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Abstract—Currently, the Software Defined Networking (SDN)
paradigm has attracted significant interests from industry and
academia as a future network architecture. SDN brings many
benefits to network operations and management including pro-
grammability, agility, elasticity, and flexibility. With SDN and
OpenFlow, one of the promising SDN protocols, software defined
Network Virtualization (NV) techniques can be designed and
implemented via flow table segmentation to provision independent
virtual networks (VNs). In this paper, we propose an intent based
virtual network management platform based on software defined
NV. The objective of the proposed NV platform is to automate
the management and configuration of virtual networks based on
high level tenant requirement specifications, called intents. The
design and implementation of the platform is based on ONOS,
an open-source SDN controller, and OpenVirteX, a network
hypervisor. The platform is designed to provide multiple VNs
over the same physical infrastructure to multiple tenants. The
VNs are isolated from one another allowing tenants to operate
and manage their virtual networks independently in terms of
network configurations and management policies.

Keywords—Software Defined Networking (SDN), Network Vir-
tualization, Intent Framework, Virtual Network Management and
Configuration, Virtual Network Embedding

I. INTRODUCTION

Software-Defined Networking (SDN) is a new network-
ing paradigm which enables flexible and efficient network
management. The essential principle of SDN is to decouple
network control and forwarding functions, and leave each
function in its individual network plane. With separated control
and forwarding planes, SDN allows a network administrator
to program and manage various network elements effectively
from the control plane. In the context of SDN, all control re-
lated functions are moved to a centralized control plane, hence
optimal network control decisions can be made using a global
networking view. SDN also provides the ability to simplify
network design and operations, with this ability, we can deploy
complex network policies (e.g., security governance, access
control, accounting, billing) to network infrastructure on the
fly. To summarize, SDN brings four major features such as
programmability, agility, elasticity, and flexibility to network
management domain. By properly utilizing those features,
SDN has been promised to reduce CAPEX by using cheap,

open, commodity switches and cloud computing for replacing
expensive middle boxes and to reduce OPEX by providing
simplified and centralized management/operation.

In SDN, the knowledges on managing networks are cen-
tralized in control plane such as device and traffic related
operation as well as various network services. Network devices
in the data plane are only responsible for processing and for-
warding ingress/egress packets according to dispatched rules
from controllers in the control plane. Communications between
control plane and forwarding plane is through the de facto
standard OpenFlow protocol. OpenFlow enables the network
controller to determine the path of network packets through
the OpenFlow enabled switches. The fundamental functionality
provided by OpenFlow is remote administration of forwarding
tables (flow tables), by adding, modifying and removing packet
matching rules and actions. Using this, an SDN controller
can collect network information, and deliver proper rules and
actions to allow the forwarding plane of network devices.
Currently, most of the SDN controllers support OpenFlow
as an essential South Bound Interface (SBI) according to
the Open Networking Foundation (ONF)’s specifications [1].
ONF has continuously releasing new versions of OpenFlow
specification to address various requirements and to promote
SDN technologies.

Network Virtualization (NV) is a networking technology
that creates dedicated Virtual Networks (VNs) over a physical
infrastructure. With the help of NV, multiple tenants are able
to share the underlying physical network resources, and they
can operate their isolated virtual networks independently. By
provisioning VNs over the physical network, network function-
ality is abstracted from its physical elements. NV technology
has the potential to reduce significantly CAPEX and OPEX
for network and network service providers with its flexible,
on-demand, and scalable provisioning capability. A possible
approach to NV is the software-defined (or slice-based) NV
whereby a slice of the network physical resources can be
allocated to a VN by segmenting OpenFlows flow tables into
partitions. Currently, several software defined NV solutions
are available including FlowVisor [2], OpenVirteX [3], and
FlowN [4]. These approaches do not use tunneling (hence no
tunneling overheads), and provide strong Quality of Service



(QoS) and Service Level Agreement (SLA) control compared
to overlay NV approaches. Overlay NV approaches refer to NV
solutions based on tunneling and encapsulation techniques, and
they are usually installed in several datacenter solutions such
as VMware NSX [5] and Microsoft Hyper-V [6].

