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Standard optimal portfolio choice models assume that investors maximise the
expected utility of their future outcomes. However. behaviour which is incon-
sistent with the expected utility theory has often been observed.

In a discrete time setting, we provide a formal treatment of risk measures
based on distortion functions that are consistent with Yaari's dual (non-expected
utility) theory of choice (1987).and set out a general1ayout for portfolio optimi-
sation in this non-expected utility framework using the risk neutral Computa-
tional approach. .

As an application, we consider two particular risk measures. The first one
is based on the PH-transform and treats the upside and downside of the risk
differently. The second one, introduced by Wang (2000) uses a probability dis-
tortion operator based on the cumulative normal distribution function. Both
risk measures rank-order prospects and apply a distortion function to the entire
vector of probabilities.
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1. INTRODucnON

This paper considers the dynamic optimal consumption and portfolio selection
problem, in a discrete-time setting and using a non-expected utility setting. The
majority of portfolio choice models assume that preferences are represented
by a von Neuman-Morgenstern utility function and individuals choose among
risky alternatives so as to maximise the expectation of the utility of possible
outcomes. Although the expected utility model has long been the standard for
choice under uncertainty, questions have been raised concerning its validity, and
behavior patterns which are systematic, yet inconsistent with expected utility
theory have often been observed as in the Allais paradox (1953 [I» and Kahne-
man & Tversky (1979 [II». Fishburn (1988 [6]) surveys the reasons why the
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expected utility hypothesis fails. Camerer (1989 [3]) carries out empirical tests
of several generalized models of utility theory. Yaari (1987 [24]) developed a
dual theory of choice under risk where the roles of probabilities and payments
are interchanged, so the wealth utility function is replaced by a probability dis-
tortion function. Some of the expected utility related paradoxes are resolved
in the dual theory. The rank dependent utility model introduced by Quiggin
(1982, [15]) can be viewed as an extension of both the expected utility and the
dual utility models where both the cumulative distribution function and the out-
comes are distorted. The idea of the rank dependent utility model is to rank-
order prospects and apply a distortion function (called weighting function by
Quiggin [15]) to the entire vector of probabilities and the utility function to
the outcomes.

Recently, there has been development in a non-expected utility framework.
Wang (1995 [20], 1996 [19])proposes calculating insurance premiums by apply-
ing the proportional hazards transform to the decumulative distribution func-
tion, thereby introducing a new risk measure. This new measure turns out to
be consistent with Yaari's dual theory of choice. Wang (2000 [22]) also uses
a different class of distortion operators to recover the Black-Scholes formula.
Van der Hoek and Sherrls (2001 [18]) introduce a new class of risk measures
for asset allocation which is based on the distortion function approach to insur-
ance risk.

Empirically, there is evidence to support non-expected utility model. Indeed,
Bufman and Leiderman (1990 [2]) use Israeli data between 1978 and 1986 to
test an intertemporal consumption-investment model introduced by Epstein
and Zin (1989 [5]) that uses Kreps-Porteus (1978 [13]) non-expected utility
preferences. They find evidence to reject the expected utility model and accept
the non-expected utility one. Their results differ from those of Epstein and
Zin (1989b [4]) and Giovannini and Jorion (1989 [7]) who took data from the
tranquil postwar US economy. This suggests that a non-expected utility model
may perform better in a volatile economy. The results of the empirical tests of
the same model using French data from 1960to 1994conducted by Koskievic
(1999 [12]) support those of Burman and Leiderman (1990 [2]).

This paper is organised as follows. In section 2, we present the concept of
risk aversion for non-expected utility and illustrate the idea of using a distortion
function to price risk. New objective for asset allocation is set in non-expected
utility framework. Section 3 provides a formal treatment of risk measures
based on probability distortion. New class of risk measures for portfolio selec-
tion based on the proportional hazards transform, proposed by van der Hoek
and Sherris (2001 [18]) is then reviewed and extended to the multinomial case.
This is the first step in setting out a general scheme for dynamic asset allocation
when the risk measure is based on a distortion function. Some other proper-
ties, useful for the optimisation, are developed along the way. In section 4 we
derive a dual utility theory equilibrium pricing formula for market securities
and propose to solve the optimal portfolio problem using the risk neutral com-
putational approach when the investor behaviour is modeled by this new class
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of risk measures. In section 5, we extend the previous framework from single
period to multi-period. In section 6, some numerical examples for asset allo-
cation are provided. The conclusion highlights some further developments.

2. NON-ExPECTED UTILITY THEORY

2.1. Risk aversion in utility theory and its dual

Decision makers with a von Neumann-Morgenstern utility function are said
to be risk averse if they prefer to have the expected value of a gamble rather
than facing the gamble itsel( ie. For all gambles X with E(X) =0 and positive
variance, and for a level of wealth ~ U(W) >EU(W +X).

It can be proved (see Ingersoll [10]) that decision makers are risk averse if
and only if their von Neumann-Morgenstern utility function of wealth is
strictly concave. Moreover, the level of risk aversion is measured by the degree
of concavity of the utility function. Locally, this is determined by Arrow-Pratt's
absolute risk aversion index: A(W) = ::~:~.The larger the index, the more risk-
averse the agent.

