for the fundamental steady state.
Furthermore, when the trend followers extrapolate weakly, a decrease in the decay
rate enlarges the stability region.

6.2. Numerical Analysis

Numerical simulations indicate that the prices converge to the fundamental price
when both the extrapolation rate and the adjustment speed are weak (so that they are
located in the local stability regions) and prices become unbounded when the prices
are strongly adjusted by the market maker. Also, when the trend chasers extrapolate
strongly (so that d > d*), the effect of the decay rate ta on the price dynamics
is similar to the case for GDP with L ~ 2. The following discussion considers
a situation in which the trend chasers are less risk averse than the fundamentalists;
that is, a < 1. It is found that, in this case, the decay rate has a different influence on
the price dynamics when the trend followers extrapolate strongly. In the following
simulations, let

R = 1.1, C = 1.0, al = 1, a2 = 0.5, fJ = 3.5, (J"2 = 1, u. = 1.0.

6.2.1. Effect of the extrapolation rate d. Let to = 0.75 be fixed. For different
values of d, phase plots in the (x,, mt) plane without noise and price time series with
noise are plotted in Figure 9. For d = 1.16, the (Xt, mt) trajectories converge to a
closed orbit encircling one of the nonfundamental steady states. As d increases, the
attractors become more complicated. Addition of the noise process leads prices
to fluctuate around the nonfundamental steady-state level for d = 1.16 and, as
d increases further, the volatility pattern becomes more complicated, no doubt
reflecting the interaction of the underlying complex deterministic dynamics and
the noise. Also of interest are the not infrequent excursions to a neighborhood



ASSETPRICING, HETEROGENEITYAND MARKET MAKER 527

0.5

-~
\
\
:

1.0 ••• -_. '\
•I
i

j
('<")

d
II 0.0
a

-0.5

I
-1.0 ••-

1.0 ,-

0.5
'C>
d
II 0.0
a

I

· "~'· ..
e l·

-1.0 E-=L.=-=-===-~_~---1
1.0 ,,!,":".r:."~.. .
O.S -::s :..- ..;-.-... •. ,

~ ... t·. . .
II 0:0 -•• ' "'~ : -;-.
a ~··"'I·.;' •••

-0.5 f-t.. .: ;U...;....-:..
.- ...;.. ..

-1.0 ;. •• - -

012

-0.5

3.0

2.5

2.0

1.5
1.0

0.5

0.0
3.0 1'-'--''----'---'..:....-.:..:....------'--'-'-'--'-1

2.5

2.0

1.5
1.0

0.5

0.0
3.01-----------1

2.5

2.0

1.5
1.0

0.5

0.0 L-_'--_'-------''----'.-
a 500 1000o

FIGURE 10. Limiting phase plot in (XI, ml) without noise (left panel) and price time series
with noise (right panel) ford = 1.2, al = 1, az =0.5, I-l= 1, and w=0.3, 0.6, and 0.9.

fundamental steady state. Here again, one might conjecture that the noisy nonlinear
ABS is characterized by a bimodal distribution for prices.

6.2.2. Effect of the decay rate co. Let d = 1.2 be fixed. For different values
of to = 0.3,0.6, and 0.9, phase plots in the (Xt, mt) plane without noise and price
time series with noise are plotted in Figure 10. For co =0.3, the time series (x,, mt)
converge to some strange attractor encircling one of the nonfundamental steady
states. As co increases, the attractors become more complicated. The addition
of the noisy dividend process in this case seems to break the price pattern of
the deterministic case. Now, prices fluctuate between the fundamental and one
nonfundamental equilibria (w =0.3 andw =0.6). As wincreases further(w =0.9),
one also observes high apparent volatility clustering of the prices.

7. CONCLUSION

Using a market-maker scenario, the present paper has incorporated risk and learn-
ing schemes into an asset-pricing model with heterogeneous beliefs. Fundamental-
ists and trend chasers are the main trading groups that drive the various dynamics
of price changes. The importance of different learning schemes for price dynamics
has been highlighted in earlier literature (and in this paper). However, the precise
way in which the market clearing mechanism affects the dynamics of asset prices
in models involving heterogeneity and learning has not received a great deal of
attention in the literature. The current paper has sought to address this deficiency.