A major deficiency of the software defined NV approaches
is that they require underlying network infrastructure to be con-
structed using OpenFlow protocol. Futhermore, the configura-
tion and management process of each VN are still complicated
and time consuming because of the lack of generally available
VN embedding methods and automated VN provisioning pro-
cesses. Currently, to configure and manage VNs, administrators
have to deal with all technical aspects of networking such as
underlying protocols, addresses, topologies, control rules, and
etc. To overcome those complex problems, in this work, we
propose an intent-based NV method. The definition of intent is
not standardized yet, but it is generally perceived as business
or system level policies (or higher level specifications). Intents
is independent from specific network technologies and vendor
specific features. Moreover, it allows the administrator to use
higher level abstraction by using business or system level
terminologies and concepts to specify tenants’ requirements.
With intent, users of tenants only need to concentrate on
specifying what they need, rather than how to realize or
implement the need. According to ONF’s Boulder project
working group [7], intent can bring various advantages such as
non-prescriptive, portable, universal, technology independent,
etc.

In this paper, we propose an intent based VN management
platform for SDN to overcome these problems. The funda-
mental idea is to automatically manage VNs from high-level
tenant requirements using intents. To be more specific, the
proposed intent-based NV platform addresses the following
challenges: 1) using intent to express high-level VN require-
ment specifications, 2) combining SDN an NV technologies
into a single framework, 3) automating the task of VN structure
composition and embedding. The platform will host multiple,
independent, and isolated VNs, and support multi-tenancy.
VNs belonging to different tenants may have different network
configurations in terms of network address space, topology,
and may be governed by different policies. The proposed
platform is implemented on OpenVirtex network hypervisor
[3] and ONOS SDN controller [8].

The rest of this paper is organized as follows. Section II
summarizes related studies on NV approaches to create and
manage VNs. Section III presents the overall architecture of
the proposed intent-based NV platform. Section IV describes
the concept of intent, and how the platform process intents
from the intent specification to installable flow rule generation.
Section V describes the implementation details to realize the
proposed NV architecture by combining existing SDN and
NV softwares. Finally, Section VII concludes this paper with
suggestions for future work.

II. RELATED WORK

In this section, the current status of NV approaches is
summarized. To support NV features, four common NV ap-
proaches are compared in terms of characteristics, advantages,
and disadvantages. Currently available NV approaches can be

classified into four main categories: traditional NV, overlay NV
via tunneling, software defined NV, and hybrid NV approaches
[9]. In this section, we focus on describing the overlay NV and
the software defined NV approaches that can be realized with
SDN technologies. Typically, traditional NV approaches refer
to VLAN (IEEE 802.1Q) [10] and Virtual Routing and For-
warding (VRF). VLAN allows to partition layer 2 (Ethernet)
network into isolated VNs by inserting 12-bit VLAN tag into
the Ethernet header. VLAN is a common and simple approach
to isolate network traffic into virtually separated networks.
However, the maximum number of VNs supported by VLAN
is limited to 4,092, and if a sub-network connected though
a single port, all hosts in the sub-network should belong to
the same VN. VREF is similar to the computing virtualization
approach that makes virtual routing instances on a physical
routing devices. Each virtual instance is independent, and
owns different routing information. But, this technique suf-
fers from complex configuration and management with high
CAPEX/OPEX.