To induce a risk-averse individual to undertake a fair gamble, a compen-
satory risk premium IIc(X) has to be offered. Or dually, to avoid a present
gamble, a risk averse individual would be willing to pay an insurance risk pre-
mium IIi(X). These risk premiums are depicted as fonows:

E[U(W+ IIc(X) +X)] = U(W>
E[U(W+X)] = U(W-II,(X»

The amount W- II, (X) is the amount which. when received with certainty, is
considered by the individual as good as W +X. It is called the certainty equiv-
alent. of the gamble W +X.

In the expected utility theory, suppose that an individual must choose among
lotteries with at most n outcomes XI' Xl' ••., XII' with respective probabilities Ph
Pl, ""PII' then there exists a utility function U such that this individual's choice
criterion is to maximise

E[U(X)] = t pjU(xl) = 1u(X(w»dP(w)
i-I n

Note that this objective function is linear in probabilities and distorts the payoffs..
In the dual theory of choice introduced by Yaari [24], the certainty equiva-

lent to X ~ 0 is defined as:

II (X) = fa""g(Sx(t»)dt
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where g is a "dual utility" or a distortion function (continuous and non-decreas-
ing) g : [0, 1] -+ [0, 1]with g(0) = 0 and g(l) = 1, applied to the probability decu-
mulative distribution:

Sx(t) = Pr[X> t]

This general form of n(X) is valid for continuous and discrete time cases,
where the integral sign will be a summation sign in a discrete case, and the
appropriate formula is developed later. If X is a non-negative random variable
representing a loss amount then n(X) is the mtainty equivalent of the risk X.
In the dual theory, given a choice among risky prospects, the agent would prefer
risks having the greatest certainty equivalent.

It can be proved (see Yaari (24)) that the investor is risk averse if and only
if g is convex. An intuitive interpretation of this property foDows in the case
when g is differentiable:

n(X) = ~"" g(Sx(t»)dt = ~"" tg'(SX(I» dFx (I)

assuming that tg[Sx(I)] -+ 0 as 1-+00. RecaD that:

E[X] = ~ •••IdFx(t)

Comparing n(X) to E[X],n(X) can be thought of as a corrected mean of X
where the payment I m::eives a weightg'(Sx<t» ~ O. Note that these weights sum
up to 1, i.e. f g'(Sx(l»dFx(l) =f ~[-g(Sx(t»]dl=g(I)-g(O)= 1.
If g is convex, then

I. > 12~ Sx(I.) < SX(t2) ~ g'(Sx(lt» < g'(Sx(12»
Therefore, the weight assigned to a high outcome is less than the weight
assigned to a low outcome. Hence, by distorting the probabilities with a con:'
vex function, agents behave pessimistically, in the sense that they assign high
probability to bad outcomes and low probability to good outcomes.

The comparison of risk aversion in this framework is naturally based on
the convexity of the function g Iqlresenting the agent's preference function. The
more convex the function g, the more risk aversethe agent. The dual Arrow-Pratt
risk aversion would be in this casef:~forO<p< 1, as definedin Yarri (1986 [23D.
In the sense of Ross (1981 [17]), agents are strongly more risk averse. if they
require a larger compensation for any mean preserving spread in their prospects,
even if the initial situation is not one of perfect certainty. Risk aversion mea-
surement in the sense of Yaari (1986 [23]) and Ross (1981 [17]) are discussed
in ROel (1985 (16)).

To sum up, while risk aversion in utility theory is measured by the utility
function, in the dual theory, it ismeasured by the probability distortion function.
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The choice of the distortion function g determines the properties of the cer-
tainty equivalent.

In the literature, Wang (1996 [20]) proposes a general class of distortion oper-
ators to use in pricing insurance premiums. When the distortion function is a
power function, i.e., g(x) =x', the mapping

SX<t) -+ g(SX<t»

is called the PH-transform. Applications and implementation of the PH-trans-
form. in insurance is discussed in Wang (1998 [21]). Although the PH-transform
enjoys desirable properties in insurance pricing, it cannot be applied to assets
and liabilities simultaneously. Wang (2000 [22]) proposes another class of dis-
tortion operators

where cf1(p) = i:7i':e-4 dx is the standard normal cumulative distribution
function and shows how the mean of the distorted decumulative distribution
can be used as another alternative to the risk-neutral valuation in asset pricing.
Van dec Hoek and Sherris (2001 [18]) introduced another framework for pricing
asset and liabilities, based on distortion of the probability distribution. They use
two different distortion operators, g and h to allow a different pricing of the
upside and downside of the risk. The specification of g and h is not given,
thereby allowing for a general pricing framework. In the foDowing, \\'e sba1Icon-
sider the certainty equivalent in discrete-time, then overview the risk measure
introduced by van der Hoek and Sherris (2001 [18]). develop new properties
which are useful for optimisation, and use these results to solve the optimal
portfolio problem.

