
“© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be 

obtained for all other uses, in any current or future media, including reprinting/republishing 

this material for advertising or promotional purposes, creating new collective works, for 

resale or redistribution to servers or lists, or reuse of any copyrighted component of this 

work in other works.” 

 



Towards Mining Trapezoidal Data Streams

Qin Zhang∗, Peng Zhang∗, Guodong Long∗, Wei Ding†, Chengqi Zhang∗, and Xindong Wu‡
∗ QCIS, University of Technology, Sydney NSW 2007, Australia
Email: Qin.Zhang@student.uts.edu.au, Peng.Zhang@uts.edu.au,

Guodong.Long@uts.edu.au, Chengqi.Zhang@uts.edu.au
†College of Science and Mathematics, University of Massachusetts Boston, MA 02125-3393

Email: wei.ding@umb.edu
‡Dept. of Computer Science, University of Vermont Burlington, VT05405.

Email: xwu@cs.uvm.edu

Abstract—In this paper we study a new problem of learning
from doubly-streaming data where both data volume and feature
space increase by time. We refer to the problem as mining
trapezoidal data streams. The problem is challenging because
both data volume and feature space are increasing. Existing online
learning, online feature selection and streaming feature selection
algorithms are inapplicable. To this end, we propose a new
Sparse Trapezoidal Streaming Data mining algorithm (STSD)
and its two variants which combine online learning and online
feature selection algorithms to enable learning trapezoidal data
streams with infinite training instances and features. Specifically,
when new training instances carrying new features arrive, the
classifier updates the existing features by following the passive-
aggressive update rule used in online learning and updates
the new features by following the structural risk minimization
principle. Then, feature sparsity is introduced by using projected
truncation techniques. In this way, STSD can auto-learn from
trapezoidal data streams. Experiments on UCI data sets show
the performance of the proposed algorithms.

I. I NTRODUCTION

Recent years have witnessed an increasing number of
applications on doubly-streaming data where both data vol-
ume and data dimension increase with time. For example,
in text clustering, both the number of documents and the
text vocabulary may increase with time, and a recent work
proposed aninfinite vocabulary topic model[21] which allows
the addition, invention and increased prominence of new terms
to be captured. In graph node classification, both the number
of graph nodes and the node features (e.g., the ego-network
structure of a node) may change by time.

We refer to the above doubly-streaming data astrape-
zoidal data streamswhere data dynamically change in both
volume and feature dimension. The problem of learning from
trapezoidal data streams is obviously much more difficult than
existing data stream mining and online learning problems.
The main challenge of learning from trapezoidal data streams
is how to design highly dynamic classifiers that can learn
from increasing training data with expanding feature space.
Obviously, existing online learning [7], online feature selection
[15] and streaming feature selection algorithms [17] cannot be
used to handle our problem directly.

Online learning algorithms [8] are proposed to solve the
problem where training instances arrive one by one but the
feature space is static and known a prior before learning.
The algorithms update classifiers using incoming instancesand

allow the sum of training loss gradually to be bounded [8].
To date, online learning algorithms, such as the Perceptron
algorithm [10], the Passive Aggressive algorithm [2] and the
Confidence-Weighted algorithm [3], are commonly used in
data-driven optimization problems. However, these algorithms
cannot be directly used to handle dynamic feature space.

Online feature selection algorithms [8], [15] were proposed
to perform feature selection in data streams where data ar-
rive sequentially with a fixed feature space. Online feature
selectors are only allowed to maintain a small number of
active features for learning [15]. These algorithms use sparse
strategies, such as feature truncation, to select representative
features. Sparse online learning via truncated gradient [8] and
the OFS algorithm [15] are typical algorithms. However, these
algorithms cannot solve the trapezoidal data stream mining
problem because they assume feature space is fixed.

Online streaming feature selection algorithms [17] were
proposed to select features in a dynamic feature space where
features arrive continuously as streams. Each new feature
is processed upon its arrival and the goal is to select a
“best so far” set of features to train an efficient model. It,
in some ways, can be seen as the dual problem of online
learning [17]. Typical algorithms include the online streaming
feature selection (OSFS) algorithm [16] and the fast-OSFS [17]
algorithms. However, these algorithms consider only a static
training set where the number of training instances is given
in advance before learning. Therefore, they cannot be used in
our problem.