Most commercial NV solutions are based on overlay NV
approach by leveraging tunneling or encapsulation techniques
such as VMware NSX [5] and Microsoft Hyper-V [6]. Over-
lay NV approach can be further categorized depending on
whether the approach supports layer 2 and layer 3 virtual-
ization. Usually, to deliver packets, an ingress network device
(switch or router) encapsulates packets by inserting an outer
packet header indicating a specific virtual network instance ID
(VVID). The encapsulated packets are delivered to the desti-
nation according to forwarding rules, and then, decapsulated
to restore the original packets at the egress network device.
VXLAN [11] and NVGRE [12] are two most representative
overlay NV approaches that support layer 2 virtualization,
while Generic Routing Encapsulation (GRE) [13] and Loca-
tor/Identifier Separation Protocol (LISP) [14] are two most
representative approaches that support layer 3 virtualization.
The advantages of the approach include 1) only network
edges are involved in tunnel encapsulation/decapsulation, and
the remainder of the network remains unchanged, 2) theo-
retically, unlimited number of VNs are supported, 3) VNs
are independent from the physical network topology and
configuration, 4) VNs mobility can easily be supported. As the
overlay NV approach is based on encapsulation mechanism
and tunneling, it also brings many disadvantages. The main
disadvantages include 1) Two separated networks, VN and
PN, are maintained in terms of network services such as
management, provisioning, and control, 2) it does not provide
mechanisms to provide to guarantee QoS, 3) it introduce high
encapsulation and tunneling overheads, and 4) it incurs high
management complexity for both VN and PN at the same
time. To overcome these disadvantages, cloud platform such as
OpenStack provides several tools (such as Neutron) to manage
network resources. For SDN, several projects are established to
allow OpenStack neutron to communicate with various SDN
controllers such as ONOS [8], OpenDaylight [15], and Ryu
[16].

With the introduction of SDN and OpenFlow technologies,
it is possible to implement NV as an application or a service
provided by an SDN controller via flow table segmentation.
This software defined NV approach can support layer 1 - 4
network virtualization by matching appropriate packet headers.
Performance degradation caused by tunneling overheads is



eliminated. By inserting appropriate forwarding (flow) rules,
software defined NV approach can provide specific NV fea-
tures. Moreover, this approach introduces network abstractions
that can be utilized by management application such as virtual
links, virtual switches, and virtual routers. Within software
defined NV approach, corresponding physical hardwares can
be directly programmed for the virtual elements to provide
QoS. Tenants can use their VN controller to control their
own VNs. Currently, available solutions include FlowVisor
[2], OpenVirteX [3], and FlowN [4]. However, the critical
disadvantage of the software defined NV is that the physical
network has to support SDN and OpenFlow. The hybrid
NV approach refers to NV solutions combining these NV
approaches to create and manage VNs.

III. OVERALL PLATFORM ARCHITECTURE

The proposed intent-based VN management platform is
designed to have a hierarchical architecture consisting of mul-
tiple layers to apply the Separation of Concerns (SoC) design
principle. The platform plays two roles which are 1) network
hypervisor and 2) SDN controller. As a network hypervisor,
the platform posesses VN management capabilities such as VN
provisioning, modification, and removal, at the same time, it
also provides interfaces to relaying VN events and messages
to external entities running tenant specific applications. As an
SDN controller, the platform provides network abstractions and
control capabilities for both physical and virtual networks. The
overall architecture is depicted on Fig. 1. The design objectives
are 1) to support multi-tenancy, 2) to provide network abstrac-
tions for application development, 3) to allow high-level tenant
requirements specification using intents, and 4) to support ten-
ant specific controllers and applications by providing various
interfaces. The platform has five layers: protocol adaptation,
abstraction, virtualization, virtual abstraction, and intent layer.
The platform design is inspired by the architecture designs of
ONOS [8] and OpenVirtex [3].

The protocol adaptation layer is responsible for processing
protocol specific messages which are used to communicate
with physical hardwares such as OpenFlow switches. The
main roles of this layer are: 1) decoding protocol specific
messages and delivering them to proper providers located in
the abstraction layer, 2) managing communication channel be-
tween the controller and network devices, and 3) receiving the
requests from upper layers, encoding the request into protocol
specific messages and transmitting to hardware devices through
communication channel.

The abstraction layer is responsible for abstracting pro-
tocol specific concepts and hiding the details of underlying
infrastructure from upper layers. The abstractions can represent
various elements and properties in a protocol-agnostic manner.
Some representative abstractions are Device, Link, Topology,
Event, Path, Flow, etc. There are several abstract components
residing in this layer, and each abstract component is in charge
of abstracting the network concept for each protocol.

