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ABSTRACT 

Green roofs have been proposed as a way to mitigate stormwater run-off in urban areas due to 

the possibility of retrofit to existing buildings. The amount of run-off is influenced by the, humidity, 

evapotranspiration, as well as soil type and depth. A modelling approach was undertaken to 

evaluate the response of different soil depths to cumulative rainfall and the efficiency in stormwater 

flow rate attenuation. The soil hydraulics were modelled using HYDRUS-1D software developed 

for modelling water flow in variably saturated porous media. Model runs were carried out for three 

quarterly scenarios to determine run-off peak flow rates and the overall retention, based on 

evapotranspiration rates of succulent plants and rainfall registers from Auckland, New Zealand. The 

soil depths modelled ranged from 5 to 160 cm. The results revealed, that the efficiencies in peak 

flow attenuation by the shallowest soil considered were reduced under extreme and longer rainfall 

events by 3%. Therefore shallow soil or extensive green roofs may, on a wide scale, overcome the 

performance of deep soils due to their lighter weight which adds limited loads to existing roof 

structures thereby making them suited to retrofit greater numbers of buildings.  
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1 - INTRODUCTION 

The increasingly rapid process of urbanisation has led to substantial changes in the 

permeability of land and the use of soil (Berndtsson, 2010). Green areas are being replaced by 

buildings, driveways and pavements; thereby changing the original permeable conditions, to 

impervious surfaces. Consequently, there has been a considerable increase in rainwater run-off, 

leading to the risk of floods and decreased groundwater recharge (Lamond et al, 2012). 

A number of alternative options have been proposed to restore the hydrology of urban areas to 

their original state as much as possible. Examples include the maintenance of green areas and 

recovery or restoration of deforested areas, which help to attenuate the effects of stormwater 

discharges in urban areas (Wilkinson et al, 2014). The adoption of green roofs is posited as an 

alternative or complementary measure to cope with this problem (Berndtsson, 2010). Green roofs 

differ from other types of solutions, such as bio infiltration systems and constructed wetlands, as 

they are not limited by space availability, since they can be retrofitted to existing buildings, which 

according to Dunnett and Kingsbury (2004) represents about 40–50% of the impermeable surfaces 

in urban areas.  

When compared to a conventional roof, green roofs change stormwater run-off by attenuating 

and delaying the peak flow of water (Berndtsson, 2010). Around sixty per cent of peak flows on a 
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vegetated roof were delayed up to 10 minutes when compared to peak flows from conventional 

roofs, because a certain amount of water is buffered in the soil layer of green roofs (Berndtsson, 

2010). Some of this water is drained, and part is retained according to soil field capacity 

(Berndtsson, 2010). The water retained is subsequently removed from the soil through the 

evapotranspiration process (Berndtsson, 2010).    

Typically four different layers are found in green roof systems: vegetation; soil; a filter to 

avoid the loss of soil particles; and drainage material. These systems play a significant role in 

rainfall retention due to water uptake by plant roots and the soil. According to Hilten et al. (2008), 

green roofs retain stormwater and thus attenuate the peak flow rate compared to that from 

impervious surfaces. Many studies have evaluated the efficiency of green roofs in the reduction of 

total rainfall volume and flow rate (Monterruso et al., 2004; Mentens et al., 2006; Carter and 

Jackson, 2007; Van Woert et al., 2005; Hilten et al., 2008; Simmons et al., 2008; Palla et al., 2009; 

She & Pang, 2010; Voyde et al., 2010a; Buccola and Spolek, 2011; Nardini et al., 2012; Fassman-

Beck et al., 2013; Yio et al., 2013; Wong and Jim, 2014). This efficiency varies from 40 to 90% 

according to the individual depths, types and moisture conditions of soil. However, those authors 

have not performed evaluations of stormwater response for a wide range of soil depths. As an 

example, Van Woert et al. (2005) considered three shallow soil substrates (2.5 cm, 4.0 cm and 6.0 

cm), where the results did not vary significantly. Buccola and Spolek (2011) and Nardini et al. 

(2012) performed their studies based on two soil depths of 5 cm / 14 cm and 12 cm / 20 cm 

respectively. Fassman-Beck et al. (2013) and Yio et al. (2013) analysed four substrates with a 

maximum depth of 15 cm (5 cm, 7 cm, 10 cm and 15 cm), and Wong and Jim (2014) considered 

soil depths of 4 cm and 8 cm. It is important to highlight that all the studies cited above comprise 

mostly extensive systems and no depths beyond 20 cm were evaluated. Thus, the present work 

aimed to evaluate the influence of soil depth in runoff retention and peak attenuation, gathering in 

the same study, for the same soil substrate, a range of depths from 5 cm to 160 cm which comprises 

extensive and intensive green roof systems.  