1.2. New Objective for Asset ADocation

In multi-period asset allocation, investors are faced with a series of decisions
where at the beginning of each period, they have to choose the optimal amount
of consumption and investment. The optimal consumption level C, at time t
is a risky prospect. Formally, C" t = 0•...• T is a non-negative and bounded
random variable defined on some probability space. By virtue of Theorem 2
in Yaari ([23]), the scheme (Co, Clo ••• , CT) is preferred to (Co, C;, ... , C~) if and
only if there exists an increasing continuous function U: R~ -+ 14 such that:

U(H(Co), H(C.) •... ,H(CT» ~U(H(Co),H(CD,···,H(C~»

The investor chooses the consumption stream that maximises an increasing func-
tion of the certainty equivalent of consumption at each period.
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In what follows, we choose

U:R:-R+
(X1JX2' •••'XII) •••• r,pIX,

where 0 < P S; 1 is the time preference factor. The consumption-investment
problem can be reformulated as follows:

Max r,~=optH(Ct)
C••C'r.~ c;

s.L JJtl = r,~=o~ [(I ~'r )' ]

C, ~ 0 Vt E [0, T]

(2.1)

where we is initial wealth and r is a constant interest rate, that can be extended
to be varying with time and states of nature. Q is the risk-neutral probability
measure under which the underlying security process is martingale. The objec-
tive function is not as tractable as in the expected utility theory. This is because
it depends on the order of consumption. In the following section, we develop
an expression for the discrete time case.

3. AssET ALLOCATION IN SINGLE-PERIOD

3.1. Dual Theory Equilibrium Pricing

In the dual utility theory the consumer-investor problem for a sing1e-period
using the rank-ordered optimisation framework is

j
maxc..c,

:ectto CO,C) ~ 0

Jf6 = Co + IIr ~[C.]

(3.1)

where Co and C. are consumption at time 0 and I respectively, JVcJ is initial
wealth, P is a time discount factor and r is a constant interest rate, that can be
extended to be varying with time and states of nature. Q is the risk-neutral
probability measure under which the underlying security process is martingale.

Suppose that C; and Cj are solution to (3.1). Perturb the consumption C; in
such a way that the consumer consumes less than C; in order to invest in a
security j whose price at time 0 is Xj' This translates to
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t = 0 : C;' = C: ~ ~Xj

t = 1 : Ci' = Ci + ~.\j

where , is the fraction invested in the security j and .\j is the security j price
at time 1: The objective is

where

~[Ci +~Xj] = ~P:(CtJ)( Ci(CtJ)+eXj(CtJ»
Q

and

P~"(CtJ)= h(P[C; + eXj ~ Ci(CtJ)+ eXj(CtJ)])-

h(P[C; + ~Xj > Ci(w) + ~Xj(w)])

Note that this is not an expectation since the weights P;(w) depend on X and
the operator E. is not linear.

We know that Obj is maximized for e = 0 (since C: and a are optimal).
If Obj is concave in e and differentiable then it is maximized when the deriva-
• &06}.tiVe ~ 18 zero.

Now, ac::j I = 0 implies
•••• (=0

Xi = P~ P:(w) Xj(CtJ)+ P~ P:'(w)C;(w)
Q Q

= PH(Xj) + P~P:'(w)C;(CtJ)
a

This gives a relationship between the price of the security j at time 0 and time 1:
If Pt = 0, then we have the pricing result suggested by Wang (2000 [22])

Xj= PH(Xj)

With these ingredients, we propose to study some classes of risk measures
based on distortion functions and consider the application to asset allocation.
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3:.2. Application: Van der Hoek and Sberris class of risk measures

In their paper, van der Hoek and Sherris (2001 [18]) define the certainty equiv-
alent of a random variable X by:

H(X) == Ha",.(X) = a+H.(X-at)-H,(a-Xt)

= a+ J:lIIh{Pr[(X-at> t]}dt- J:lIIg{Pr[(a-xt> t]}dt (3.2)

where a is a real constant, and h is a convex and increasing function on [0,1]
with h(O)=0 and h(l)= I, and g is a CODCa\7e and increasing function on [0,1]
with g(O) = and g(l) = 1. The convexity and concavity of h and g ensures the
concavity of Ha",.(X) which is an appealing property in portfolio optimisation.

DeftDition 1. The functions g and h are said to be conjugate if and only if: hex) =
I-g(l-x) 'tIx e [0,1]
In what follows, we provide an expression of H(X) in the discrete-time case.

Pmposltioill (Order assumption). If X is a multinomilll discrete random variable
taking the values (Xlt X2' ••• , x,,) such that XI <X2 < ...<x", with probabilities (Ph
P2, .•• ,p,,). then.

"H(X) = a + I: [hr_1 - hr] (x, - at - [gr - gf_I](a - Xlt (3.3)
'-I

where

hr = h (1 - ±P1) and g! = g (± P1)
1-1 1-1

Proof The idea of the proof is the same as in the proof of Theorem (Certainty
equivalent). A detailed proof is provided in the appendix. 0

In its general form, H(X) is a piecewise linear function, so it is not differentiable.
However, when x••X2t""XII and a can be ordered, then H(X) has a simple dif-
ferentiable fonn given by the corollary (2) in the appendix. More useful proper-
ties of H are detailed in the appendix.

. In the case of a one-period model with one risky security and one riskless
asset, there are 5 unknown variables: Co, the consumption at time 0, Ci and
ci, the consumption at time I for the up and down states and Ho and HI the
investment positions in the safe and the risky asset respectively. To solve this
problem, we start from the budget constraints that involve both consumption
and investment strategies and express all the variables in terms of Cj and ct.
We then show how this is equivalent to using the risk-neutral computational
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approach directly, which from the start determines the constraints in terms of
Cl'and ct.

The consumption-investment problem is

{

max
(~H)

subject to

and
CO,CI~O
budget constraints

(3.4)

where the budget constraints are

"0 - Co = HoBo + HlSo (3.5)

(3.6)

whereSo= 1.Wecan rewriteaDthe variablesin terms of Ci and Ct, (see figure (1»
which become the control variables in problem (3.4).