The main responsibility of the virtualization layer is to
translate VN objects into physical objects by maintaining
mapping information. The mapping information includes ad-
dress mapping and topology mapping. In the simplest case,
virtualization layer simply replaces the address and topology
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Fig. 1. The overall platform architecture design

information of virtual resource into that of physical resource.
To support various strategies to satisfy different user require-
ments, the platform design should consider to address multiple
embedding algorithms as plug-ins. In the platform design,
a VN embedder plays the role of a matchmaker between
resources and VN embedding algorithms. Moreover, the actual
embedding algorithms can be deployed as an off-platform
component because it requires large computing power, hence
not suitable to be part of an on-platform component. The
reasons behind this design decision is discussed in the Section
VL

The virtual abstraction layer provides network abstractions
for tenant VNs. The fundamental difference between virtual
networks model objects and physical network model objects
is that virtual objects can be freely created and removed on
the top of physical objects. However, physical objects have
strong dependency on physical network infrastructure in terms
of protocol, topology, network addresses, and links. The usage
to consume virtual objects is same as the physical objects
provided by lower abstraction layer after the creation of the
objects.

The intent layer allows tenants to specify their high level
requirements independent from low level details such as MAC
address, IP address, topologies, etc. The services, which are lo-
cated in the intent layer, provide 1) intent objects consumed by
applications; 2) an intent confliction checking service between
different intents to avoid conflicted and illegal intents; and 3)
an interface to the administrator to feed the information that is
used to interpret and translate the intents into installable flow
rules. For example, “Database” specified in an intent should



be translated into network address “192.168.0.1” with port
number “3306”. The stored information can specify various
entities such as human domain exerts and network management
protocols provided by the protocol adaptation layer. The details
about intent are described in following section. The intent
layer provides extended North Bound Interface (NBI) that is
consumed by various applications.

According to location where the applications are executed,
they can be categorized into two types which are on-platform
and off-platform applications. On-platform applications are de-
veloped with tenant-awareness using the abstractions provided
by the virtual abstraction layer. Therefore, they can be shared
by multiple tenants with different VN views. For example,
visualization applications can be consumed by different tenants
to show graphs or topologies for their own VNs. To support
off-platform applications, a special application, called relaying
interface, is provided. The responsibility of this application
is to deliver messages or events from the virtual abstraction
layer to external entities. This application enables the commu-
nication to tenant specific controllers and applications similar
to that in a traditional network hypervisor such as FlowVisor
[2]. However, off-platform controllers and applications are not
aware of the existence of other tenants.

IV. INTENT BASED VN MANAGEMENT AND
CONFIGURATION

In this section, the definition of “intent” for the proposed
platform is described. In doing so, we define components to
translate high-level intents into installable flow rules. We also
define the lifecycle of intents in order to efficiently manage
them.

A. Definition of Intent

Oxford dictionary defines “intent” as “an aim or plan or
purpose.” The definition of intent for network management is
commonly perceived as as business or system level policies
specified with common concepts and terminologies agreed by
all related stake-holders such as business managers, application
developers, and network administrators. However, a clear and
concise definition of intent for network management has
not been standardized yet. Several projects are proposed to
introduce intent for SDN application development and network
management based on high-level requirements or management
policies. Recently, intent-based interface has been pursued
rigorously by major open-source project communities (ONF,
ONOS and OpenDaylight) to provide a standardized intent-
based northbound interface for SDN [7], [8], [15].

By using intent based interface to specify high-level re-
quirements, consumers (e.g. applications developers) can pro-
gram network services without concerns for technical specifics
and implementation details. Intent tends to be more concen-
trating on describing the outcome rather than the process
that dictates the decisions toward the outcome. By summary,
intent is used to describe “what” the user want, but not
“how” to realize it (with respect to resources, constraints,
and actions). From the users perspective, technology-agnostic
interfaces are more desirable. The intent based interface shields
the complexity of underlying networks and allows users to
focus on expressing their network service demands.

In this paper, an intent is defined as a high-level pol-
icy specified in common concepts and terminologies, and
interpretable by both tenants (network service consumers)
and network service providers. However, this does not mean
that all policies are specified in a business-level or system
level terminologies. In that manner, our platform will provide
an extensible method for defining supported concepts and
terminologies to support future applications. Our objective
introducing the concept of intent is to mitigate the network
management obstacles. With intent, we expect that the knowl-
edges that are required for managing network is significantly
reduced in application developers’ perspective.