To sum up, existing online learning, online feature selection
and streaming feature selection algorithms cannot be used
to learn from trapezoidal data streams. In this paper, we
propose a new Sparse Trapezoidal Streaming Data (STSD)
algorithm and its two variants STSD-I and STSD-II for mining
trapezoidal data streams. STSD and its variants combine online
learning and online feature selection to continuously learn
from trapezoidal data streams. Specifically, when new training
instances carrying new features arrive, the classifier updates
existing features by following the passive-aggressive update
rule used in online learning and updates the new features
by following the structural risk minimization principle. Then,
feature sparsity is introduced by using the feature projected
truncation techniques. We conduct empirical tests on UCI data
sets to show their performance.

The contributions of this paper are summarized as follows:



1) We study a new problem of learning from trapezoidal
data streams where training data doubly change in
both data volume and feature space;

2) We propose a new algorithm STSD and its two
variants. They combine the merits of online learning
and online feature selection to learn from trapezoidal
data streams;

3) We empirically validate the performance of the algo-
rithms on UCI data sets.

The remainder of this paper is organized as follows: Section
2 surveys related work. Section 3 introduces the problem in
detail. Section 4 discusses the proposed STSD algorithm and
its variants. Section 5 conducts experiments and Section 6
concludes the paper.

II. RELATED WORK

Our work is closely related to online learning and online
feature selection.

Online learningrepresents an important family of efficient
and scalable data mining and machine learning algorithms for
massive data analysis. In general, online learning algorithms
can be grouped into two categories, first-order and second-
order learning algorithms [6].

The first-order online learningalgorithms exploit first order
information during update. The Perceptron algorithm [10] and
Online Gradient Descent algorithm (OGD) [24] are two well-
known first-order online learning methods. Moreover, a large
number of first-order online learning algorithms have been
proposed recently by following the criterion of maximum
margin principle [15], such as the PA algorithm [2], ALMA
algorithm [4], and ROMMA algorithm [4].

The second-order online learningalgorithms, which can
better explore the underlying structure between features [6]
have been explored recently. Most second-order learning algo-
rithms assume that the weight vector follows a Gaussian distri-
bution. The model parameters, including both the mean vector
and the covariance matrix, are updated in the online learning
process [6]. The CW [3], and IELLIP [19], algorithms are
representative of the second-order online learning algorithms.

Feature selectionis a widely used technique for reducing
dimensionality. Feature selection aims to select a small subset
of features minimizing redundancy and maximizing relevance
to the class label in classification. According to training set
is labeled or not, feature selection can be categorized into
supervised [12], unsupervised [9] and semi-supervised feature
selection [22] algorithms.

Supervised feature selectioncan be categorized into filter
models, wrapper models and embedded models [14]. The
filter models separate feature selection from classifier learning
so that the bias of a learning algorithm does not interact
with the bias of a feature selection algorithm. Relief [11],
Fisher scoreand Information Gain based methods [18] are the
representative algorithms. Wrapper models use the predictive
accuracy of a predetermined learning algorithm to determine
the quality of selected features. Embedded methods aim to
integrate feature selection into the model training process. It
achieves model fitting and feature selection simultaneously

[13]. Embedded methods are usually faster than the former
two methods.

Unsupervised feature selectionattempts to select features
that preserve the original data similarity or manifold structures,
and it is difficult to evaluate the relevance of features [14].
Laplacian Score [5], spectral feature selection [23], and the
recently proposedl2,1-norm regularized discriminative fea-
ture selection [20] are representatives of unsupervised feature
selection. Semi-supervised feature selection is between the
supervised methods and unsupervised methods. Under the
assumption that labeled and unlabeled data are sampled from
the same population generated by the target concept, semi-
supervised feature selection makes use of both labeled and
unlabeled data to estimate feature relevance [22].

Online feature selection[15] and sparse online learning
[8] aim to learn a sparse linear classifier from a sequence of
high-dimensional training instances. Online feature selection
combines feature selection with online learning and resolves
the feature selection in an online fashion by developing on-
line classifiers that involve only a small and fixed number
of features for classification. OFS and OFSP [15] are the
representative algorithms proposed recently.

