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Abstract—In this paper we study a new problem of learning
from doubly-streaming data where both data volume and feature
space increase by time. We refer to the problem as mining
trapezoidal data streams. The problem is challenging because
both data volume and feature space are increasing. Existing online
learning, online feature selection and streaming feature selection
algorithms are inapplicable. To this end, we propose a new
Sparse Trapezoidal Streaming Data mining algorithm (STSD)
and its two variants which combine online learning and online
feature selection algorithms to enable learning trapezoidal data
streams with infinite training instances and features. Specifically,
when new training instances carrying new features arrive, the
classifier updates the existing features by following the passive-
aggressive update rule used in online learning and updates
the new features by following the structural risk minimization
principle. Then, feature sparsity is introduced by using projected
truncation techniques. In this way, STSD can auto-learn from
trapezoidal data streams. Experiments on UCI data sets show
the performance of the proposed algorithms.

I. INTRODUCTION

allow the sum of training loss gradually to be bounded [8].
To date, online learning algorithms, such as the Perceptron
algorithm [10], the Passive Aggressive algorithm [2] and th
Confidence-Weighted algorithm [3], are commonly used in
data-driven optimization problems. However, these athors
cannot be directly used to handle dynamic feature space.

Online feature selection algorithms [8], [15] were profbse
to perform feature selection in data streams where data ar-
rive sequentially with a fixed feature space. Online feature
selectors are only allowed to maintain a small nhumber of
active features for learning [15]. These algorithms usesgpa
strategies, such as feature truncation, to select repedsen
features. Sparse online learning via truncated gradigrané
the OFS algorithm [15] are typical algorithms. However sine
algorithms cannot solve the trapezoidal data stream mining
problem because they assume feature space is fixed.

Online streaming feature selection algorithms [17] were
proposed to select features in a dynamic feature space where
features arrive continuously as streams. Each new feature

Recent years have witnessed an increasing number d¢$ processed upon its arrival and the goal is to select a
applications on doubly-streaming data where both data vol-best so far” set of features to train an efficient model. It,
ume and data dimension increase with time. For exampldh some ways, can be seen as the dual problem of online
in text clustering, both the number of documents and thdearning [17]. Typical algorithms include the online stréag
text vocabulary may increase with time, and a recent worKeature selection (OSFS) algorithm [16] and the fast-OSF$ [

proposed ainfinite vocabulary topic modgR1] which allows

algorithms. However, these algorithms consider only acstat

the addition, invention and increased prominence of nemger training set where the number of training instances is given
to be captured. In graph node classification, both the numbep advance before learning. Therefore, they cannot be used i
of graph nodes and the node features (e.g., the ego-netwofklr problem.

structure of a node) may change by time.

We refer to the above doubly-streaming data tesgpe-

To sum up, existing online learning, online feature sebecti
and streaming feature selection algorithms cannot be used

zoidal data streamsvhere data dynamically change in both to learn from trapezoidal data streams. In this paper, we
volume and feature dimension. The problem of learning fronpropose a new Sparse Trapezoidal Streaming Data (STSD)

trapezoidal data streams is obviously much more difficidhth

algorithm and its two variants STSD-I and STSD-II for mining

existing data stream mining and online learning problemstrapezoidal data streams. STSD and its variants combireeonl
The main challenge of learning from trapezoidal data steeamlearning and online feature selection to continuously riear
is how to design highly dynamic classifiers that can learrfrom trapezoidal data streams. Specifically, when new itrgin

from increasing training data with expanding feature spaceinstances carrying new features arrive, the classifier tegda

Obviously, existing online learning [7], online featurdesgion
[15] and streaming feature selection algorithms [17] cargo
used to handle our problem directly.

existing features by following the passive-aggressiveatpd
rule used in online learning and updates the new features
by following the structural risk minimization principle.h€n,
feature sparsity is introduced by using the feature prefbct

Online learning algorithms [8] are proposed to solve theyncation techniques. We conduct empirical tests on Ui da
problem where training instances arrive one by one but thggts to show their performance.

feature space is static and known a prior before learning.