FIGURE 1. Coasumptioa Nadel in SiDlle-Period BiDomiIl Model

Equation (3.6) yields two equations

Cl' = HoBI +HISf
ct = HoBI +HISt

Solving then for Ho and HI:

R - - st C. + S~ ct
o - BI(S~-Sn I BI(S~-Sn J

H I C. I Cd
J = SII _ Sd I - SII _ Sd I

I J J J

(3.7)

Using equations (3.5) and (3.7), Co can be expressed in terms of Cf and ct.
(3.8)
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where

Interpretation of '. IDd ~:

For the choice of sf < BISo < Sr, it is easy to check that Q(WI) = (B1SO-Sf)1
(Si - sf) and Q(~) = (Sj - BISo) I (Sj - Sf) define a martingale measure for
the discounted price SIIBI. Therefore

blCj +~ct = EQ[~]

And equation (3.8) can be written as

WO= Co + Eo(~)
The absence of arbitrage condition is equivalent to Q(wi)e (0,1) for i e {1,2}.
Provided that BJ :: (l + r) ~ I, we also have bi == Q(Wi) I BI e (0,1).

The problem (3.4) is then equivalent to

max H(Co) + PH(CJ)
(~H)

subject to Co, C1 ~ 0
~= Co+Eo[CI/(l+r»

(3.9)

This would be the starting point if the optimal portfolio problem (3.4) was for-
mulated within the risk-neutral computational approach.

The constraints of Problem (3.4) are:

(I) Cj ~ 0 and cf ~ 0

(2) WO- Co ~ 0 ~ blCj + b2Cf ~ 0 (using (3.8»

(3) Co ~ 0 ~ bl Cj + b2ct s wo (using (3.8»

Solving the Problem - Feasible Region. In this section, w~ consider the spe-
cial case when the distortion functions g and h are conjugate, and we solve the
problem analytically. The general case of non-conjugate distortion functions
is left to the next paragraph dealing with the case of 2 risky assets and 1 risk-
less security.
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Let us write all the variables in terms of Ci and ct.

• B(Co) = Co = Wo -blCj - b2Ct

{
h(P)Cj + [1-h(P)]Ct if Cj ~ct

• B(Ct) =
h(q)ct + [1-h(q)]Cj if Cj ~ ct

Therefore, the objective function in the problem (3.9) is equal to

We consider then the two maximization problems

PI =

max {Ph(p) - b,}C~+ {P(I-h(p» - b2}Ct
cj.et

subject to C~ 2: 0, C: 2: 0

C·>C"I - I

blC~+ b2C~s Jf6

(3.10)

and

subject to C~2:0, C~2:0

C·<C"1- I

blC~ + b2C~ s Jf6

(3.11)

Maximizing (3.4) is equivalent to solving PI and P2 and choosing the solution
that corresponds to the higher objective value function. The two maximization
problems are linear programs that can be solved numerically using any opti-
mization software package. However, since there are only two choice variables,
an analytical solution can be given explicitly.

Remark 1. If the probability distribution is such that P{WI} = P{W2} = t. then
PI and P2 have the same solution and therefore, it suffices to solve either the prob-
lem PI or P2.
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Clu

FJOUU 2. Feasible IqioDJ for COIISIUIIJItioD ill one-period mocIcl.
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Given the constraints, feasible sets of the solution to PI and P2 are ilInstrated
in Figure (2). Possible solutions are indicated by the little arrows.

The objective function in the problem (3.10) is linear in Cf and ct. The
equation of the line representing the level curve of the objective function at a
possible value ZI is given by

CII - %1 _ ph(p) - bl C" (312)
1- P(I-h(p»-b2 P(I-h(p»-b2 I •

There are four possible solutions of the problem corresponding to the summits
of the feasible region

(0,0), (0, ~), (b
l
~ b

2
' b

l
~ bJ and (~. 0). (3.13)

Figure 3 plots the solution for the case where p = 0.95, r = 100/0 and p = 0.8.
Optimal Invmment Strategies. Once the optimal consumption rules are obtained,
the optimal investment strategies follow from the budget equations (3.7).

• When (Ci. ct) = (0,0), then (Ho, HI) = (0,0)
d ~ ~ B• When (Ci, Cd = (r.,0), then (Ho, HI) = (-JJ6 Bls.~sf' JJ6~).

• When (Ci,C:) = (hl~62' hl~6J, then (Ho, HI) = (~, 0). This situation is
referred to as "plunging".

• When (Ci, ct) = (0, ~), then (Ho, HI) = (JJ6Sj ~~ts.' - JJ6Sj ~~,S.).

4. OPTIMAL PORTFOLIO CHOICE IN A MULTI-PERIOD MODEL

4.1. General Set-ap

As discussed in Section 2.2, the consumption-investment problem is:

Max
Co. Cr.···. Cr

L~:oP'H(C,)

~T E [ C, ]v = ~,,,o Q (I + r)'

C, ~ 0 Vt E [0, T]

(4.1)s.t.

where v is the initial wealth and r is a constant interest rate.
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Problem (4.1) is set up in the discrete-time case. However, it can be solved
numerically either with a finite number or a continuum states at each time
period.

Let us consider the case when at each time t, Ct takes (2t + 1)possible values
(recombining trinomial tree), then C, is a vector of 2t + I control variables, i.e.