Depending on the soil depth, green roof systems can be classified either as intensive or 

extensive. According to studies compiled and performed by Berndtsson (2010) the intensive system 

is comprised of soil layers greater than 10 cm depth, and is thus able to support the growth of small 

plants to trees. However, it is heavier, requires more maintenance, and in most cases the building 

structure has to be designed to support this additional load. Extensive green roof systems, in 

contrast, comprise thinner layers of soil and lighter vegetation, and thus can be retrofitted to most 

existing buildings without additional strengthening. Although lighter than intensive systems, it is 

not expected that extensive roofs will perform better with regards to water retention capacity and 

flow rate attenuation. However, given that most existing buildings were not designed to support a 

substantial extra load, extensive green roof systems might be applied to a larger overall area, thus 

overcoming the higher efficiency of the intensive green roof system due its greater depth.  

Previous studies show that green roofs can mitigate stormwater run-off (Berndtsson, 2010), 

however the extent of such mitigation depends on soil depth (intensive or extensive green roof 

system), moisture content, and rainfall distribution. Studies undertaken in Germany reported that 

intensive and extensive green roofs had annual run-off reductions equal to 65-85% and 27-81% of 

annual precipitation respectively (Mentens et al., 2006). These results are supported by additional 

studies cited in Berndtsson (2010). However, the exact values of the percentage reduction achieved 

must be viewed with caution due to the different conditions experienced in the different studies. 

Thus, in order to evaluate the influence of soil depth in the mitigation of stormwater run-off, under 

same soil type and variable meteorological conditions, a modelling procedure is employed, to 

reduce potential experimental discrepancies, such as variations in soil structure, and setup 

imprecision. 
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Numerical models have been developed to assess the hydrologic performance of green roofs 

in terms of total volume and flow peak reduction, such as EPA's Storm Water Management Model 

(SWMM), SWMS-2D (Šimůnek et al., 1994), Hydrus-1D (Šimůnek et al., 2013) among others. 

SWMM is a dynamic rainfall-runoff simulation model used for simulation of runoff quantity and 

quality from primarily urban areas. SWMS-2 and Hydrus-1D numerically solve Richards’ equation 

in order to simulate water flow in variably saturated porous media. Hydrus-1D was adopted in this 

work for one–dimensional modelling of soil water transport considering different soil depths. This 

is a public domain, Windows-based modelling software, with an interactive graphics interface for 

data, pre- and post- processing. Additionally, this software has been used in other green roof 

applications performed to date (see Yang et al. 2015; Hakimdavar et al. 2014; Liu & Fassman-Beck 

2014; Palla et al. 2012; Hilten et al. 2008 and Hilten & Lawrence 2008).  

This study consists of an evaluation of stormwater run-off attenuation by green roofs 

predicated on modelling techniques and rainfall registers from Auckland, New Zealand. Soil depths 

of 5 cm, 10 cm, 20 cm, 40 cm, 80 cm and 160 cm, planted with succulent Sedum species are 

considered in the modelling. Besides being common in many parts of the world, succulent Sedum 

species tend to be low growing plants that provide good soil coverage (Voyde et al., 2010b). They 

require low maintenance due to their resistance to drought, temperature, solar radiation, rainfall and 

wind. Furthermore, succulent Sedum species grow rapidly, are lightweight, shallow rooting, and 

have low fire risk. Succulents store carbon dioxide in their tissue, and this allows the plants to close 

stomata during the day to conserve water, and open stomata at night, to absorb carbon dioxide under 

cooler temperatures. As a result of this characteristic, succulents can survive under drought 

conditions (Voyde et al., 2010 a); a characteristic that makes them attractive in countries where 

rainfall can be variable, such as Australia and Brazil.  

  

2 – METHODS 

2.1 - Model overview 

The version of HYDRUS used in this research is HYDRUS-1D, version 4.16 (Šimůnek et al., 

2013). HYDRUS-1D is a numerical simulation program for one-dimensional soil moisture fluxes in 

a soil column of unit area. This programme numerically solves the Richards equation for variably 

saturated water flow and advection-dispersion type equations for heat and solute transport.  