The algorithms update classifiers using incoming instaaoes

The contributions of this paper are summarized as follows:



1) We study a new problem of learning from trapezoidal[13]. Embedded methods are usually faster than the former
data streams where training data doubly change inwo methods.
both data volume and feature space;

2) We propose a new algorithm STSD and its two
variants. They combine the merits of online learning

Unsupervised feature selecti@itempts to select features
that preserve the original data similarity or manifold strues,
. X ) Iand it is difficult to evaluate the relevance of features [14]
and online fegture selection to learn from trapezo'daLaplacian Score [5], spectral feature selection [23], dnel t
data streams; recently proposeds ;-norm regularized discriminative fea-
3) We empirically validate the performance of the algo-ture selection [20] are representatives of unsupervisatlife
rithms on UCI data sets. selection. Semi-supervised feature selection is betwben t
] ) ) ] ~ supervised methods and unsupervised methods. Under the
The remainder of this paper is organized as follows: Sectiomssumption that labeled and unlabeled data are sampled from
2 surveys related work. Section 3 introduces the problem ifhe same population generated by the target concept, semi-

detail. Section 4 discusses the proposed STSD algorithm anglipervised feature selection makes use of both labeled and
its variants. Section 5 conducts experiments and Section @inlabeled data to estimate feature relevance [22].
concludes the paper.
Online feature selectiofl5] and sparse online learning
. RELATED WORK [8] aim to learn a sparse linear classifier from a sequence of
high-dimensional training instances. Online feature t&la

Our work is closely related to online learning and online combines feature selection with online learning and resolv
feature selection. the feature selection in an online fashion by developing on-

Online learningrepresents an important family of efficient IN€ _classifiers that involve only a small and fixed number
and scalable data mining and machine learning algorithms fOOf features.for clas_smcatlon. OFS and QF$15] are the
massive data analysis. In general, online learning alyost 'ePresentative algorithms proposed recently.

can be grouped into two categories, first-order and second- opjine streaming feature selecticaigorithms have been
order learning algorithms [6]. studied recently [17] where features arrive one by one and

The first-order online learninglgorithms exploit first order ~ training instances are available before the training msce
information during update. The Perceptron algorithm [16j a Starts. The number of training instances remains fixed dirou
Online Gradient Descent algorithm (OGD) [24] are two well- the process [16]. The goal is to select a subset of featurs an
known first-order online learning methods. Moreover, adarg frain an appropriate model at each time step given the fesitur
number of first-order online learning algorithms have beerPbserved so far.
proposed recently by following the criterion of maximum

rr;arg!nh principle [15], such als th_eh PA algorithm [2], ALMA studied in this paper is more challenging because of thelgoub

algorithm [4], and ROMMA algorithm [4]. streaming data scenario. Existing online learning, onfeee
The second-order online learninglgorithms, which can ture selection and online streaming feature selectiorriggos

better explore the underlying structure between featudds [ are incapable of mining trapezoidal data streams.

have been explored recently. Most second-order learnogr al

rithms assume that the weight vector follows a Gaussian-dist

bution. The model parameters, including both the mean vecto Il. PROBLEM SETTING

and the covariance matrix, are updated in the online legrnin

process [6]. The CW [3], and IELLIP [19], algorithms are

representative of the second-order online learning dlyos.

Compared with the above learning methods, the problem

We consider the binary classification problem on trape-
zoidal data streams where both data volume and feature space
increase simultaneously. Lel(z:,y:)[t = 1,...,T} be a

Feature selectioris a widely used technique for reducing sequence of input training data. Each € R% is a d,
dimensionality. Feature selection aims to select a smaetu dimension vector wherd; ; < d; andy; € {—1,+1} for all
of features minimizing redundancy and maximizing releeanc t. On each round, the classifier uses information on a current
to the class label in classification. According to trainirg s instance to predict its label to be eithed or —1. After the
is labeled or not, feature selection can be categorized intgrediction is made, the true label of the instance is redeale
supervised [12], unsupervised [9] and semi-supervisedifea and the algorithm suffers an instantaneous loss which teflec
selection [22] algorithms. the degree of infelicity of the prediction. At the end of each
round, the algorithm uses the newly obtained instance-labe

Supervised feature selectiman be categorized into filter pair to improve its prediction rule for the rounds to come [2]
models, wrapper models and embedded models [14]. The

filter models separate feature selection from classifianieg We restrict the discussion to a linear classifier which is
so that the bias of a learning algorithm does not interacbased on a vector of weights. The magnitudew - z| is
with the bias of a feature selection algorithm. Relief [11], interpreted as the degree of confidence in the prediction.
Fisher scoreand Information Gain based methods [18] are the, € R%-* denotes the classifier, i.e., the weight vector in
representative algorithms. Wrapper models use the preglicti the algorithm at round. w; has the same dimension of the
accuracy of a predetermined learning algorithm to detegmininstancez;_;, and has either the same or less dimension as
the quality of selected features. Embedded methods aim tihe current instance,. For the loss function, we choose the
integrate feature selection into the model training precés  hinge loss. Specifically(w, (z¢, y:)) = max{0, 1—y:(w-z)},
achieves model fitting and feature selection simultangouslwherew andz; are in the same dimension.