C, = [Ct._" ... ,Ct.o, ... , Ct,,) e IR~+I

For each vector C" there exists a corresponding vector

P, = [Pt.-" ..• ,Pt,O,..• ,p",) e [0,1]2'+1

where P"I = P[Ct = C"I]'

From Proposition (No order assumption), one way to write the term H(C,) in
the objective function is:

,
H(C,) = I: Fc.,(pt),C41

I;-t

Where the function

P, = [p,.-" ..• ,Pt,o,···.P,.,) ..- (4.2)

{
[g(I:{C4iSC.,}Pk) - g(I:{C<t<c.I}Pk)]I{c.,sa} I

+ [h(l- I:{C'i<c.,} Pk) -"(1- I:{c<tsC4/}Pt)]I{ct,/>a}

Remark 2. AMther formulation is also possible using Proposition (Order assump-
tion). where the control Wlrlables are ordered explicitly.

The general expression (4.2) can be significantly simplified in the case when g
and h are conjugate functions and the consumption at each time is distributed
with the same probability over the states, i.e.

g(x) = I-h(l-x) "Ixe [0,1]

and

P[C, = Ct•l] = qt = 2t ~ I "It E [I, T]. Vi E [-to t]
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Then, using Proposition (conjugate), we have

Fc.,(p,) = g(2t ~ 1# {C4l sC41}) - g(2t ~ 1# {Cu< C41})

where # {C"k ~ C",} denotes the number of variables C,.b ke {-I, ...,I}, such
that CI.t;S; C,.,.

In this case, the problem (4.1) can be solved using one of the simplicial
algorithms used in rank regression problems. Osborne (2001 [14Dis an excellent
reference for solving such types of problems.

4.1. Application: Wang's class of distortion operaton

Now consider another class of distortion operators introduced by Wang (2000
[22]). Wang shows that applying this distortion operator to a stock price dis-
tnbution, the risk neutral valuation of stock prices can be recovered in the nor-
mal and the lognormal cases. Further investigations, however, should be car-
ried out to check whether this statement is true for any contingent claim, and
also when there is no normality assumption on the underlying asset prices.
Hamada & Sherris(2001 [8» provide some insight into this question.

4.2.1. The operator. Let Xbe a random variable with a decumulative distribu-
tion function Sx<x) = P[X> x]. The expectation of Xis alternatively given by:

(" "Let cll(u) = J-0I>:k- e-Tdx be the standard normal cumulative function and a e R,

the distortion operator is defined as:

for u in [0, 1].The risk-adjusted premium of X, as defined by Wang (2000) admits
the following Choquet representation

When X is positive, we have:

H[.¥,a] = foOl> g,,[Sx (t)] dt
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The risk.-adjusted premium is evaluated as in Yaari's dual theory of Choiceunder
uncertainty. The tail distribution Sx(t) is distorted by the function la(P) =
4)[cD-1(P)+a]. This operator shifts the pdt quantile of X by a positive or neg-
ative value a and reevaluates the normal cumulative probability of the shifted
quantile.

If a > 0, then ga(P) >p, if a< 0, then g,.(p) <p. Since ga is continuous and
ga(P) e [0, I], then:

ga is convex if ex <0
s; is concave if a> 0

The investor behaves pessimistically by shifting the quantiles to the left, thereby
assigning high probabilities to low outcomes, and behaves optimistically by
shifting the quantiles to the right thereby assigning high probabilities to high
outcomes. Typically, an insurer has a lower ex than a reinsurer when pricing the
same risk.

4.2.2. The portfolio problem. In asset allocation, at each time period, the con-
sumption C, is a positive random variable. The investor seeks to maximise the
ctiscounted sum of the certainty equivalents of consumption through time, as
descn"bed by the problem:

I~ I:~"oP"H[C"a]

subject to I:~.oB,-l.fa[C,] =,
Cis an adapted process

H[C"a] = 1000

g••(P[C, > x])dx

If the model consists of a finite number of states at each time period, then C,
takes 11, possible values c,." C'.2'" 0' c"'" with respective probabilities P" •• P"2' 0 0"

P,.", where 11, is the number of states at time t.Using CoroDary (Certainty equiv-
alent),

The probability that C, ~ C"t is equal to the sum of the probability weights Pk>

such that C"k ~ C,,1t i.e.



DYNAMIC PORTFOUO ALLOCATION 203

Hence,

By defining the risk-neutral probability and using the expression above, the
description of the problem is complete. This is not a linear program, however
it can be solved using an optimisation package. The next paragraph shows
how to solve it on a trinomial lattice and provides some results in two periods.

4.2.3. How to compute H[C, a] over a lattice? Fix a time I, and consider the
distribution of the consumption represented by the vertical nodes (t,i)_ISiS I'
At time t, the consumption C, takes 2t + 1 possible values C"i with probabilities
Pt,i = P[S = S"i]; see Figure (4). Hence,

(0.0><E----'E--~~-'"*--~

1=0 1= 1 1=2 1=3 1=4

FIGURE 4. Trinomial lattice eneoding.
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The probabilities Pt,;. t e {I, ...•T}. i e {-t •...•0•... ,t} can be specifiedas fonows:

where P« and PI are respectively the probabilities of up and down jumps and
[xl is the integer part of x. The expression (4.4) is a generalisation of the prob-
abilities in a binomial model. Likewise, the expression EQ[Ct] in the constraints
can be computed. In effect,

t

EQ[Ct] = ~ Q4i • C4i
1=-1

where:

Q41 = Q[S = S4i)

= ~ (~)(~ -=-~).q:. q;-I. (I-qu _q4y-2t+1
IIIU(O,I)SU[ t;i]

where qll and ql are respectively the risk-neutral probabilities of up and down
jumps.