Online streaming feature selectionalgorithms have been
studied recently [17] where features arrive one by one and
training instances are available before the training process
starts. The number of training instances remains fixed through
the process [16]. The goal is to select a subset of features and
train an appropriate model at each time step given the features
observed so far.

Compared with the above learning methods, the problem
studied in this paper is more challenging because of the doubly
streaming data scenario. Existing online learning, onlinefea-
ture selection and online streaming feature selection algorithms
are incapable of mining trapezoidal data streams.

III. PROBLEM SETTING

We consider the binary classification problem on trape-
zoidal data streams where both data volume and feature space
increase simultaneously. Let{(xt, yt)|t = 1, . . . , T} be a
sequence of input training data. Eachxt ∈ R

dt is a dt
dimension vector wheredt−1 ≤ dt andyt ∈ {−1,+1} for all
t. On each round, the classifier uses information on a current
instance to predict its label to be either+1 or −1. After the
prediction is made, the true label of the instance is revealed
and the algorithm suffers an instantaneous loss which reflects
the degree of infelicity of the prediction. At the end of each
round, the algorithm uses the newly obtained instance-label
pair to improve its prediction rule for the rounds to come [2].

We restrict the discussion to a linear classifier which is
based on a vector of weightsw. The magnitude|w · x| is
interpreted as the degree of confidence in the prediction.
wt ∈ Rdt−1 denotes the classifier, i.e., the weight vector in
the algorithm at roundt. wt has the same dimension of the
instancext−1, and has either the same or less dimension as
the current instancext. For the loss function, we choose the
hinge loss. Specifically,l(w, (xt, yt)) = max{0, 1−yt(w·xt)},
wherew andxt are in the same dimension.



In our study, the ultimate dimensiondT is very large,
so we introduce feature selection into our mining algorithm.
Formally, in each trialt, instead of using all features for
classification, we require the classifierwt ∈ R

dwt to have
at most a proportion ofB nonzero elements, i.e.,

‖wt‖0 ≤ B · dwt
, (1)

whereB ∈ [0, 1] is a predefined parameter that controls the
proportion of features used in the algorithm.

We refer to this problem as the problem of learning from
trapezoidal streaming data. The ultimate goal is to design an
effective algorithm for trapezoidal streaming data which is
highly accurate.

IV. SPARSETRAPEZOIDAL STREAMING
DATA ALGORITHMS

In this section we present the proposed Sparse Trapezoidal
Streaming Data learning algorithm (STSD) and its two vari-
ants. There are two challenges with the algorithms. The first
challenge is to update the classifier with an augmenting feature
space. The classifier update strategy is able to learn from
new features. We build the update strategy based on the
margin-maximum principle. The second challenge is to builda
feature selection method to achieve sparsity. As the dimension
increases with time, it is essential to use feature selection
to prune redundant features. We use a truncation strategy to
obtain sparsity. Also, in order to improve the truncation, a
project step is introduced before the truncation.

Algorithm 1. The STSD algorithm and
its two variants STSD-I and STSD-II

1: Input:
• C > 0: tradeoff parameter
• λ > 0: regularization parameter
• B ∈ (0, 1]: the proportion of selected features

2: Initialize:
• w1 = (0, . . . , 0) ∈ Rd1

3: For t = 1, 2, . . . do
4: receive instance:xt ∈ R

dt

5: predict:ŷt = sign(wt ·Πwt
xt)

6: receive correct label:yt ∈ {+1,−1}
7: suffer loss:lt = max{0, 1− yt(wt ·Πwt

xt)}
8: update step:
9: • set parameter :
10: τt = Parameter Set(xt, lt, C)

(See Algorithm 2)
11: • updatewt to w̄t+1:

w̄t+1 = [wt + τtytΠwt
xt, τtytΠ¬wt

xt]
12: sparsity step:
13: • project w̄t+1 to aL1 ball:

w̌t+1 = min{1, λ
‖w̄t+1‖1

}w̄t+1

14: • truncatew̌t+1 to wt+1:
wt+1 = Truncate(w̌t+1, B)