In our study, the ultimate dimensiod; is very large, The pseudo-codes for the STSD algorithm and its two
so we introduce feature selection into our mining algorithm variants are given in Algorithms 1, 2 and 3 respectively
Formally, in each trialt, instead of using all features for (STSD-I and STSD-Il are different to STSD in parameter

classification, we require the classifie, € R to have
at most a proportion o8 nonzero elements, i.e.,

HthO < B- dwm (1)

7 during updates). The vectar; is initialized to zero with
dimensiond;, i.e., w; = (0,...,0) € R% for all the three
algorithms, whered; is the dimension of the first instance
each algorithm receives. Then, online learning is divid&d i

where B € [0,1] is a predefined parameter that controls thethe update step and the sparsity step.

proportion of features used in the algorithm.

We refer to this problem as the problem of learning from
trapezoidal streaming data. The ultimate goal is to design a
effective algorithm for trapezoidal streaming data whish i

highly accurate.

IV. SPARSETRAPEZOIDAL STREAMING
DATA ALGORITHMS

In this section we present the proposqih&e Fapezoidal

Streaming_[ata learning algorithm (STSD) and its two vari-
ants. There are two challenges with the algorithms. The first
challenge is to update the classifier with an augmentingifeat
space. The classifier update strategy is able to learn fro
new features. We build the update strategy based on th
margin-maximum principle. The second challenge is to baild
feature selection method to achieve sparsity. As the dioens
increases with time, it is essential to use feature selectio
to prune redundant features. We use a truncation strategy
obtain sparsity. Also, in order to improve the truncation, a

project step is introduced before the truncation.

Algorithm 1. The STSD algorithm and
its two variants STSD-I and STSD-II
1. Input:
e C > 0: tradeoff parameter
e )\ > 0: regularization parameter
e B € (0,1]: the proportion of selected features

2:  Initialize:
ew; =(0,...,0) € R™
3: Fort=1,2,...do
4: receive instancet, € R%
5: predict: §: = sign(w; - Wy, zt)
6: receive correct labely; € {+1, -1}
7 suffer lossil; = max{0,1 — y;(wy - Wy, 1) }
8: update step:
9: e set parameter :
10: 7t = Parameter_Set(zy,l;,C)
(See Algorithm 2)

11: e updatew, t0 w41:

W1 = [wy + 7y I, T, Ty, 4]
12: sparsity step:
13: e projectw;,; to a L, ball:

W41 = min{1, m}wtﬂ
14: [ ] truncated}t+1 to wt+12

wiy1 = Truncate(iyyq, B)

(See Algorithm 3)
15: end for
Algorithm 2. 7, = Parameter_Set(x,l;, C)
1. 7= W (STSD)
2. 1 =min{C, ﬁ} (STSD-I)
3 m=_—4—+  (STSD-l)
llz:l?+ 56

The update strategy

Algorithm 3. w = Truncate(w, B)
1. W€ Redw
2: if ||w|lo > B - dy then
3: w = wP.
* wB is w, and remainmax{1, floor(B - d;)}
largest elements; set others to zero.
x floor{zx} is the largest integer smaller then.
else
w = w.
end if

he three algorithms are different in their update strat¥gy
rst focus on the update strategy of the basic algorithm. At
round t, when the classifierr; € R%-1, the new classifier
Wip1 = [Wey1,We1] € R%* is obtained as the solution to
hpe constrained optimization problem in Eq.(2), where=

w, W1 € R9-1 represents a projection of the feature space
from dimensiond, to dimensiond;_,, andw = I1_,,, w41 €
R4 —d:1 denotes new features that areqif,; but not inw,

Wi1 = [Wig1, Wet1]
= argmin

w = [0, W] :
Iy =0

1 1
Sl —wl?+ Sl @

wherel; = [(w, (z¢, y:)) is the loss at round , which can be
written as,

Iy = l(w, (z¢,y)) = max{0,1 — gy (@0 - T4) — ye (W - T¢) }.
)

Note thatz, and i, are similar tow andw respectively.