In HYDRUS-1D, a soil column of chosen depth, which its geometric characteristics, and 

hydraulic parameters are specified by the user, is discretised into elements. Time simulation, time 

steps range and iteration limits, head pressure and water content tolerances are set also as model 

parameters. Initial and boundary conditions are based on terms of pressure head or water content, 

sources and sinks. Whenever included in the modelling, sources and sinks such as precipitation and 

evapotranspiration fluxes, can be considered constant or inputed as a time data sequence. Šimůnek 

et al. (2013) presents a complete description of the model. 

2.2 - Governing equations 

A modified form of the Richards equation, using the assumptions that the air phase does not play 

a significant role in the liquid flow process and that water flow due to thermal gradients can be 

neglected, describes the water movement through the soil on the green roofs. This equation relates 

change in soil moisture content over time to hydraulic conductivity and pressure head. 

𝜕𝜃

𝜕𝑡
=

𝜕

𝜕𝑧
[𝐾(ℎ)

𝜕ℎ

𝜕𝑧
+ 𝐾(ℎ)]      (Equation 1) 
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Where  is the volumetric water content [L3L-3]; t is time [T]; h is the pressure head [L]; z is 

the vertical coordinate [L]; and K is the unsaturated hydraulic conductivity function [LT-1], 

described on equation 3. 

In order to obtain a predictive equation for the unsaturated hydraulic conductivity function in 

terms of soil retention parameters, the present work considers the soil-hydraulic functions of van 

Genuchten (1980) based on the statistical pore-size distribution model of Mualem (1976). 

The van Genuchten (1980) relationships are given by: 

 

𝜃(ℎ) = {
𝜃𝑠                              ℎ ≥ 0

𝜃𝑟 +
𝜃𝑠−𝜃𝑟

[1+(𝛼ℎ)𝑛]𝑚     ℎ < 0
                (Equation 2) 

 

𝐾 = 𝐾𝑠√𝑆𝑒  [1 − (1 − 𝑆𝑒
1/𝑚

)
𝑚

]
2

     (Equation 3)  

 

Where s and r are the saturated and residual water content [L3L-3]; Ks is the saturated 

hydraulic conductivity [LT-1]; 𝑆𝑒 = (𝜃 − 𝜃𝑟) (𝜃𝑠⁄ − 𝜃𝑟) is the effective saturation; n, m=1-1/n are 

dimensionless parameters and α is an empirical soil parameter [L-1]. 

 

2.3 – Modelling parameters 

All soil depths modelled were discretised into 100 elements. A sandy loam soil was chosen 

due to its good drainage capacity; a requirement for succulent species development. In its internal 

data bank HYDRUS-1D provides properties of different soil types. However, the soil hydraulic 

parameters used in the present study according to Rawls and Brakensiek (1982) work, are as 

follows: saturated soil water content (S) is 0.453; residual water content (r) is 0.041; van 

Genuchten parameter (n) is 1,322; van Genuchten parameter (α) is 0.068 cm-1; and the saturated 

hydraulic conductivity is Ks = 4.42 cm/h. 

 The selection of the soil parameters was based on work by Braun and Schadler (2005), where 

the combinations of different soil hydraulic functions (Brooks and Corey, 1964; Campbell, 1974; 

van Genuchten, 1980) and different soil parameters (Clapp and Hornberger, 1978; Rawls and 

Brakensiek, 1982; Carsell and Parrish, 1988) were compared. According to Braun and Schadler 

(2005) the best results, compared with observational data, are observed when van Genuchten (1980) 

hydraulic functions and Rawls and Brakensiek (1982) soil parameters are used together. 

The precipitation data comprise five years of rainfall records (2008-2012) from Redvale 

Auckland, New Zealand freely available for public use, and provided by Block Busters NZ 

(http://www.blockbusters.co.nz/). From this data, three quarterly rainfall scenarios were selected in 

order to evaluate the green roofs stormwater attenuation response (Table 1).  

Table 1 – Description of the rainfall scenarios 

Scenario Period      
(day/mm/yyyy) 

Number of 
days 

Rainy days 
(>0.5mm) 

Cumulative 
precipitation (mm)/ 

period  

Highest precipitation 
(mm) / day 

1 01/06/2008 – 26/08/2008 87 60 665.6 59 
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2 01/05/2010 – 27/07/2010 88 47 554.6 114 

3 01/07/2012 – 26/09/2012 88 67 512.2 87 

In terms of a stormwater management perspective, it was not intended to evaluate a seasonal 

variability in rainfall patterns, but to present three quarterly scenarios that depict critical rainfall 

conditions of highest accumulated rainfall volume (Scenario 1: June to August 2008 - 665.6 mm); 

highest rainfall depth (Scenario 2: May to July 2010 - 114 mm) and highest number of rain events 

(Scenario 3: July to September 2012 - 67 days). With the exception of scenario 2, that starts in the 

middle of the Autumn, scenarios 1 and 3 comprise mostly New Zealand (Auckland) winter 

(southern hemisphere) conditions that characterise the wettest season, though having regular rainfall 

distribution through the year. This allows the researchers to evaluate green roof performance with 

regards to mitigation of stormwater run-off, based on real conditions where the effects of 

subsequent rainfall events can be considered.  