(See Algorithm 3)
15: end for

Algorithm 2. τt = Parameter Set(xt, lt, C)
1: τt =

lt
‖xt‖2 (STSD)

2: τt = min{C, lt
‖xt‖2 } (STSD-I)

3: τt =
lt

‖xt‖2+ 1
2C

(STSD-II)

The pseudo-codes for the STSD algorithm and its two
variants are given in Algorithms 1, 2 and 3 respectively
(STSD-I and STSD-II are different to STSD in parameter
τt during updates). The vectorw1 is initialized to zero with
dimensiond1, i.e., w1 = (0, . . . , 0) ∈ Rd1 for all the three
algorithms, whered1 is the dimension of the first instance
each algorithm receives. Then, online learning is divided into
the update step and the sparsity step.

The update strategy

Algorithm 3. w = Truncate(w̌, B)
1: w̌ ∈ Redw̌

2: if ‖w̌‖0 ≥ B · dw̌ then
3: w = w̌B .

∗ w̌B is w̌, and remainmax{1, f loor(B · dw̌)}
largest elements; set others to zero.

∗ floor{x} is the largest integer smaller thenx .
4: else
5: w = w̌.
6: end if

The three algorithms are different in their update strategy. We
first focus on the update strategy of the basic algorithm. At
round t, when the classifierwt ∈ R

dt−1 , the new classifier
wt+1 = [w̃t+1, ŵt+1] ∈ R

dt is obtained as the solution to
the constrained optimization problem in Eq.(2), wherew̃ =
Πwt

wt+1 ∈ Rdt−1 represents a projection of the feature space
from dimensiondt to dimensiondt−1, andŵ = Π¬wt

wt+1 ∈
R

dt−dt1 denotes new features that are inwt+1 but not inwt,

wt+1 = [w̃t+1, ŵt+1]

= argmin
w = [w̃, ŵ] :
lt = 0

1

2
‖w̃ − wt‖

2 +
1

2
‖ŵ‖2 (2)

wherelt = l(w, (xt, yt)) is the loss at roundt , which can be
written as,

lt = l(w, (xt, yt)) = max{0, 1− yt(w̃ · x̃t)− yt(ŵ · x̂t)}.
(3)

Note thatx̃t and x̂t are similar tow̃ and ŵ respectively.

In the above constrained optimization problem, if the
existing classifierwt predicts the right label with the current
instancext, i.e., lt = max{0, 1 − yt(wt · x̃t)} = 0, then we
can easily know that the optimal solution is̃w = wt, ŵ =
(0, . . . , 0), that is,wt+1 = [wt, 0, . . . , 0].

On the other hand, if the existing classifier makes a wrong
prediction, the algorithm forces the updated classifier to satisfy
the constraint in Eq. (2). At the same time, it also forcesw̃t+1

close towt in order to inherit information and let̂wt+1 be
small to minimize structural risk and avoid overfitting. The
solution to Eq. (2) has a simple closed form,

wt+1 = [wt + τtytx̃t, τtytx̂t] where τt = lt/‖xt‖
2 (4)

We now discuss the derivation of the update strategy.

• In a case where the dimension of the new classifier
does not change, i.e.,dt = dt−1, the problem de-
generates to an online learning problem whereŵt+1

disappears andwt+1 = w̃t+1.



• In a case wheredt > dt−1 andlt = 0, then the optimal
solution isw̃t+1 = wt and ŵt+1 = (0, · · · , 0).

• In a case wheredt > dt−1 and lt > 0, then we solve
Eq. (2) to obtain the solution.

To solve Eq.(2), we use the Lagrangian function and the
Karush-Khun-Tucker conditions [1] on Eq.(2) and obtain

L(w, τ) =
1

2
‖w̃ − wt‖

2 +
1

2
‖ŵ‖2

+ τ(1− yt(w̃ · x̃t)− yt(ŵ · x̂))

w̃ = wt + τytx̃t; ŵ = τytx̂t

(5)

where τ is a Lagrange multiplier. Plugging the last two
equations into the first one, taking the derivative ofL(τ) with
respect toτ and setting it to zero, we can obtain

L(τ) = −
1

2
τ2‖x̃t‖

2 −
1

2
τ2‖x̂‖2 + τ − τyt(wt · x̃)