In the above constrained optimization problem, if the
existing classifienv; predicts the right label with the current
instancezy, i.e., l; = max{0,1 — y:(ws - Z+)} = 0, then we
can easily know that the optimal solution & = w;,w =
(0, ey 0), that iS,le = [wt70, ce ,0]

On the other hand, if the existing classifier makes a wrong
prediction, the algorithm forces the updated classifieatssy
the constraint in Eq. (2). At the same time, it also fordgs,
close tow; in order to inherit information and let;,,; be
small to minimize structural risk and avoid overfitting. The
solution to Eq. (2) has a simple closed form,

Wi+1 = [wt + Ttytftﬂ'tytfft] where T, = lt/H%tH2 (4)

We now discuss the derivation of the update strategy.

e In a case where the dimension of the new classifier
does not change, i.ed; = d;_1, the problem de-
generates to an online learning problem wheéxe
disappears andy1 = Wy41.



e Inacasewherd;, > d;,_; andl; = 0, then the optimal The sparsity strategy
solution isw;11 = wy and11 = (0,---,0).
In many applications, the dimension of training instances
» Inacase wherd; > d;_, andl; > 0, then we solve  jncreases rapidly and we need to select a relatively small
Eq. (2) to obtain the solution. number of features. As the dimension changes over time, but
é’f only a fixed number of features are used in learning, the

To solve Eq.(2), we use the Lagrangian function and th tesults are not always satisfactory,

Karush-Khun-Tucker conditions [1] on Eq.(2) and obtain
In our study, we introduce a parameter to control the

L(w, 1) = 1||u”; —w||* + 1||zb|\2 proportion of the features. For example, in each ttiathe
2 o2 . (5) learner presents a classifier, € R4-1 to classify instance
FT(1 = yp(W - Ty) = yo( - ) z; € R% whered,_, < d, . After the update operation, a
W=w+ TYZy; W= TYdy projection and a truncation are introduced to prune redoinda

features based on the paramefer Namely, we require the
learner only retain at most a portion B8fnonzero elements of
wy € Riwe, i.e. [|we|lo < B - dy,. Specifically, if the resulting
classifierw; has more than a portion d® nonzero elements,

where 7 is a Lagrange multiplier. Plugging the last two
equations into the first one, taking the derivativeldf-) with
respect tor and setting it to zero, we can obtain

R S TSR S S - we will simply keep the portion o3 elements inw, with the
L(r) = =57l @ell” = 522l + 7 = 7y (we - 7) s largest absolute weights, as demonstrated in Algorithmms. |
1 — ye(wy - 34) Iy ®)  this way, at most a portion dB features are used in the model
Tt = [Z]2 + |22 = EAE and sparsity is introduced.

We introduce a projection step because one single trunca-
So, the update strategy 8,1 = [w; + T:y:T¢, Ty 2¢],  tion step does not work well. Although the truncation sedect
where 7, = I;/||z¢||?. In addition, this update rule is also the B largest elements, this does not guarantee the numerical
applied whenl; = 0. So we can take it as a general updatevalues of the unselected attributes are sufficiently smadl a
rule. may potentially lead to poor performance. When projecting

From Eqg. (2), we can see that the update strategy of th oxggtn(i:a:gdatgLiltsblzlrL ergtosetle?Tf\elrﬁs n;nmdertlﬁgln \;er%%iinarethe
STSD algorithm is rigorous because the new classifier nee g ! 9

to predict the current instance correctly. This may make thQ/;nc?gfs[ig]legsgéﬁizva”lll;e%uelt A?o?eitrirz)i” tg;ﬁ:?qeuéoi;he oaigin
model sensitive to noise, especially label noise [2]. Ineort ' ' '

avoid this drawback, we give two general updated variants of o — mind1 A
the STSD algorithm which use the soft-margin technique by We1 = mingl, |l wes 1|1

introducing a slack variabl€ into the optimization problem. : - C
The first one is abbreviated as STSD-I. Its objective fumctio where \ is the a regularization parameter which is always