B. Intent Specification for VN Management

The first step of performing intent based management is
to provide an interface to express high-level specification as
a form of intent. There are several ways to specify high-level
specification. The specification can be either defined by using
language (e.g., NEMO [17]) or graph (e.g., PGA [18]). We
can also make use of specific intent APIs to describe the
specification such as intent APIs that are defined in ONOS
and in work [19]. The way that is provided by the proposed
platform is based on an intent framework, with which tenant
applications can consume intent model objects. The underlying
design of the proposed intent framework is inspired by the
ONOS’s intent framework. The pre-defined types of intent
objects, which could be extended to address tenant specific
intent types, are depicted in Fig. 2. The proposed platform also
provides high level network abstraction model objects (e.g.,
host, switches, link, and middle-boxes).
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Fig. 2. Three basic types of intents provided by the proposed platform

- VN Topology Intent: This type of intent only expresses
the connectivity relationships among network nodes (i.e., hosts
and virtual switches) without specifying VN behaviors. The
network behaviors such as packet forwarding or management
policies are managed by SDN controllers.

- VN Endpoint Intent: This intent allows to express
high-level requirements for tenants endpoints without concerns
of supporting network infrastructure. Because only endpoints
are involved in the intent specification, a tenant application
developer can entirely focus on describing the relationship
between endpoints. Various relations between endpoints such
as 1 to 1, 1 to many, and many to many, are possible.



- VN Chain Intent: This intent type is an extended intent
type from the VN Endpoint Intent to chain intermediate net-
work behaviors. This type of intent expresses network service
chains by composing virtual network functions or physical
middle-boxes between source and destination endpoints.

To specify intents accurately, we need to define the context
that describes what, when, and how the specified intents should
be applied. To express a context, an intent object requires
four attributes; resources, conditions, priority, and instructions.
Resources refers to a set of virtual network objects involved
in intent specification. Conditions are a set of criteria that
describes when the intent will be activated. The criteria can
include header matching field and network conditions such
as Maximum Link Utilization (MLU). Priority is used to
determine the execution order of intents. Instructions refers to
a set of actions that to be applied to the packets which satisfy
resources and conditions what have been defined. To support
Instructions, the platform provides a way to abstract network
behavior such as forwarding, filtering, and drop.

An alternative way to specify intents is through networking
graph. Describing requirements in graph is the most intuitive
way to go with, and through this way, tenants are able to
specify their own requirements step-by-step rather than whole
network structure. Designing the whole network structure is
complex and error-prone task. This approach is inspired by
PGA [18].

C. Intent Composition and Conflict Checking

After specifying intents for each tenant requirement, the
next step is to aggregate all intents to construct the requested
VN which consists of a set of network objects and behavior
abstractions. The intent composition process is required to
translate high level specifications into a network driven con-
cepts and terminologies. First of all, we need to identify and
manage VN endpoints. This is needed to unify and translate
concepts, resources, and terminologies into a single unified
form agreed by all involved entities. To address this issue,
[19] proposed an end-point discovery protocol, while [18] used
“label” to apply policies. Note that “label” contains a group
of pre-defined endpoints with the same set of policies. The
composition process is a step-by-step aggregation process of
intents into a network graph model consisting of virtual ob-
jects. As outputs of intent composition, VN topology, address
space and policies that are used for governing the VN are
computed. The overall intent composition process is described
in Fig. 3.
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Fig. 3. Intent composition and conflict checking process

During the composition process, the proposed platform
can verify incorrect intents and detect conflicts between in-
tents. By inspecting intent resources, conditions, priorities,
and instructions, an intent composer can detect conflicts. First
of all, we need to identify the relationship between intents
to check whether they have any dependency on each other.
If any of two intents are interdependent, the platform will
lookup the priorities of intent to check whether the instructions
are mutually inclusive. For instance, if two intents share
the same pair of source and destination addresses, and the
identical instructions are defined in each intent, then they are
detected as conflicted intents (possibly through duplication).
The intents that encounter any conflict required to be modified
and negotiated into composable intents. At this stage, this
is beyond the scope of this work. We will discuss this in a
separate research work.