Water content values at each element in soil column were set as initial conditions and 

assumed a constant water content over the soil depth. In order to simulate initial dry conditions, it 

was supposed to be equal to residual water content (r). 

The evapotranspiration (ET) rates were estimated based on the work of Voyde et al. (2010b), 

who determined experimentally daily and hourly evapotranspiration rates of Sedum species for New 

Zealand green roofs. According to these authors, evapotranspiration has a great relevance for 

stormwater management, since it is the mechanism by which retention capacity is recovered by the 

system between storm events. In other words, it is the process of water transfer from the soil to the 

atmosphere. 

According to Berghage at al. (2007), with regards to drought resistant plants, it has been 

hypothesised that by conserving water, succulents would provide relatively little storage recovery 

via transpiration when compared to evaporation from bare soil. However, Berghage at al. (2007) 

stated that these plants provided up to 40% of the total stormwater retention response, as they use 

water rapidly when it is available and then conserve it under stressed conditions. In other words, the 

transpiration has a relevant role in ET under well-watered soil conditions, and when the water 

supply is limited, plants stop transpiring and the evapotranspiration and evaporation levels become 

similar. Additional studies performed by Rezaei and Jarrett (2006) indicated that, depending on the 

seasonal condition, planted plots transferred from 34% (winter) to 51% (summer) more water via 

ET when compared to bare soil. 

In order to quantify the ET rates, Voyde et al. (2010b) presented an empirical regression 

model, based on correlation between measured ET rates and rainfall data. These authors established, 

according to equation 5, that ET decays exponentially over time (in days) after it reaches its’ 

maximum levels during wet soil conditions (rainfall events). 

 

𝐸𝑇 = 3.0544 𝑒−0.0861𝑡       (Equation 5) 

 

Where, ET is the evapotranspiration rate in mm/day, and t is time in days after a rainfall 

event.  

However, according to Voyde et al. (2010b), maximum evapotranspiration rates are re-

established under well-watered soil conditions, which happen with rainfall events greater than or 

equal to 10 mm/day. Thus, the efficiency of green roofs in stormwater retention strongly depends 

on the frequency and the volume of rainfall. Additional investigation of the relationship between ET 
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rates and temperature, soil moisture and relativity humidity would provide a more mechanistic 

approach to ET estimation. Nevertheless, Equation 5 provides a simple and practical tool for 

estimating daily ET. 

All parameters described in this section provided the basis for the modelling results. From the 

soil hydraulics perspective, these parameters play a fundamental role in the water balance 

calculation for green roofs. With regards to the stormwater retention capacity, soil water storage is 

regulated by the difference between inflows (rainfall) and outflows (run-off and ET) in the soil 

element. However, the relation between run-off and rainfall rates is the key factor in determining 

the efficiency of green roofs and is presented in the following section.  

 

3- RESULTS AND DISCUSSION  

The outflow and retention green roof performance for three rainfall scenarios are evaluated 

for urban drainage purposes. Sets for cumulative rainfall and run-off, and the efficiency (%) in 

rainfall peaks attenuation are compared graphically through an individual model run according to 

the different soil depths analysed. 

The following results show the cumulative rainfall and cumulative run-off according to soil 

depth, and the green roofs' efficiency in rainfall peaks attenuation for the three different rainfall 

scenarios, for soil depths of 5 cm, 10 cm, 20 cm and 40 cm, herein denominated as Green Roof 5, 

10, 20 and 40 cm respectively. Besides the evidence of higher efficiency for the higher depths 

considered (80 cm and 160 cm) the overlap between green roof run-off and rainfall peaks make 

their individual association difficult.  

The results comprise one figure for each scenario and are divided in two parts. The 

cumulative rainfall and soil run-off for each of the soil depths (5 cm to 160 cm) is represented in the 

lower part, and the efficiencies in rainfall peaks attenuation for soil depths of 5 cm, 10 cm, 20 cm 

and 40 cm, as well as rainfall depths (mm) are expressed graphically on the upper part. It is 

important to note that the percentage efficiency represented in the column bars of the graphs, refers 

to peaks of successive rainfall only, and not to individual rain events. 