5. NUMERICAL RESULTS

This section provides two numerical examples of portfolio allocation using the
classes of distortion operators introduced earlier.

The first example considers Wang's distortion operator. Suppose that there
are three dates t =0, 1.2 and five states of the world. This corresponds to a
recombining trinomial lattice. We numerically solve the problem (4.3) for T= 2.
For a loading parameter a =0.5. Figure (5) shows the consumption and invest-
ment strategies as wen as the wealth process for a two period example. The dis-
count factor fJ=0.9, the risk-free interest rate r= 10010and initial wealth 1'= SIO.

The jump probabilities are Pu =Pm =P" = t and qu = fs, qm = t and qt/ = fs .
For this choice of risk neutral probabilities, and a correlation coefficientp = 0.75.
the means and volatilities of the two risky securities are respectively: mean. =
13.46%. volatility. = 07.07010. and mean2 = 15.20%, valatiljtYl = 10.61%.

The intermediate consumption C is null and the consumption is strictly
positive at the highest state of the world. However. intermediate positions nr,
rl and r2 in the riskless asset, the first security and the second security respec-
tively are nonzero.
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alpha= 0.5
coneIation = 0.75
beta =0.9
r=0.1

c=o
W=82.50
nr=59,218
r1=-1,661
12= 7162

C=O
W=10
nr=7,896
r1 =-2,461
12= 1114.90

c=O
W=O

f----~nr=O
r1=0
12=0

c= 680.6250
W= 680.6250

FIGURE S. Consumption and iJMstment strategies using Wang's distortion operator.

To see the impact of the loading parameter a on the consumption stream,
Figure (6) plots the optimal consumption for different values of a.

Around the value a = -0.8, there is a switch in consumption from the low-
est state, where it is nonzero and null elsewhere, to the highest state.

A closer look at the consumption process around a = -0.8, is represented
in Figure (7). This figure shows that in the transitory passage across the level
a = 0.8, the intermediate consumption becomes nonzero.

From the examples above, it is clear that the linearity of the dual utility in
consumption results in a corner solution in the optimisation problem. This is
not a desirable feature in portfolio selection, although, as shown in the example,
with 3 assets, diversification is possible. On the other hand, within the expected
utility framework, a risk averse investor is always diversifying provided that the
expected return of the risky asset is positive.
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,-0.1; ••.••• ,.
IlphB - 5; benc:I-.t~
Ih - 0.9; cIIbIDn ~In h fundIon
IV- 0.2; dIIIacIDn~ Ing fundIon
v· 10; 1nIIiIt•••••
bela- 0.9; dIlIcounI fIctor
qd ., 0.4; qm - 0.35; qu •• 0.25: riIk neutrII probIIbIlIes
Pel••113:Pm ••113;Pu - 113; FIIIIIWllltd Pft)bIIlIIIIes
comIIalion - 0.8 ;

e-o
W-10
rr- • .3
r1=~.5
12-6.5

FJoURE8. Optimal collSUlllpCioa and tradin8 strategies using PH risk measum

The second example is a numerical solution to the problem (??) where the
risk measure is the one introduced by van der Hoek and Sherris. Figure (8)
shows the optimal consumption and trading strategies for the parameters values
indicated in the figure.

This numerical example shows that consumption at the end of the investment
period is positive in all the states. This is due to the asymmetry resulting from
pricing the downside of the risk using the distortion function g(x) = x;O:J. and
the upside of the risk using h(x) = 1- (1- X)O.9. It is worth noting that the con-
sumption in the middle and the down state equals the benchmark. consumption
a= 5. This is consequence of the linearity in Problem (?'l) where C = a is a cor-
ner solution.

6. CONCWSION

In this paper we have provided a formal treatment of risk measures based on
distortion functions in discrete-time setting. We have also shown that the risk
neutral computational approach is well adapted to portfolio optimisation with
such measures that don't lie within the expected utility framework.

The application to two different distortion operators shows that the portfo-
lio consumption and investment rules are different from the expected utility results
since the optimisation leads to comer solutions resulting from the linearity of
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the objective in the control variables. This is an undesirable feature and an
important area that needs to be addressed before these non-expected utility risk
measures can be confidently applied to asset allocation. This is an area for
future research. One possibility is to consider combining expected and non-
expected utility measures as in Quiggin (1982 [IS)). .
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APPENDIX A.

PROPERTIES OF THE CER:rAINTY EQUIVALENT IN DUAL THEOR.Y

A.t. General Case

Let g be a continuous, non-decreasing function, g : [0.1] -+ [0.1] with g(O) = 0
and g(l) = 1.and X bea positive random variable representing a risk. The risk
X is measured by its certainty equivalent defined as:

nm = 10" g(Sx(t»dt

In the discrete-time case, X takes n possible values (X(mt). X(~, ••. , X(m.»
with probabilities (Pith ...,P.), wheren e N\{O}. In probabilistic notation, let
n= {mhW:z,.••,m.} be the probability spacewhere to, ie {l, ... ,n} are the states
of the world, then P[m,] =P, Vi e {l ••.. ,n}.