D. Intent Mapping and Installation

Our network representation consists of a set of network
model objects and network behavior abstractions. To embed a
VN into existing physical network resources, virtual model
objects should be bound to actual physical objects. At the
meanwhile, the network behaviors also require to be trans-
lated from virtual network behaviors into installable physical
network behaviors. A physical network provides several ways
to accommodate a VN model, and the ways of accommodation
are determined by VN embedding algorithm. The objective
of VN embedding algorithm is to find an optimal mapping
between the VN and physical resources with considering to
satisfy a set of requirements defined by network administrator.
The design of VN embedding algorithm is beyond the scope
of this paper. To efficiently embed VNs according to man-
agement objectives, the platform can adopt various algorithms
introduced in [20].
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Fig. 4. Mapping process from VN model to installable flow rules

To translate VN model objects into physical objects, the
platfrom should bind all virtual entities into concrete network
nodes. This process can be supported by managing tenant’s
end-points. Discovering and managing end-points of VNs are



challenging because the terminologies are not standardized
among stake-holders yet. To be a solution, in this paper,
we introduce a concept of “vocabulary store” which refers
to a knowledge store that contains information from various
sources include 1) human domain experts and/or network
administrators, 2) host and network discovery and 3) manage-
ment protocols. In this case, we need a method to represent
the relationship between entities used in intent and low-level
details. To efficiently querying the equivalence between enti-
ties, a ontology based knowledge representation is adopted for
the platform to support a semantic based inference mechanism.
This does not mean that “vocabulary store” simply generates
new knowledge by using inference rules, but it supports
checking and finding simple equivalent relationships between
entities.

Manual
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entity ID:1

Alias : Database
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Fig. 5. The role of vocabulary store

E. Intent Lifecycle Management

To manage intents specified from multiple tenants, we have
designed a Finite State Machine (FSM) that represents the state
of each submitted intent. The FSM traces the entire lifecycle
of each intent from intent submission to intent withdrawal.
The main advantage of the state lifecycle management is
that it allows the platform to determine wether the tenant
requirements are satisfied based on their corresponding VN’s
status. Moreover, a recovery plan can be made if an abnormal
state of intent is detected due to hardware failure or attack.
Fig. 6 depicts the state transition diagram.
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Fig. 6. A finite state machine to represent the intent lifecycle

V. IMPLEMENTATION

In this section, we describe implementation details for
realizing the proposed platform design mentioned in previous

section. To accelerate our software development and make our
contributions be available in public, we decided to adopt open
source. To the best of our knowledge, OpenVirtex [3] and
ONOS [8] are most suitable opensources in terms of reusabil-
ity. We adopted those two open sources as base software stack.

A. ONOS and OpenVirtex

The high-level design of the proposed platform is imple-
mented on top of OpenVirtex and ONOS. In the proposed
platform, OpenVirteX is used to realize NV features including
VN topology, addresses, and configurations, while ONOS is
used to provide SDN control functions and network abstrac-
tions consumed by tenant applications. Before we go in details
on our implementation, we first explain the architecture and
design principles of ONOS and OpenVirtex.

OpenVirtex is an open source network hypervisor based on
the software defined NV approach with OpenFlow semantics.
OpenVirtex achieved NV as a proxy between the physical
network and the tenants SDN controllers. In the view of
proxy architecture, OpenVirtex is similar to FlowVisor [2].
However, OpenVirtex provides advanced NV features such as
supporting arbitrary VN topology and addressing schemes,
and configuring VN as per tenant request. All OpenFlow
messages generated by each tenant controller are translated
into the corresponding messages by OpenVirtex, and eventu-
ally transmitted to physical fabrics. By supporting OpenFlow
natively, this approach delivers programmable VNs to tenants.
In other words, OpenVirteX acts as a (de)multiplexer for
OpenFlow messages between the multiple VN control planes
and the physical network infrastructure. OpenVirteX provides
two types of APIs, monitoring API and tenant API. The
monitoring API is a read only interface used to inquiry VN
configurations and state information, while the tenant API is
used to create and configure VNs. Both APIs use JSON-RPC
protocol to exchange information.

Fig. 7.