Under a market-maker scenario, this paper studies how the dynamics of asset
prices are affected by different risk attitudes and different learning schemes of
different types of investors. In particular, the paper concentrates on models of
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fundamentalists and trend followers who follow recursive geometric decay (learn-
ing) processes with both finite and infinite memory. The analysis depicts how the
dynamics are affected by various key elements (or parameters) of the model, such
as the adjustment speed J.L of the market maker, the extrapolation rate d of the
trend followers, the decay rate co of the GDP, the lag length L used in the learning
GDP, and external random factors. The results of the paper can be summarized as
follows:

• With the Walrasian market-clearing scenario in Brock and Hommes (1998)
and Chiarella and He (2002c), the local stability of the fundamental steady
state is completely characterized by the extrapolation rate of the trend fol-
lowers and the relative risk-aversion ratio between the fundamentalists and
the trend followers, not the lag length used in the moving-average learning
process for the trend followers, and complicated price dynamics can only be
generated through saddle-node-type bifurcation. In contrast, this paper has
found that, with the market-maker scenario, the stability of the fundamental
steady state is maintained only when the speed of the adjustment of the market
maker is low and balanced with the extrapolation rate of the trend followers.
Furthermore, complicated price dynamics can be generated through either
saddle-node or flip-type bifurcations.

• Similar to the Walrasian scenario, in general, different lag lengths can com-
plicate the price dynamics, but an increase in lag length may not necessarily
enlarge the local stability region.

• The decay rate of the geometric-decay learning process for the trend fol-
lowers has more complicated effects on the price dynamics. When the trend
followers extrapolate weakly, a decrease in the decay rate for both finite and
infinite memory processes enlarges the local stability region of the funda-
mental steady state. However, when the trend followers extrapolate strongly,
the price dynamics can be stabilized by an increase in the decay rate when
both the fundamentalists and trend followers have the same risk-aversion
coefficients, but can be destabilized when the trend followers are less risk
averse than the fundamentalists.

• When external random factors (e.g., a noisy dividend process) impinge on
the dynamics, some interesting additional features are observed, in particular,
excursions to other equilibria and volatility clustering. The volatility appears
to be much greater than that of the external i.i.d. dividend process. However,
the paper has only been able to give some brief and preliminary insights into
this issue that should be topics for future research.

In summary, the study finds that the resulting dynamical behavior of the asset
pricing model under the market-maker scenario is considerably enriched and has
some significant differences from the Walrasian scenario. However, the interaction
of external noise with the nonlinear dynamics of the model is a topic that requires
more extensive research. The techniques discussed by Arnold (1998) may be useful
in this regard.
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The model considered here has concentrated on the interaction of two types of
investors. Of course, to mimic the price behavior observed in real financial markets,
it would be preferable to allow for a larger number of investor types and/or a richer
set of learning schemes from which the various investor types update their beliefs.
A number of authors [see Chen and Yeh (1997, 1999), Lux and Marchesi (1999)]
have developed models (similar in spirit to the one of this paper) containing many
different trader types choosing from a rich set of learning schemes. Much of the
analysis by those authors is necessarily based on numerical simulations. However,
their models do mimic the types of price patterns observed in real financial markets,
such as ARCH effects, volatility clustering, and fat tails. This paper should be seen
as complementing these more numerically oriented studies by obtaining analytical
results concerning local stability analysis and thus gaining some insight into the
maps determining the nonlinear dynamics of this class of model.

NOTES

1. A more extensive study involving more types of agents appears in Chiarella and He (2000).
2. When different types of investors, for example, "smart-money" investors and "noise traders,"

are involved in the market, it is believed [see Miller (1977), Black (1986), Summers (1986), Fama and
French (1988), Poterba and Summers (1988), DeLong et al. (1990), Campbell and Kyle (1993)] that
the smart-money investors are more risk averse than noise traders. One message from this strand of
literature is that the differing attitudes to risk of the various types of investors have an influence on the
price dynamics observed.

