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Tissue-cultured plants (Syngonium podophyllum) planted into conventional potting mix and 

hydroculture were investigated for their capacities to bring about reductions of the two major 

types of indoor air pollution; volatile organic compounds (VOCs) and CO2.  

The results confirm that, with a moderate increase in indoor light intensity, the species used 

could be developed and used to remove significant amounts of indoor CO2. The results also 

indicate that hydroculture as a growth medium makes for greater efficacy of CO2 removal 

than potting mix. Furthermore, the VOC removing potential of hydroculture plants was 

demonstrated. Whilst the rate of VOC removal was somewhat slower than plants grown in 

traditional potting mix, the simultaneous capacity of the system for effective CO2 removal is 

evidence that hydroculture is a more effective system for functional indoor plants than the 

potting mix systems that are used now. 

An examination was also made of the possibility of bioaugmentation with both rhizosphere 

bacteria and arbuscular mycorrhizal fungi to improve the performance of the hydroculture 

plants to improve growth and remove more VOCs, while maintaining a lower microbial load 

than potting mix, so as to reduce soil CO2 emissions, however, the efforts trialled here in this 

species were unsuccessful.  

The effect of benzene on the community level physiological profiles of rhizospheric bacteria 

of hydroculture plants was assessed. Whilst the bacterial community present in hydroculture 

was reduced in diversity compared to potting mix, the species present encompassed at least 

some of those involved with VOC removal, thus indicating that hydroculture plants should 

still be an effective means of reducing indoor VOC concentrations. 

A qualitative screen for pathogenic fungal spores from plants grown both in hydroculture and 

potting mix showed the nutrient solution and supporting media did not harbour any 

pathogenic fungi and are thus unlikely to pose a major health risk. 
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