The OpenVirtex architecture [3]

ONOS adopted layered architecture, and each layer is
charging of a set of responsibilities as shown in Fig. 8. To stitch
each layer, ONOS provides North Bound APIs (NBIs) and
South Bound APIs (SBIs). NBIs are used to communicate with
on/off platform applications with higher level of abstractions,
while SBIs are used to communicate with network devices
using specific protocols. The protocol layer is in charging of
encoding/decoding protocol specific messages. The provider
layer abstracts protocol specifics into more general concept
and communicates with core layer through SBIs. The main
responsibility of core layer is to provide: 1) abstracted data



model, 2) message relaying between application and provider
layers, and 3) distributed primitives.
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Fig. 8. The layers of ONOS architecture [8]

B. Virtualizaiton Subsystem

To integrate ONOS and OpenVirtex, we extended SBIs
and developed a dedicated provider for OpenVirtex. The roles
of OpenVirtex provider are: 1) to manage communication
channel between ONOS and OpenVirtex; and 2) to translate
requests generated from OpenVirtex into ONOS consumable
format. Note that all information is exchanged using JSON-
RPC format, and to support conversion between JSON-RPC
messages and network objects, we developed a component that
serialize/deserialize virtual network objects into a documents
for device, link, switch, topology, and etc. Moreover, we
defined a VN manager component that supports OpenVirteX
management operations within ONOS. Fig. 9 shows the chain
of OpenVirteX and ONOS to realize the proposed VN plat-
form.

The fundamental SBI of the platform is the OpenFlow
protocol between the tenant control planes and the physical
network infrastructure. Using this protocol, it is possible to
deliver OpenFlow messages generated by the physical Open-
Flow devices to each tenant VN control plane. In this case,
all VN messages are delivered through the shared OpenFlow
channel for all tenant VNs. To identify destination VN of
each OpenFlow message, it is necessary to maintain mapping
information.

Tenant Apps. I
Core
(Device, Host, Link, Topology, Path, Flow, Intent, Network, ...)
M Virtual Providers
o e (Device, Host, Link, Flow) I
Virtualize()
= . I t VN Create(),
©)0penVirteX Jm Remoreg
~ e
Devirtualize() ' I Clobay
Map

Fig. 9. The implementation of the proposed platform on the top of
OpenVirteX and ONOS

C. Virtualization and Virtual Abstraction Layers

ONOS provides a rich set of network abstractions in terms
of network model objects such as device, link, port, flow, and

etc. However, ONOS and those models are originally designed
for managing a single SDN network, rather than multiple VNs.
To support multiple VNs, we have implemented VN model
objects by extending existing object model. The fundamental
differences between the VN model objects and existing model
objects are 1) the addition of attributes needed to identify
tenants, 2) the target of operations. The operations on virtual
objects must be translated into the operations on physical
objects to be installed on the physical devices by referring
to mapping information.

To help translation process from virtual objects to physical
network model objects, we also need to abstract network
operations as consumable objects such as forwarding, filtering,
and drop. These behavioral abstractions make the translation
process to be simple and transparent. Fortunately, ONOS has
already provided flow abstraction model named “Flow Objec-
tive”. Originally, “Flow Objective” was proposed to hide the
forwarding behavior of OpenFlow devices, as different Open-
Flow devices have different pipeline implementation. Flow Ob-
jectives allows to describe a SDN applications objective rather
than hardware specific implementations. To take advantages of
flow objectives, our platform manages all network behaviors as
flow objectives from virtual network model to physical network
model.

D. Intent Layer

To implement intent components inside the intent layer, we
extended ONOS’s intent framework. The goal of the ONOS
intent framework is similar to our intent based VN manage-
ment because it allows applications to specify their network
control desires in a form of policy rather than mechanisms.
However, there is a fundamental difference between the intents
for physical network management and the intents for VN
management. In the physical management case, intents are
used to make high-level requests to consume the existing
network model objects. However, for VN management, the
platform has to create virtual network model objects, not
consume. For example, from an intent that desires a connection
between host A and host B, the platform has to create virtual
objects representing virtual switches, links, and ports. To
address this problem, we extended the existing ONOS intent
framework to include the capabilities to manage virtual objects
and operations. We reused the classes to be used for intent
specification such as Host to Host intent, but the entire process
for handling intents is re-redesigned and implemented suitable
to the VN management process.