This is typically the case of a tree model, where the number of states grows
as time evolves.The following theorem gives an expression of n(X) in the dis-
crete case.

1beorem 1 (Certainty equivalent). If X is a random variable taking on n distinct
values X( COt), X( W:z), •••• X(con) with respective probabilities Ph P2•...• P. then,

n(X) = Eg[X]

where Eg[X] is a weighted average of possible values of X; such that the weight
PI(CO,)assigned to X(m,) is given by:

PI(CO,)= g(P[X ~ X(co;))) - g(P[X> X(co,)]) Vco, e n

IEg[X] can be interpreted as an expectation where the probability assigned to
a possible value of X depends also on the other values.

mailto:mahmoudhamada@Urs.edu.au
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Proof. To simplify notation, let X, = X(CO,), i E {I, ... ,n}. If we denote x(1) the
ith value in increasing order (order statistics), then We have:

1

~:=2Pk

Pr[X > t] = ~:"3Pi

if X(I) > t

if xCZ) > t ~ xo>

if x(3) > t ~ xCZ)

P"
o

if x~> > t ~ X~_I)

if t ~ x~)

Therefore,

n(X) = ("o.)g(l)dt + f."l1Ig(tPi)dt + l"{I)g(tpk)dt + ...+ i"(O) g(p,,)dt
10 "(II k.2 "111 k=3 "(a-I)

,,-1
= XO) + ~ gr· [X(i+I) - X(I)]

1.1

= t [gr-I - gr]X(I)
I-I

where

gt = g( tPk)
k-i+1

= g(p[x > X(I)])

Since g is an inaeasiog function from [0,1] to [0,1], and 'r/i I:: = I Pk > :E:..I +1Pk
then:

for all i in {I..n}, p" == g(tPk) - g( tPk) E [0,1]
i=1 k=i+1

Moreover, I:;..•Pl = g(I:;"IP,,) - g(O) = g(l) = 1. Therefore {PE,P!, ... ,P:}
define a probability measure on the probability space n = {COh~ •••• ,coll}' 0

This theorem states that in the discrete-time case, the certainty equivalent of X is
equivalent to an expectation under another probability measure. This has been
shown when all the possible values of X are distinct. The question that arises
immediately is: what happens in the case when some possible values of X coin-
cide? The following example provides an insight into this question.
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In the general case when some values of X coinci~ order them in increasing
order. then from each set of equal values keep only one value and assign the
probability of the set to this value. Thus, a new variable Y is defined in such a
way that all the elements of Yare strictly increasing with adjusted probability
weights such that the identity n(X)=n(y) is satisfied.

Another approach consists of keeping the redundant values and dividing
the probability weights by the number of these values. This is the idea of the
next corollary:

Corollary 1. If X is a random wuiable taking n possible values X(COt).X(C02>,..••
X(co••) with probabilities (p••P2,••••P••). then.

n(X) = E,[X]

Where fe[X] is a weighted average of possible values of X; such that the weight "6
assigned to X(co,) is given by:

P-~( ) _ g(P[X ~X{co,)]) - g(P[X> X{co,)]) fi all . n
co, - { ( ) () } or co, In u# X coJ : X coJ = X(co,)

where the notation #{X(coJ): X(coJ)= X(co,)} stands/or the number o/va1ues X(COj)
equal to X(co;).

Proof. The idea of the proof is given in the previous example. In formal terms,
let

'1', = {i E {I•... ,n} : X(co,) = X(w,)}. S E {l•...• n}

and

P6(CO;)= g(P[X~ X(coj)])-g(P(X> X(co;)]) Vco; E n

We have: Vi E 'P" P6(COj)= P6(W,) and so

I:P'(COt>X(COi) = 1'1',1 P'(w,)X(co,)
'E'!'.

where

Define a new random variable Yand a subset of indices S !:{I, ... ,n}, such that:
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Y(COi)= X(co,) 'Vie S
Y(COi):f: Y(coJ) for i :f:j, 'V(i,j) e s'l

lmage(Y) = lmage(X)

where lmage(X) is the set of aU possible values taken by X.

By applying the theorem to Y whose values are aU distinct, we have:

ntr) = ~ P'(co~)Y{co~)
ies

1:: 1!JP'{co~)X{co~}
lea I'P~I

= I: ~ I:P'(co,)X{co,)
lea Ir~l;e'P.

= t P'{co,}X{co,)
1=1 # {X(wJ) : X(coJ) =X(w,)}

Since

Pr(X> t] = Pr(Y> t] 'Vt~ 0

then,

rrm = O(X)
o

A.2. Application: Van del' Hoet aad SIaerris class of risk measures

CoroDary 2 (Position of a). If X is a multinomial discrete random ,ariDble taking
the wUues (XI> X2J ••• , x,,) such thol XI <x2 < 0.' <X", with probabUitia (Ph P2, .00,

PIt), then,

• If a ~XI' then:

II-I

H(X) = XI + I:h! [XI+I - x,]
1=1

=~[h!' -h!')x.i.J ,-I I I'=1
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• lj a ~ XII' then:

,,-I
H(X) = X" + ~ g! [XI - XI+I]