τt =
1− yt(wt · x̃t)

‖x̃‖2 + ‖x̂t‖2
=

lt
‖xt‖2

(6)

So, the update strategy iswt+1 = [wt + τtytx̃t, τtytx̂t],
where τt = lt/‖xt‖

2. In addition, this update rule is also
applied whenlt = 0. So we can take it as a general update
rule.

From Eq. (2), we can see that the update strategy of the
STSD algorithm is rigorous because the new classifier needs
to predict the current instance correctly. This may make the
model sensitive to noise, especially label noise [2]. In order to
avoid this drawback, we give two general updated variants of
the STSD algorithm which use the soft-margin technique by
introducing a slack variableξ into the optimization problem.
The first one is abbreviated as STSD-I. Its objective function
scales linearly withξ, namely,

wt+1 = argmin
w = [w̃, ŵ] :
lt ≤ ξ; ξ ≥ 0

1

2
‖w̃ − wt‖

2 +
1

2
‖ŵ‖2 + Cξ

(7)

The second one, STPA-II, is the same as STPA-I except
that its objective function scales quadratically with the slack
variableξ, i.e.,

wt+1 = argmin
w = [w̃, ŵ] :
lt ≤ ξ

1

2
‖w̃ − wt‖

2 +
1

2
‖ŵ‖2 + Cξ2

(8)

In these two optimization problems, parameterC is a
positive number which is a tradeoff between rigidness and
slackness. A larger value ofC implies a more rigid update
step.

The update strategy of STSD-I and STSD-II also shares
the simple closed formwt+1 = [wt + τtyT x̃t, τytx̂t], where

τt = min{C,
lt

‖xt‖2
} (I) or τt =

lt

‖xt‖2 +
1
2C

(II).

The update strategies of STSD-I and STSD-II are similar to
the STSD algorithm, so we omit their details due to space
constraints.

The sparsity strategy

In many applications, the dimension of training instances
increases rapidly and we need to select a relatively small
number of features. As the dimension changes over time, but
if only a fixed number of features are used in learning, the
results are not always satisfactory.

In our study, we introduce a parameter to control the
proportion of the features. For example, in each trialt, the
learner presents a classifierwt ∈ Rdt−1 to classify instance
xt ∈ R

dt where dt−1 ≤ dt . After the update operation, a
projection and a truncation are introduced to prune redundant
features based on the parameterB. Namely, we require the
learner only retain at most a portion ofB nonzero elements of
wt ∈ R

dwt , i.e. ‖wt‖0 ≤ B · dwt
. Specifically, if the resulting

classifierwt has more than a portion ofB nonzero elements,
we will simply keep the portion ofB elements inwt with the
largest absolute weights, as demonstrated in Algorithm 3. In
this way, at most a portion ofB features are used in the model
and sparsity is introduced.

We introduce a projection step because one single trunca-
tion step does not work well. Although the truncation selects
theB largest elements, this does not guarantee the numerical
values of the unselected attributes are sufficiently small and
may potentially lead to poor performance. When projecting
a vector to anL1 ball, most of its numerical values are
concentrated to its largest elements, and then removing the
smallest elements will result in a small change to the original
vector [15]. Specifically, the projection technique is,

w̌t+1 = min{1,
λ

‖w̄t+1‖1
}w̄t+1,

where λ is the a regularization parameter which is always
positive.

V. EXPERIMENTS

In this section, we describe our experiments to evaluate the
performance of the proposed STSD algorithm and its two vari-
ants. We first evaluate the predictive performance of the three
proposed algorithms, and analyse the relationship between
classification accuracy, feature fraction parameterB, and the
tradeoff parameterC on several benchmark data sets. Then,
we compare our approach with three benchmark algorithms.
Also, we test the performance with an application on real-
world website classification. The source codes are available
online https://github.com/BlindReview/onlineLearning

A. Experiment I: Performance tests of the STSD algorithm and
its variants

We present empirical results of the three algorithms on
several benchmark data sets from the UCI repository.

1) Testbed on UCI Data and Experimental Setup:We test
the performance of the proposed algorithms on a number of
publicly available benchmarking data sets.All the data sets
can be downloaded from the UCI machine learning repository.
Table I provides details of the data sets.