3. Equation (4) may be derived using a mean-variance framework or by assuming that agents have
a utility of wealth function - exp( -ah W).

4. See Hommes (200 1)for further discussion of fundamental price, speculative bubbles, and rational
bubbles.

5. Gaunersdorfer (2000) investigates the Brock-Hommes evolutionary asset-pricing model with
time-varying variances, determined by a weighted average (with exponentially decreasing weights)
of past squared returns. She shows that the results are quite similar to the Brock-Hommes results
with constant variance, which is also confirmed by the analysis by Chiarella and He (2oo2c). For the
market-maker model, it would also be feasible to introduce a changing variance. However, numerical
simulations (not reported here) also indicate that the results are quite similar to those obtained here
with constant variance. Therefore, to simplify the following analysis, constant variance is assumed.

6. The generation of the simulations with noise is discussed in Section 5.4.
7. The task of conducting a stability analysis of the nonfundamental equilibria is not included in

this paper due to space limitations.
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APPENDIX A

A.1. PROOF OF PROPOSITION 1

Let i, m be the steady state of (22) and Al = R/al, Az = (R - d)/az. Then,

i = i + ~[(l +m)ZI + (1 - m)zz]

_ (f3(l-R)__ _ f3C)
m = tanh 2 X[ZI - zz] - 2

(A.I)

with Zl = -Ri/(alaz) = -Ali/az and zz= (d - R)i/(azaz) = -Azi/az. Hence the
solution of (A. 1) satisfies

[AI (l +m) + Az(l - m)]i = 0

m = tanh [L(R - I)(AI - Az)iz - ~C].
2az 2

(A.2)
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The first equation implies i =O,orm = (A2 +AI)/(A2 - AI) :=m*· i =Oimpliesm =meq

which leads to the existence of E. Assume i #- 0; then, m = m* .
Note that Al > O. If d < R, then A2 >0 and hence m* > 1 for A2> Al and m" <-1

for A2 < AI. Therefore, there is no other solution when d < R. When d > R, then A2 < 0
and one can verify that m E (-1, 1).If A2 < -AI, that is, d » (1+a)R, then 0< m* < 1
and hence equation (A.2) always has a solution for some ±X. This indicates the existence
of E±. Now, if A2 > -AI-that is, d < (1+a)R-then-1 < m* < O.Then, equation (A.2)
has a solution for some ±X if and only if meq < m*, which is equivalent to d > d", Note
that d* < (1+a) R. Hence, in both cases, equation (A.2) has a solution for some ±X. This
completes the proof.

A.2. PROOF OF PROPOSITION 2

The system (27) is equivalent to an L + 1order difference equation

Xt+I = F(x" Xt-I, ... , Xt-(L-I), Xt-L),

where

{

1-L [ (-Rxt) dg, - RXt]
F(Xt,Xt-I, ... ,xt-d=xt+- (1+mt) 2 +(l-mt) 2

2 al (J' a2(J'

. 8t = bix, + b2xt-1 + ....+ bLxt-(L-I)

and

[
fi (-RYt d8t-RYt) fie]mt = tanh - (x, - RYt) --2 - 2 - - .
2 al (J' a2(J' 2

At the steady state E, x* = O.Evaluate the partial derivatives of Fat (xt, Xt-I, ... , xt-d =
(x*, x*, ... , x*) = (0, 0, ... , 0):

of = 1+ ~(1-meq)[bld _ R(l +a 1+m
eq

)]
OXt 2a2(J'2 1 - meq

= 1+ 2y(1 - meq)[b1d - d*] := A,

of 1-L e e-- = --2 (1- m q)dbi+1 = 2y(1- m q)dbi+l := Bi+l,
OXt-i 2a2(J'

(i = 1,2, ... , L - 1),

of
--=0.
OXt-L

The characteristic equation of the fundamental steady state E is given by

A[AL - AAL-I - B2AL-2 - ••• - BL] = 0

Thus, one eigenvalue is zero and the remaining L eigenvalues are given by the solutions to
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• For L = 1, bi = 1, and
fl(A) = A - A = 0,

one obtains IAI < 1 iff IAI < 1; that is,

-1 < 1+ 2y(1- meq)[d - d*] < 1.