 The efficiencies in overall stormwater retention were determined through the relationship 

between the cumulative run-off curves and the cumulative rainfall volume. For each scenario, the 

average of the efficiencies observed in the rainfall peak attenuation is presented.  

3.1 - Scenario 1 

Figure 1 evaluates the green roof’s response to well-watered soil conditions between June and 

August 2008, where during sixty rainfall events a total amount of approximately 666 mm was 

reached. 

The overall stormwater retention efficiencies were 26%, 27%, 29%, 33%, 40% and 54% 

according to soil depths of 5 cm, 10 cm, 20 cm, 40 cm, 80 cm, and 160 cm respectively. As 

expected, efficiencies increased with soil depth. 

Regarding the efficiency in rainfall peaks attenuation, Green Roof 5 cm presented an average 

of 38%. The lowest efficiency observed of 5% for the highest rainfall event (59 mm - 30/07) is 

correlated to the highest levels of rainfall in the period of the simulation. No soil outflow was 

observed (100% efficiency) to low rainfall peak events (4 mm). Green Roof 10 cm, besides having 

a slight higher average efficiency of 43% in comparison to Green Roof 5 cm, presented a similar 

efficiency (6%) to the highest rainfall event. An overall retention (no outflow) was observed for 

Green Roof 10 cm to 5 mm rainfall events.  
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Green Roof 20 cm presented an average efficiency of 53%, performed better than the 

observed average efficiency for Green Roof 5 cm and Green Roof 10 cm. Although the overall 

retention (100% efficiency) was the same when compared to Green Roof 10 cm, the efficiency to 

the highest rainfall peak event (59 mm) increased slightly to 7%. Green Roof 40 cm increased even 

more the average efficiency in rainfall peak attenuation to 66%, demonstrating that it does not 

follow a linear relationship with soil depth. There was no soil outflow from, rain events lower than 

10 mm, and the lowest efficiency observed was 11%.  

 

 

Figure 1 – Scenario 1: (a) Green roofs efficiency in rainfall peaks attenuation for 5 cm, 10 cm, 20 

cm and 40 cm-thick soil. (b) Cumulative rainfall and soil run-off for each one of the soil depths (5 

cm to 160 cm).  

 

3.2 - Scenario 2 

Figure 2 considers the response to an extreme rainfall event (114 mm), preceded by a dry 

period and followed by lower rainfall occurrences, during a quarterly period between May and July 

2010.  

The overall stormwater retention efficiencies were 26%, 27%, 30%, 35%, 44% and 62% 

according to soil depths of 5 cm, 10 cm, 20 cm, 40 cm, 80 cm, and 160 cm respectively. 

Green Roof 5 cm presented 43% average rainfall peak attenuation efficiency in rainfall peaks 

attenuation of 43%. The lowest efficiencies observed to the highest rain event of 114 mm (21/05) 
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was 3%, and no outflow of water from the soil (soil water outflow) was observed (100% efficiency) 

during rainfall peak events of up to 4 mm. Green Roof 10 cm was able to promote an overall 

retention (no soil water outflow) up to 6 mm rain events. The average efficiency and lowest 

efficiency for the highest rainfall events were 51% and 4%, respectively. Green Roof 20 cm had an 

average efficiency of 60%. No soil outflow occurred up to a 7 mm rainfall event, and the lowest 

efficiency was 5%. Green Roof 40 cm had its average efficiency increased to 69%. Soil outflow 

was not observed up to 8 mm rainfall, and for the highest rainfall event (114 mm) the efficiency 

reached 15%.   

 

 

Figure 2 – Scenario 2: (a) Green roofs efficiency in rainfall peaks attenuation for 5 cm, 10 cm, 20 

cm and 40 cm-thick soil. (b) Cumulative rainfall and soil run-off for each one of the soil depths (5 

cm to 160 cm).  

 

3.3 - Scenario 3 

Figure 3, assesses the response to the greatest number of rain events (67) and the least amount 

of total precipitation (512 mm) during a quarterly period between July and September 2012.  

The overall stormwater retention efficiencies were 32%, 34%, 37%, 41%, 49% and 65% 

according to soil depths of 5 cm, 10 cm, 20 cm, 40 cm, 80 cm, and 160 cm respectively. 