}wt-‘rla

scales linearly with¢, namely, positive.
. 1, . 1.
R ar%r”mﬁ §Hw il §”wH2 +oe (7) V. EXPERIMENTS
L SEE>0

In this section, we describe our experiments to evaluate the
i performance of the proposed STSD algorithm and its two vari-

The second one, STPA-II, is the same as STPA-I excepints. We first evaluate the predictive performance of theethr
that its objective function scales quadratically with thack  proposed algorithms, and analyse the relationship between

variableg, i.e., classification accuracy, feature fraction parameterand the
) 1 s 1 ) tradeoff parametet’ on several benchmark data sets. Then,
Wyl = arg[rjﬂl{l] Sl —well” + Sllwl” + C¢ (8 We compare our approach with three benchmark algorithms.

Also, we test the performance with an application on real-
world website classification. The source codes are availabl
online https://github.com/BlindReview/onlineLearning

le <€

In these two optimization problems, parametéris a
positive number which is a tradeoff between rigidness an
slackness. A larger value af' implies a more rigid update
step.

%. Experiment I. Performance tests of the STSD algorithm and
its variants

We present empirical results of the three algorithms on
veral benchmark data sets from the UCI repository.

1) Testbed on UCI Data and Experimental SetWjge test
V() or = b (I). the performance of the proposed algorithms on a number of
el + 55 publicly available benchmarking data sets.All the datas set

The update strategies of STSD-I and STSD-II are similar tO(]:'ZBII;eI ?)?X)Y/?(Ij%asdsgtgi?smo:‘hti éJ g;g:;g:;ne learning repository.

the STSD algorithm, so we omit their details due to space
constraints. To compare fairly, all algorithms use the same experimental
settings. We set the paramet& = 0.5 , i.e., the portion

The update strategy of STSD-I and STSD-II also share§e
the simple closed formw;1 = [w; + TeyrZs, TY:E:], Where
ly

7: = min{C, ERE



of selected features i80% . We set the tradeoff parameter The first benchmark iSTSDI-all which is the same as

C to be 0.1 and the radius parameter to be 30. For the  STSD-I except that not only a portion of features is selebtéd
special scenario of trapezoidal data streams, we assurhe trall features are used. The second on@T$DI-rand which has

the first10% of instances can access the fit6{s of features, the same update strategy but with randomly selected feature
and the next1l0% of instances can access the fie$t% of  The third isSTSDI-per which has the same sparsity strategy
features, and the same increase increment with the regr Aftin selecting features but uses the Perceptron update ggtrate
this, all experiments are conducted 20 times, each with and the Perceptron update strategwis1 = [w¢ + y: 2+, ys 4]
random permutation of a data set. All the experiment result§10]. We again use the UCI data sets listed in Table I. The
are reported by an average over 20 runs. parameter settings and experimental settings are the same a

in Experiments |I.

Table 1. THE UCI DATA SETS USED IN THE EXPERIMENTS

Table Ill gives the average number of test errors by the

Deasel four algorithms on the six data sets. First, we can obse th

[ # Samples| # Dimensions |

g“;?,:i%“ 11%%200 ;2 the more features, the number of errors by STSD-I is lower on
svmguide3 | 1234 21 average. We also observe that whn= 0.8, the performance

e | 601 % of STSD-I is better than STSDI-all which can access all the
a8a 32561 123 features in most data sets. Although on some data sets, STSDI

all has a better performance than the STSD-I algorithm, the

2) Evaluation of Predictive PerformanceTable 1l sum-  difference is not significant. When we use a small portion of
marizes the online predictive performance of the comparedeatures, we can see that STSD-| has a better performance.
algorithms with a fixed fraction of selected features (5@&pet ~ Second, the STSDI-rand algorithm randomly chooses a fixed
of all features) on six data sets. Several observations ean tportion of features and has the worst performance on all
drawn from the results. First, we found that among the threélata sets. This further indicates that the sparsity styateg
algorithms, STSD is the most rigid update strategy that has t we introduced can improve the performance of the classifier
highest error rate in five data sets except “svmguide3”. Thisignificantly. Third, the STSDI-per algorithm which use th
shows that the gentle update strategy with a slack variabl@erceptron update strategy has higher error rates than the
achieves better classifications by avoiding noise in the datSTSD-I algorithm on most data sets, demonstrating that the
sets. The reason for the failure of STSD-I in “svmguide3”update strategy of our algorithms is better.
is the unsuitable setting of the parameter(We just set a
constant number to the parametérfor all three algorithms V1.
and all six data sets without choosing the best one for each i , , .
case). In fact, the difference is very small. Second, wedoun _ This paper investigated a new problem of mining trape-
that in the six data sets, STSD-I and STSD-II achieve theoidal data streams where both data volume and feature
best performance in three data sets. This shows that thgPace increase by time. We presented new sparse trapezoidal

two algorithms, using a gentle update strategy have similaptré@ming data mining algorithms as the solution. We also
examined the empirical performance on UCI data sets. The