To compare fairly, all algorithms use the same experimental
settings. We set the parameterB = 0.5 , i.e., the portion



of selected features is50% . We set the tradeoff parameter
C to be 0.1 and the radius parameterλ to be 30. For the
special scenario of trapezoidal data streams, we assume that
the first10% of instances can access the first10% of features,
and the next10% of instances can access the first20% of
features, and the same increase increment with the rest. After
this, all experiments are conducted 20 times, each with a
random permutation of a data set. All the experiment results
are reported by an average over 20 runs.

Table I. THE UCI DATA SETS USED IN THE EXPERIMENTS

Dataset ♯ Samples ♯ Dimensions

magic04 19020 10
german 1000 24
svmguide3 1234 21
splice 3175 60
spambase 4601 57
a8a 32561 123

2) Evaluation of Predictive Performance:Table II sum-
marizes the online predictive performance of the compared
algorithms with a fixed fraction of selected features (50 percent
of all features) on six data sets. Several observations can be
drawn from the results. First, we found that among the three
algorithms, STSD is the most rigid update strategy that has the
highest error rate in five data sets except “svmguide3”. This
shows that the gentle update strategy with a slack variable
achieves better classifications by avoiding noise in the data
sets. The reason for the failure of STSD-I in “svmguide3”
is the unsuitable setting of the parameterC (We just set a
constant number to the parameterC for all three algorithms
and all six data sets without choosing the best one for each
case). In fact, the difference is very small. Second, we found
that in the six data sets, STSD-I and STSD-II achieve the
best performance in three data sets. This shows that the
two algorithms, using a gentle update strategy have similar
performance.

Table II. EVALUATION OF THE AVERAGE NUMBER OF ERRORS BY

STSDAND ITS VARIANTS ON THE SIX DATA SETS

Algorithm magic04 svmguide3 german

STSD 8051.3 ± 49.0 396.7 ± 15.8 415.9 ± 15.6
STSD-I 6732.3±73.3 359.1 ± 42.9 366.9±8.8
STSD-II 6924.5 ± 39.6 357.5±26.9 366.9±12.8

Algorithm splice spambase a8a

STSD 1314.6 ± 30.3 1132.1 ± 29.7 12673.5 ± 75.9
STSD-I 1243.7 ± 13.6 1004.5±25.6 11204.7±713.1
STSD-II 1238.8±16.8 1013.2±26.1 11317.2±233.1

Fig. 1 shows the performance of the three algorithms under
different C values. From the results, we can see that there is
always a parameterC to force STSD-I and STSD-II to have
less errors than STSD. The largerC is, the closer the STSD-I
algorithm to the STSD algorithm, because the parameterτt
in STSD-I is the smaller one inC or the parameterτt in the
STSD algorithm. WhenC is very large, STSD-I is reduced to
STSD. Fig 1 demonstrates this finding.

B. Experiment II: Comparisons with other algorithms

We compare our algorithms with the three benchmark
algorithms. Due to the good performance of STSD-I, we use
STSD-I as the representative of our three algorithms, and we
compare the performance of the STSD-I algorithm with the
three benchmark algorithms.

The first benchmark isSTSDI-all which is the same as
STSD-I except that not only a portion of features is selectedbut
all features are used. The second one isSTSDI-rand which has
the same update strategy but with randomly selected features.
The third isSTSDI-per which has the same sparsity strategy
in selecting features but uses the Perceptron update strategy,
and the Perceptron update strategy iswt+1 = [wt+ytxt, ytxt]
[10]. We again use the UCI data sets listed in Table I. The
parameter settings and experimental settings are the same as
in Experiments I.

Table III gives the average number of test errors by the
four algorithms on the six data sets. First, we can observe that
the more features, the number of errors by STSD-I is lower on
average. We also observe that whenB = 0.8, the performance
of STSD-I is better than STSDI-all which can access all the
features in most data sets. Although on some data sets, STSDI-
all has a better performance than the STSD-I algorithm, the
difference is not significant. When we use a small portion of
features, we can see that STSD-I has a better performance.
Second, the STSDI-rand algorithm randomly chooses a fixed
portion of features and has the worst performance on all
data sets. This further indicates that the sparsity strategy
we introduced can improve the performance of the classifier
significantly. Third, the STSDI-per algorithm which uses the
Perceptron update strategy has higher error rates than the
STSD-I algorithm on most data sets, demonstrating that the
update strategy of our algorithms is better.