It was observed for Green Roof 5 cm an average efficiency of 49% in rainfall peak 

attenuation, a total retention (no outflow) to rainfall events up to 6 mm, and an efficiency of 4% to 



                            9 

the highest rainfall event (87 mm – 03/09). Green Roof 10 cm had its average and the lowest 

efficiencies increased to 54% and 5% respectively. However, similar to Green Roof 5 cm, it also 

presented total retention (no soil outflow) to rainfall events up to 6 mm. Green Roof 20 cm, in spite 

of showing the same response to total retention, presented the average and the lowest efficiencies 

equivalent to 63% and 7%. Green Roof 40 cm increased even more the average and the lowest 

efficiencies to 74% and 19%. Additionally this soil depth showed overall flow retention 

performance considerably better than the previous ones, being able to promote soil outflow 

retention up to 18 mm rainfall. 

  

 

Figure 3 – Scenario 3: (a) Green roofs efficiency in rainfall peaks attenuation for 5 cm, 10 cm, 20 

cm and 40 cm-thick soil. (b) Cumulative rainfall and soil run-off for each one of the soil depth (5 

cm to 160 cm).  

 

3.4 - Results overview / Discussion 

A comparison among the percentage efficiencies according to scenarios is summarized in 

Table 2. In general, the stormwater retention and rainfall peak attenuation varied proportionally 

with soil depth and inversely to the total rainfall.  
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Table 2 – Green roofs stormwater retention efficiencies (%) in relation to total rainfall 

Scenario/Total 
rainfall (mm) 

Soil depth 

5 cm 10 cm 20 cm 40 cm 80 cm 160 cm 

1 – (665.6mm)  26% 27% 29% 33% 40% 54% 

2 – (552.2mm) 26% 27% 30% 35% 44% 62% 

3 – (512.2mm) 32% 34% 37% 41% 49% 65% 

Average 28% 29% 32% 36% 44% 60% 

 

The lowest retention capacity (26%) was observed for the shallowest soil and for the highest 

level of precipitation, whereas the highest retention capacity (65%) followed an inverse order in 

terms of soil depth and the amount of precipitation. Soil depths of 5 cm and 10 cm presented fairly 

similar efficiencies, which represent about half of the retention capacity of 160 cm soil depth. The 

stormwater retention capacity increased with the soil depth according to a linear pattern, and for the 

same soil depth the efficiencies reduced with the amount of total rainfall.  

Table 3 presents an evaluation of green roof efficiency on rainfall peak attenuation according 

to soil depths from 5 cm to 40 cm. 

Regarding to the average efficiencies it was observed the lowest one (38%) for Green Roof 5 

cm during the wettest scenario (scenario 1), and the highest one (74%) was observed for Green 

Roof 40 cm under lower precipitation levels. For the all soil depths tested, it was found that the 

efficiencies reduce as precipitation levels increase (Scenario 1 to 3). 

 

Table 3 – Rainfall peaks attenuation according to soil depth. 

 

G
re

en
 R

oo
f (

cm
) 

Scenario 1 (total rainfall – 665.6mm) Scenario 2 (total rainfall – 552.2mm) Scenario 3 (total rainfall – 512.2mm) 

Lowest efficiency 
% 

(Max. rainfall – 59 mm) 

Average efficiency 
(%) 

Lowest efficiency 
% 

(Max. rainfall – 114 mm) 

Average efficiency 
(%) 

Lowest efficiency 
% 

(Max. rainfall – 87 mm) 

Average efficiency 
(%) 

5  5 38 3 43 4 49 

10 6 43 4 51 5 54 

20 7 53 5 60 7 63 

40 11 66 15 69 19 74 

 

As far as rainfall peaks attenuation is concerned, these efficiencies also vary according to a 

linear pattern with soil depth, and inversely proportional to the amount of total rainfall. 

 

The lowest efficiency (3%) occurred to the highest rainfall depth (114 mm) and to the 

shallowest soil tested (Green Roof 5 cm). Comparing each one of the scenarios for the same soil 

depth, scenario 2 presented the lowest efficiencies observed, with exception of Green Roof 40 cm 

which had its lowest efficiency in scenario 1. This might be attributed to the overlap of soil outflow 
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due to previous rainfall events in deeper soils. Although Green Roof 40 cm presented a performance 

relatively higher in relation to the first three soil depths evaluated, no considerable differences 

amongst the shallower soils (5 cm, 10 cm and 20 cm) were observed. 

Previous soil moisture conditions have a relevant role in peak flow attenuation since, wetter 

soils can store less water and because hydraulic conductivity increases with soil moisture content. 

The following figure shows this effect for each scenario. 

 

Figure 4 - Influence of previous soil moisture conditions in peak flow attenuation - Scenario 1.  