CONCLUSIONS

performance. . .
encouraging results have shown that the proposed algaithm
Table Il EVALUATION OF THE AVERAGE NUMBER OF ERRORS BY are effective for mining trapezoidal streaming data, andemo
STSDAND ITS VARIANTS ON THE SIX DATA SETS efficient and scalable than batch-based algorithms.

l :'nggthm [ 805?"’;9;0:90 [ 3;{;’“;1"‘1’238 [ 4159?:‘1';6 ‘ Future work includes extending the proposed algorithms
STSDA 673235733 | 350.1 L 42.9 366.9L8.8 to real-world applications such as big dynamic network min-
STSD-Il | 6924.5 + 39.6 357.5£26.9 366.9£12.8 ing, and studying the multiclass classification and regoess

[ Algorithm | splice [ spambase | aBa | problems on trapezoidal data streams.

STSD 1314.6 + 30.3 1132.1 +29.7 12673.5 = 75.9
STSD-I 1243.7 +£ 13.6 1004.5+25.6 11204.#713.1
STSD-II 1238.8-16.8 1013.2:26.1 11317.2:233.1 REFERENCES
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(9]

[10]

[11]
(12]

(13]

[14]

[15]

[16]

Average number of mistakds

Average number of mistakds

420

410
400
390
380

370,

——STSD
- —&—STSD-I
STSD-II

360
10

=l

107 10° 10° 10"

Value of aggressive parameter C

(c) german

125

115

——STSD
—8—STSD-I
STSD-II

107 10° 10° 10"

Value of aggressive parameter C

(f) a8a

Table III. AVERAGE TEST ERRORS MADE BY THE ALGORITHMS ON THE SIX DATA SET®/.R.T. SELECTED FEATURESB
[ Algorithm [ magic04 [ svmguide3 | german ]| splice [ spambase ]| a8a |
STSD-I B=0.2 | 13367.3£406.9 | 814.1£36.3 | 702.720.1 | 1282.3E38.1 | 1176.573.7 | 12279.13073.7
STSDI-all 6634.3:35.2 360.9+7.2 344.147.1 1236.129.5 983.6+21.7 10242.6:109.8
STSDI-rand 14101.8£53.3 919.3+11.3 | 739.3+11.2 | 1559.122.0 | 1930.A-38.1 15525.6:79.0
STSDI-per 13143.5£52.7 | 828.4:40.1 | 703.7420.5 | 1300.6:41.5 | 1215.8:82.5 | 10047.7-1520.2
STSD-I B=0.5 6732.3:73.3 359.1+42.9 366.9+-8.8 1243.7427.0 | 1004.14-25.6 11204.#713.1
STSDI-all 6634.3:35.2 360.9+7.2 344.147.1 | 1236.129.5 | 983.6+:21.7 10242.6:109.8
STSDI-rand 8014.3+45.9 563.5£20.9 | 464.3:16.2 | 1519.9:£35.6 | 1699.9+25.2 15766.6-93.8
STSDI-per 6921.1+46.4 362.6+52.3 | 368.7416.4 | 1239.2:26.7 | 1014.1-28.2 | 11303.6:308.0
STSD-I B=0.8 | 6633.7437.2 350.3£7.2 336.4E8.0 | 1235.2E27.1 | 980.8£20.6 10814.6E160.6
STSDI-all 6634.3:35.2 360.9:7.2 344.147.1 | 1236.H:29.5 | 983.6:21.7 10242.6:109.8
STSDI-rand 7785.2-34.2 490.8+19.8 | 402.8+11.9 | 1485.2£23.7 | 1490.A4-19.2 14665.6:68.9
STSDI-per 6828.14-44.4 359.6+7.2 354.2+7.7 1238.5£26.6 991.04-21.0 11319.9:91.1
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