That is,
o < y(1 - meq)(d* - d) < 1,

which is equivalent to

1 *o < y < (1 _ meq)(d* - d) = YI .

Also, A = 1 along d = d" and A = -1 along Y = rt
• For L=2,bl=I/(1+w),bz=w/(1+w). Hence, B=2y(l-meq)dw/(1+w)

and

0< d < d*,

fZ(A) = AZ- AA - B = o.
Using Jury's test, IAiI < 1 iffTz(l) > 0 and (-l)zfz( -1) > 0; that is,

1- A - B > 0,

1 +A - B > O.

One can verify that these conditions are equivalent to

0< d < d*, 0< y < y;.

Also, A = 1is one of the eigenvalues along d = d" and A = -1 is one of the eigenvalues
along y = yz*.

• For L =3, bl = 1/(1 +w+wz), bz =w/(1 +w+wz), b3 =wz/(1 +w+wz), and

1
wd

Bz = 2y(1 - meq) z
l+w+w

wZd
B3 = 2y(1- meq) z :

l+w+w

f3(A) = A3 - AAZ - BZA - B3 = o.
Using Jury's test, IAiI < 1 iff -Bz < 3 and

HI = 1 - A - Bz - B3 > 0,

HZ = 1 + A - Bz + B3 > 0,

H3 = 1 + Bz + AB3 - Bi > O.

Furthermore, A = 1(-1) is one of the eigenvalues along HI = 0 (Hz = 0). One can
verify that HI > 0 if d < d", Hz > 0 if 0 < y < Y3* and HI > 0, Hz > 0 imply H3 > O.
Note that

l-w l-w+wz
--< <1
l+w l+w+w2 '
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which implies that

Therefore

A.3. ROUCHE'S PROPOSITION

If the complex functions f(z) and g(z) are analytic inside and on a simple closed curve
y and if Ig(z)1 < If(z)1 on y, then f(z) and f(z) + g(z) have the same number of zeros
inside y.

A.4. PROOF OF PROPOSITION 3

(i) To apply Rouche's Proposition, take y to be the unit circle lz] = 1, the function
f(z) = ZL, while g(z) = -AzL-I - B2zL-2 - ... - B2. Then, on y: lzl = 1, If(z)1 = 1 and
Ig(z)l::::: IAI + L~=2IBd. Note that

LI:IBd= 2y(l- meq)d(1 - bl)'
i=2

It can be verified that
L

IAI + I:IBd < 1
i=2

. (A.3)

is equivalent to the conditions d <d* and (28) of Proposition 3, leading to Ig(z) I < If (z) I
on y. By Rouche's Proposition, it follows that p(z) = f(z) + g(z) and f(z) =ZL have the
same number of zeros inside the unit circle. Since f (z) = ZL = 0 has L repeated zeros Z = 0
inside the unit circle, all the zeros of p()...) lie inside the unit circle and, consequently, E is
locally asymptotically stable.

(ii) To apply Rouche's Proposition, take y to be the unit circle lz] = 1. The function
f(z) = (BI - A)zL-I, while g(z) = ZL - BlzL-1 - B2zL-2 - ... - B2 with BI = b. Then,
on y: [z]= 1, If(z)1 = Ib- AI and Ig(z)l::::: 1+ L~=IIBd= 1+2y(l- meq

) d. Under
the condition 0 <d <d* and y > yt, one can verify that Ig(z)l::::: 1+ L~=IIBi I:::::
Ib - AI = If(z)\ on y. It follows from Rouche's Proposition that p(z) = f(z) + g(z)
and f(z) = (b - A)zL-I have the same number of zeros inside the unit circle. Since
f(z) = (b - A)zL-I =0 has L -1 repeated zeros Z =0 inside the unit circle, there are
only L - 1 zeros of p()...) lying inside the unit circle, which implies that there is one zero
satisfying lz] ::::1. Consequently, E is unstable.