1•• 1

• ljae[X"Xr+l)wherere {l, ... ,n-l}. then:

where

hr = h(l - ±Pk) and gr = g(±PIe)
1e•• 1 1:='

This corollary illustrates the idea of pricing the upside and the downside of
the risk differently. In effect, for outcomes xt's below the level a, the proba-
bility distribution is distorted by the function g, and for outcomes x/s above
the level a, the probability distribution is distorted by the function h.
This is a flexible way to price risk around some benchmark a. The choice of
the distortion functions g and h reflects the risk behaviour of the investor.
Indeed, h is convex, then 2h(x) ~ h(x-l) + h(x + 1) wherever h is defined.
Therefore

h (I - ~ Pie) - h (1 - ± Pie) < h (1 - Iii Pie) - h (1 - ~ PI:)
1e=1 1e=1 1e=1 1e=1

or

hf-, - hf < hf-2 - hLI

So the probability assigned to the outcome x, is less than the probability
assigned to Xj-I' In other terms, the investor assigns lower probabilities to
higher outcomes. The more risk averse the investor, the more convex the dis-
tortion function h. The same argument applies to the concavity of g.

Furthermore, the choice of h with respect to g reflects how the investor
considers the risk with respect to the benchmark a. For some choice of g
and h, pricing risk does not depend on a. This is the idea of the following
proposition:
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Proposition 2 (Conjugate). Let X be a random variobJetaking on" distinct values
X(coJ, X(COoz), ••• ,X(co.) withprobabilities p ••p", ..• , p".I" the cose when h and g
are co"jugate, we hare

H(X) = t,[X] (A.l)

where the weighted average weights are give" by

P'(co) = h(P[X~ X(co»))-h(P(X> X(co»)) V(J) en (A.2)

Proot In the case when hand g are conjugate, i.e., h(l- x) = 1- g(x), in Appen-
dix 2, we show that:

H(X) = Ho,o,r.(X) = ~ .••h(P[X> tDdt

Therefore, the proposition follows from Theorem (Certainty equivalent). 0

Propositioa3 (No order assumption). For a multinomial discrete random vari-
able X taking the values (x •• X20 ••• , x,,), with probabilities (P" h ...,p,,), X, =I:-Xj
if I :I-j then.

where

and the notation

where 1{",Sa} is the indicator junction on the set {Xt Sa}.
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APPENDIXB.
PROOF OF PROPOSmON (ORDBR ASSUMPTION)

Proof. For Xl< X2<...< x.. we have:

(Xl-at S (X2-at S; ••• S; (xII-at and (a-x,t ~ (a-x2l+~ ... ~ (a-xllt, so

1

~==1P1

Pr[(X - at > t] = ~=.3P1

PIt
o

and

Pr[(a -xt > t] =

if(XI- at> t
if (X1- at > t ~ (XI- at

if (x) - at > t ~ (Xl - at

if (x" - at > t ~ (X.-l - at
ift~(x,,-at

if(a-x"t>t
if (a - XII-It> t ~ (a- x.t

if (a - X.-1t > t ~ (a - X,,-It

PI if (a -x.t > t ~ (a -Xlt
o ift~(a-x1t

Therefore,

H(X) = a + ("I-a)+ h(l)dt + ((Xl-a)+ h(±PIe)dt +s; J(}q-a)+ /c=2

(("l-a)+ h(±PIe)dt + ...+r: +h(p,,)dt -c: g(l)dt-
J(Xl-aY Ie=) (".-I-a) 0

(a-"._IY g(~IPIc)dt _ (a-".-l~+ g("i!PIe)dt _ ... - ta-XI): g(p.)dt
J(a-".>- 1e=1 J(a-x._I) 1e=1 (a-"l)

By using

(X/+I-a)+ (~) (~) [ . + ( 'lJ, + h LlPIe dt = h 1-LlPIe (xl+! - a) - Xi - a)
(x/-a) 1e=1+1 1=1



216 M. HAMADA,M. SHEIUUS AND 1 VAN DBR HOEK.

and

we get the desired result. o

APPENDIXC.
THE CASE WHEN G AND H ARB CONJUGATE

We propose to show that

H(X) = Ho,o,lt(l{) = fo"" h(P[X> t])dt

First, it is easy to check that. for t ~ 0,

S(.r_II)+(t)= S.r(<<+ t)

S(a_.r>+(t)= I-S.r(<<-t)

and since h and g are conjugate, we have:

h'(x) = g'(I-x)

H(X) = a + fo"" h (S(X_ay(t»).dt - fo"" g(S(cr_X)+(t»).dt

= «+ fo"" h (Sx(<< + t».dt +fo"" g(l- Sx(<<- t».dt

= «- fo""tl(Sx(<< + t».dSx(a + t) - 10""t8'(I- Sx(<<- t».dSx(a - t)

= «-£"" (u - «)h'(Sx(u».dSx(u) _£-00 (<< -v)g'(I- Sx(v».dSxM

= « + a £00ris, (u».dSx (u) _ £00 uh'(Sx (u».dSx (u)

_« £-00 h'(Sx(v».dSx(v) +£-00 vh'(Sx(v».dSrM
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= a + ai:h'(Sx(u».dSx(u) - i:vh'(Sx(v».dSx(v)

= a - ai:h'(Sx(u».dFx(u) - i:vh'(Sx(v».dSx(v). ,.
=1

=i:vh'(Sx(v»·dFx(v)

=10<» h(Sx(v».dv