VI. CONCLUSIONS

This paper investigated a new problem of mining trape-
zoidal data streams where both data volume and feature
space increase by time. We presented new sparse trapezoidal
streaming data mining algorithms as the solution. We also
examined the empirical performance on UCI data sets. The
encouraging results have shown that the proposed algorithms
are effective for mining trapezoidal streaming data, and more
efficient and scalable than batch-based algorithms.

Future work includes extending the proposed algorithms
to real-world applications such as big dynamic network min-
ing, and studying the multiclass classification and regression
problems on trapezoidal data streams.

REFERENCES

[1] S. Boyd and L. Vandenberghe.Convex Optimization. Cambridge
University Press, 2004.

[2] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer.
Online passive-aggressive algorithms.Journal of Machine Learning,
7:6551–585, 2006.

[3] K. Crammer, M. Dredze, and A. Kulesza. Multi-class confidence
weighted algorithms.In EMNLP, pages 496–504, 2009.

[4] C. Gentile. A new approximate maximal margin classifiction algorithm.
Journal of Machine Learning Research, 2:213–242, 2001.

[5] X. He, D. Cai, and P. Niyogi. Laplacian score for feature selection. In
NIPS ’05, 2005.

[6] S. C. Hoi, J. Wang, P. Zhao, and J. Wan. Libol: A library foronline
learning algorithms.Nanyang Technological University, 2012.

[7] J. Kivinen and M. K. Warmuth. Exponentiated gradient versus gradient
descent for linear predictors.Information and Computation, 132(1):1–
63, 1997.

[8] J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated
gradient.Journal of Machine Learning Research, 10:777–801, 2009.



10
−4

10
−2

10
0

10
2

10
4

6600

6800

7000

7200

7400

7600

7800

8000

8200

Value of aggressive parameter C

A
ve

ra
ge

 n
um

be
r 

of
 m

is
ta

kd
s

 

 

STSD
STSD−I
STSD−II

(a) magic04

10
−4

10
−2

10
0

10
2

10
4

350

360

370

380

390

400

410

420

430

Value of aggressive parameter C

A
ve

ra
ge

 n
um

be
r 

of
 m

is
ta

kd
s

 

 

STSD
STSD−I
STSD−II

(b) svmguide3

10
−4

10
−2

10
0

10
2

10
4

360

370

380

390

400

410

420

Value of aggressive parameter C

A
ve

ra
ge

 n
um

be
r 

of
 m

is
ta

kd
s

 

 

STSD
STSD−I
STSD−II

(c) german

10
−4

10
−2

10
0

10
2

10
4

1220

1240

1260

1280

1300

1320

Value of aggressive parameter C

A
ve

ra
ge

 n
um

be
r 

of
 m

is
ta

kd
s

 

 

STSD
STSD−I
STSD−II

(d) splice

10
−4

10
−2

10
0

10
2

10
4

1000

1050

1100

1150

1200

1250

Value of aggressive parameter C

A
ve

ra
ge

 n
um

be
r 

of
 m

is
ta

kd
s

 

 

STSD
STSD−I
STSD−II

(e) spambase

10
−4

10
−2

10
0

10
2

10
4

1.1

1.15

1.2

1.25

1.3
x 10

4

Value of aggressive parameter C

A
ve

ra
ge

 n
um

be
r 

of
 m

is
ta

kd
s

 

 

STSD
STSD−I
STSD−II

(f) a8a

Figure 1. The average number of errors w.r.t. parameter C.