A.5. PROOF OF COROLLARY 1

In the case of L = 1, the local stability result follows from the Proposition 2.
Now assume 0 < d < R and let

JL
h(m) = 1 - -2 2 [aR(1 +m) + (R - d)(l - m)].

a2U
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Then it follows from -1 < m < 1and

h'(m) = --~1)(a - I)R +d]
2a2(1

that if d > (1- a)R, thenh(1) < h(m) < h( -1), and if d < (1- a)R, then h( -1) < h(m) <
h(1). Note that h(1) = 1- 4yaR and h( -1) = 1- 4y(R - d). From the first equation of
(29), one can see that E is globally asymptotically stable iff -1 < h (1),h (-1) < 1for d >
(1- a)R and -1 < h( -1), h(1) < 1for d < (1- a)R, which can be verified under either
one of the conditions in Corollary 1.

A.6. A STABILITY RESULT FOR THE MAP WITH ANY LAG LENGTH

It is generally difficult to obtain explicit sufficient conditions on the local stability of
the GDP for any lag length. However, when to = 1, the GDP leads to the MAP and
B, =B == 1+2y(l- meq)[d/ L - d*]. In this case, the following Lemma from Chiarella
and He (2002c) can be used to obtain a stability result.

LEMMA A.l. Let

p('A) = 'AL + y'AL-1 + y'AL-2 + ... + y'A + y.

Then, zeros of p('A) lie inside the unit circle if and only if

1
-- < Y < 1.

L

If J.L is selected such that A = B, then Lemma A. 1 leads to the following stability result
for L ~ 1.

COROLLARY A.l. Assume that

y = 1/[2(1- meq) d*]. (A.4)

Then, E of system (22) is LAS if 0 < d < d",

Under the Walrasian scenario, the same sufficient condition d < d* on the local stability
of the Walrasian fixed equilibrium E1 is obtained by Chiarella and He (2002c). Note that
the condition d < d* is independent of the lag length L. Under the market-maker scenario,
Corollary A.l indicates that, when the speed of the adjustment of the market maker is
selected as in (A.4), the stability condition is independent of the lag length L. Let

* [d* ] 1 - m'"a = --1 .
R 1 +meq (A.5)

Hence, under condition (A.4), E 1 is LAS for a > a* . In the special case that the information
costs and the risk-aversion coefficients are the same (i.e., C = 0 and al = a2), (A.4) and
d -cd" lead to

J.L 4 d < 2R.
Y = 4a2(12 = R'

This indicates that, in this case, the fundamental steady state is LAS if the trend chasers do
not extrapolate strongly (0 < d < 2R) and the speed of the adjustment of the market maker
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is proportional to the risk-aversion coefficient (a2) with the product of the variance (0'2) and
the discount rate of return (1/ R) as the coefficient.

A.7. PROOF OF PROPOSITION 4

The ABS has the following form:

{

X'+l = rt», y" g,)

Y'+l = X,
g'+l = Gix, y" g,),

where

{

/.L [ -Rx, dg, - RX,]Ftx, y" g,) = x, + 2" (1+m')--2 + (1- m,) 2
ala a20'

Gtx, y" g,) = tog, + (1 - w)F(x" y" g,)

and

[
p (-RY, dg,-RY,) PC]

m, = tanh i(x, - Ry,) al0'2 - a20'2 - 2 .
One can verify that, at the steady state (x*, y*, g*) = (0, 0, 0),

of 2 eq d*- = A = 1 - y(1 - m) ,ox,
oG
- = (1-w)Aox,
oG =0oy,
oG- == C = to + (1 - w)B.og,

of
-=0,oy,
of- = B = 2yd(1 - meq),og,

Hence, the characteristic equation is

r3(A) == A[(A - A)(A - C) - AB(1 - w)] = O.

Note that
D == AC - AB(1 - w) = wA.

Then,

and IAi I< 1 iff 0 <d <d", 0 < y < y{. Furthermore, A = 1(A = -1) is one of the eigen-
values along d =d*(y = yn.
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