 

As shown in figure 4 for scenario 1, even under a slightly lower amount of precipitation, is 

observed on June 25, due to higher rainfall volume in the four preceding days, a peak flow 

attenuation lower than the one observed on August 12. The same tendency is also evident for 

scenario 2 (figure 5), where the four dry days prior to June 25 provide a higher peak attenuation 

when compared to a lower rainfall amount occurred on May 26.  

 

Figure 5 - Influence of previous soil moisture conditions in peak flow attenuation - Scenario 2. 

 

For scenario 3 (figure 6), even having a slightly higher rainfall depth, the lower peak 

attenuation efficiencies on July 29 cannot be attributed to this fact, but to only one rainfall event 

prior to July 3, whose volume is much lower than the accumulated up to July 29. 
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Figure 6 - Influence of previous soil moisture conditions in peak flow attenuation - Scenario 3. 

 

Similarly to observed in Voyde et al. (2010a), the efficiencies in stormwater retention varied 

according to the period of the study. However, the efficiencies observed by these authors in field 

experiments for soil depths, varying between 5 cm and 7 cm, are significantly higher than the 

observed in the presented study. It is important to highlight that modelling does not consider all 

existing water retention, that happens in experimental procedures with elements such as: filter 

fabric; water retention mat; plastic retention cups, the area of drainage holes, as well as substrate 

components with water capacity retention, such as: pumice; coconut coir; or composted bark fines.  

Simmons at al. (2008) evaluated the stormwater retention performance for three individual 

rainfall events of 10 cm soil depth for different green roof designs, considering, among other 

factors, the existence of a water retention mat, retention cup capacity, and the drainage hole area in 

the retention layer. Basically, under experimental conditions such as: a larger drainage hole area; 

lower retention cup capacity; and no existence of a water retention mat, an average efficiency of 

17% was found, which is lower than the average of 29% observed in table 2 for same soil depth. 

However, it is important to emphasise that the results from Simmons et al. (2008) are from rainfall 

events of higher intensity than the existing in the modelled simulations.  

Spolek (2008) evaluated the stormwater retention of three large green roofs portions (280–500 

m2) located on two different buildings in Portland, Oregon, U.S.A. For the green roof with a soil 

depth of 15 cm, planted with Sedum species, an average of 25 % was observed, which is lower than 

the modelled results presented herein.     

The study presented herein comprises a theoretical approach, where the main objective was to 

evaluate the trend in stormwater response exclusively for different soil depths, but under identical 

composition / structure conditions. This would not be replicated easily in real/experimental 

conditions due to natural variations in soil composition, structure, compaction and moisture levels. 

All results present a conservative perspective, since modelling does not consider all existing water 

retention, that happens in experimental procedures elements such as: filter fabric; water retention 

mat; plastic retention cups, drainage holes area, as well as substrate components with water capacity 

retention. Compared to experimental measurements performed in New Zealand (Voyde et al., 

2010a. Fassman-Beck, 2013), the modelling results show a lower efficiency for both rainfall 

retention and peak flow attenuation. It is most likely that this can be attributed to additional features 

included in the green roof design to enhance stormwater retention performance, such as drainage 

boards, mats with cups designed to store water, moisture retention mats, substrate layers with 

contrasting textures, absorption of the roof/slab surface, and the distance to the downpipe rainwater 

outlets.   

For instance, in the present work, the effects of the green roof in rainfall retention and peak 

attenuation are compared directly to the amount of precipitation and do not consider any additional 
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loss or absorption. According to the work performed by Mentens et al. (2006), even in a non-green 

roof surface the runoff is not equivalent to the total precipitation, showing an average retention of 

19% for non-green roofs that must be due to mortar absorption and water puddle formation. From 

the results presented in table 2, the stormwater retention for a 10 cm soil depth, which lies in the 

range of extensive green roofs illustrated in Mentens et al. (2006), is about 29%, which means a 

runoff of 71% of total rainfall. As aforementioned, applying to this runoff, an additional retention of 

19% for non-green roofs, the actual runoff would be about 57%; slightly higher than the average of 

50% observed by Mentens et al. (2006). 

Extra loads applied per square metre to an existing structure is related to soil type and depth. 

Considering a typical sandy loam soil with dry density of 1,600 kg/m3, a saturated density of about 

2,000 kg/m3 that comprises the extreme load situation is estimated. Based on this assumption, it is 

expected that a load limit of 100 and 3200 kg/m2 is applied for soil depths from 5 cm to 160 cm, 

respectively. According to Liu (2011), as the design load of existing roofs varies between 50 and 

200 kg/m2, it is expected that green roof soil up to 10 cm depth will not require a structural upgrade. 