Table III. AVERAGE TEST ERRORS MADE BY THE ALGORITHMS ON THE SIX DATA SETSW.R.T. SELECTED FEATURESB

Algorithm magic04 svmguide3 german splice spambase a8a

STSD-I B=0.2 13367.3±406.9 814.1±36.3 702.7±20.1 1282.3±38.1 1176.1±73.7 12279.1±3073.7
STSDI-all 6634.3±35.2 360.9±7.2 344.1±7.1 1236.1±29.5 983.6±21.7 10242.6±109.8
STSDI-rand 14101.8±53.3 919.3±11.3 739.3±11.2 1559.1±22.0 1930.7±38.1 15525.0±79.0
STSDI-per 13143.5±52.7 828.4±40.1 703.7±20.5 1300.6±41.5 1215.8±82.5 10047.7±1520.2

STSD-I B=0.5 6732.3±73.3 359.1±42.9 366.9±8.8 1243.7±27.0 1004.1±25.6 11204.7±713.1
STSDI-all 6634.3±35.2 360.9±7.2 344.1±7.1 1236.1±29.5 983.6±21.7 10242.6±109.8
STSDI-rand 8014.3±45.9 563.5±20.9 464.3±16.2 1519.9±35.6 1699.9±25.2 15766.6±93.8
STSDI-per 6921.1±46.4 362.6±52.3 368.7±16.4 1239.2±26.7 1014.1±28.2 11303.6±308.0

STSD-I B=0.8 6633.7±37.2 350.3±7.2 336.4±8.0 1235.2±27.1 980.8±20.6 10814.6±160.6
STSDI-all 6634.3±35.2 360.9±7.2 344.1±7.1 1236.1±29.5 983.6±21.7 10242.6±109.8
STSDI-rand 7785.2±34.2 490.8±19.8 402.8±11.9 1485.2±23.7 1490.7±19.2 14665.6±68.9
STSDI-per 6828.1±44.4 359.6±7.2 354.2±7.7 1238.5±26.6 991.0±21.0 11319.9±91.1

[9] P. Mitra, C. A. Murthy, and S. Pal. Unsupervised feature selection using
feature similarity.In PAMI, 24:301–312, 2002.

[10] F. Rosenblatt. The perceptron: a probabilistic model for information
storage and organization in the brain.Psychological Rev., 65:386–407,
1958.

[11] M. R. Sikonja and I. Kononenko. Theoretical and empirical analysis of
relief and relieff. Machine Learning, 53:23–69, 2003.

[12] L. Song, A. Smola, A. Fretton, K. Borgwardt, and J. Bedo. Supervised
feature selection via dependence estimation.In ICML, 2007.

[13] N. C. Talbot, G. C. Cawley, and M. Girolami. Sparse multimonial
logistic regression via bayesian l1 regularisation.In Neural Information
Processing Systerms, 2006.

[14] J. Tang, S. Alelyani, and H. Liu. Feature selection for classification: A
review. Data Classification: Algorithms and Applicaions Boca Raton,
FL USA: CRC Press, 2014.

[15] J. Wang, P. Zhao, S. C. Hoi, and J. Wan. Online feature selection and
its applications.In TKDE, 26(3):698–710, 2014.

[16] X. Wu, K. Yu, W. Ding, H. Wang, and X. Zhu. Online feature selection
with streaming features.In TPAMI, 35(5):1178–1192, 2013.

[17] X. Wu, K. Yu, H. Wang, and W. Ding. Online streaming feature
selection.In ICLM ’10, pages 1159–1166, 2010.

[18] Z. Xu, R. Jin, J. Ye, M. Lyu, and I. King. Non-monotonic feature
selection.In ICML ’09, page 144, 2009.

[19] L. Yang, R. Jin, and J. Ye. Online learning by ellipsoid method. In
ICML, page 145, 2009.

[20] Y. Yang, H. Shen, Z. Ma, Z. Huang, and X. Zhou.l2,1-norm regularized

discriminative feature selection for unsupervised learning. In IJCAI ’11,
pages 1589–1594, 2011.

[21] K. Zhai and J. Boyd-Graber. Online latent dirichlet allocation with
infinite vocabulary.In the 30th ICML, 28, 2013.

[22] Z. Zhao and H. Liu. Semi-supervised feature selection via spectral
analysis. In Proceeding of SIAM International Conference on Data
Mining, 2007.

[23] Z. Zhao and H. Liu. Spectral feature selection for supervised and
unsupervised learning.In ICML ’07, pages 1151–1157, 2007.

[24] M. Zinkevich. Online convex programming and generalizedinfinitesi-
mal gradient ascent.In ICML, pages 928–936, 2003.