E. Access Control and Applications

Two types of applications are supported by the platform;
on-platform applications and off-platform applications. For
the off-platform applications, the platform just needs to relay
OpenFlow messages to external entities. However, supporting
on-platform applications is challenging because on-platform
applications may be shared by multiple tenants. For example,
a routing application should be adopted to support multi-
ple VNs having different network topologies and addresses.
To overcome this problem, we re-designed ONOS provider
interfaces to make an application as a “blackbox”. In our
platform, an application is a closed system that just provides
results in response to it’s input. Therefore, the state of each



VNs used as applications’s input should be managed outside
the application domain. To support this design paradigm,
we have introduced a “VN context store” that stores tenant
specific information about internal and/or intermediate data
consumed by an application. By switching the context store,
an application can be shared by different tenants.

One of the most challenging issues in realizing a VN
management platform is to isolate VNs from different tenants.
An unauthorized access to virtual objects or resources from
an application that is not belonging to the owner tenant would
cause wrong operations and security concerns. To manage
access privileges of each tenant, we have to develop an access
control feature. To realize the feature, we implemented a
component that intercepts messages between applications and
ONOS providers to ensure that they all belong to a same tenant,
otherwise the messages will be dropped with error reprots.
The implementation is similar to an ONOS subsystem, called
security-mode ONOS, that provides application authentication
and access control services for ONOS northbound APIs.

VI. DISCUSSION

Currently, the proposed VN platfrom is still under the
development. This section introduces further issues for con-
sideration.

A. Native Support of Virtualization Layer

In this paper, we described the initial design and im-
plementation of the proposed NV platform. To accelerate
the development process, we decided to reuse two separated
opensources, OpenVirteX and ONOS. However, this initial
implementation approach does not produce optimal design
to elicit high performance. A performance bottle neck may
be introduced with the opening of OpenVirtex and ONOS
to external interfaces, as this requires heavy workload to
translate ONOS abstractions into JSON documents used in
OpenVirteX API. To overcome this problem, we need to
migrate OpenVirteX functions to support virtualization layer
in ONOS natively.

B. Optimal Virtual Network Embedding

Optimal mapping between virtual and physical objects
may be different depending on the objectives of the VN
consumers and providers. For example, low energy objective
will include the minimum number of physical devices, but high
performance objective will not. There exist VN embedding
algorithms for map virtual and physical network model objects,
under specific performance criteria. To address this issue, we
consider supporting a strategy pattern that allows the selection
of the most suitable VN embedding algorithm for the target
application.

C. Virtual Network Migration

The initial optimal mapping between between virtual and
physical objects, however, my no longer valid due to VN
creations and removals, and physical network infrastructure
failures. In addition, due to changes in the environment, a
running VN may need to migrate, The platform toned to reflect
the new optimal mapping. In this migration process, all VN

states must be managed in a way that conserves VN structure
and configurations to prevent loss of information. Moreover, a
method is needed to reduce service down time to a minimum.
It means that VN mobility should be supported in a similar
manner to VM live migration or vertical handover. This implies
the need for representing internal VNs state/configuration
information in order to migrate them efficiently.

VII. CONCLUSION

In this paper, we have presented an intent based VN
management platform. The design objective of the platform
is to automate VN management process based on intent that
allows expressing high-level tenant requirements. To realize
the objectives, we have described the high level design and
implementation approach. The proposed platform is based on
a hierarchical architecture consisting of five layers to isolate
specific level of concerns from high-level requirements to
installable flow rules. The proposed platform can bring sev-
eral advantages, 1) an integrated NV platform taht integrates
seamlessly the network hypervisor and the SDN controller, 2)
an intent-based management platform that allows management
applications to express their need in management domain
specific language and the management providers the freedom
to implement the required service, and 3) an automated VN
management method can be developed from high-level intents.

The proposed VN platform is still under development. For
future work, the top priority task is to finish the development
according to the described design. Furthermore, our design will
be refined to address the features mentioned in the Discussion
section. Once the implementation is completed, a comprehen-
sive evaluation of the functionalities and the performance of
the platform will be presented with several use cases. We also
plan to publish the platform as an opensource software.
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