However, the use of lightweight substrate material with such as expanded clay, and pumice with 

slightly higher substrate depths may reproduce the same loads of single soil component. As an 

example, cited by Peck and Kuhn (2003), the green roof on the new library in Vancouver, British 

Columbia, Canada is about 36 cm depth, weighs 293 kg/m2 under saturated conditions, and based 

on the British Columbia Building Code does not require a structural upgrade. Comparatively, the 

same depth of saturated sandy loam soil weighs 720 kg/m2. 

Where rainfall peak attenuation is concerned, according to green roof coverage, it is expected 

that the percentage of green roof coverage offsets the differences between soil depths. As far as the 

stormwater management perspective is concerned, shallower soils when applied in larger areas can 

have same efficiencies of deeper soil layers. For instance, figure 7 shows for scenario 1 the rainfall 

peak attenuation with the percentage of area covered, for green roofs' soil depths from 5 cm to 40 

cm. Considering the efficiencies presented in table 3, a coverage of 60% would produce, for Green 

Roof 5 cm, 10 cm, 20 cm and 40 cm, an attenuation of 23%, 26%, 32% and 40% respectively. In 

other words, one can say that a 100% coverage of 5 cm soil depth would be equivalent to 88%, 72% 

and 57% coverage of 10 cm, 20 cm and 40 cm soil depth respectively. It is important to highlight 

that, for the same soil substrate, compared to a 5cm depth, which weighs about 100 kg per m2, the 

load applied by 40 cm soil depth to an existing structure is eight times heavier, i.e., under water 

saturated conditions it is equivalent to 800 kg/m2. As aforementioned, this level of loading 

overcomes the design load of existing roofs, requiring a structural upgrade. Thus, the better 

capability in rainfall peak attenuation, does not guarantee that deeper soils comprise the most 

effective solution.  
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Figure 7 - Relation between rainfall peak attenuation and covered area (%) with green roofs. 

 

4- CONCLUSIONS 

From a conservative perspective, the more unfavorable conditions are based on high 

antecedent soil moisture conditions before extreme rain events. In these cases, the green roof's 

water retention capacity is diminished and efficiency in the rain flow peak attenuation is severely 

reduced. 

The efficiency in reducing the peak flow rate of stormwater discharges increased 

proportionally to the soil depth according to a linear tendency, and showed dependency on previous 

soil moisture conditions. For all soil depths tested, the higher the intensity and duration of the 

rainfall event, the lower is the efficiency in reducing stormwater discharges. Under extreme rainfall 

events the lowest efficiencies did not vary significantly for the first three soil depths tested (5 cm, 

10 cm and 20 cm).  

Similarly, the cumulative run-off was shown to be sensitive to rainfall intensity, resulting in 

higher slopes in run-off curves during high precipitation levels. However, these slopes were less 

pronounced in deep soil. It is also noted that more similarities were found between cumulative 

rainfall volume and the cumulative run-off curves from shallow soils. During peak rainfall events, 

for soil depths from 5 cm to 40 cm, the cumulative run-off and rainfall curves exhibit quite similar 

slopes, which corroborate the lowest efficiencies observed in rainfall peak attenuation for intense 

precipitations.  

The results presented herein are reasonably consistent with those observed in Mentens et al., 

(2006), Hilten et al., (2008), Simmons et al., (2008) and Berndtsson, (2010), as well as many 

authors cited in this paper, in regard to the inverse relationship between rainfall depth and the 

efficiencies in rainfall retention and peak attenuation. Hilten et al. (2008) evaluated the rainfall 

retention and peak flow attenuation for five simulated rainfall depths. Storms were simulated as 

independent events, and no soil moisture background from prior rainfall was considered. Thus, as 

expected their results show a better green roof performance than the results reported here.  

The modelling study performed herein comprises a theoretical approach of the influence of 

soil depth in the efficiency of rainfall retention and peak attenuation. Due to the particularities of 
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the green roof studies, such as, various types of soil, soil depth, and water retention systems 

adopted; it is observed that there is a wide range in these efficiencies. 

Besides some similarities with experimental data presented by Simmons et al. (2008) and 

Spolek (2008), in general, the modelled results showed a lower efficiency compared to 

experimental data from Voyde et al. (2010a), Fassman-Beck (2013) and some others compiled in 

Berndtsson (2010). It is most likely that this can be attributed to additional features included in a 

green roof design to enhance stormwater retention performance, such as drainage boards, mats with 

cups designed to store water, moisture retention mats, substrate layers with contrasting textures, and 

other existing peculiarities in experimental procedures, such as absorption of the roof/slab surface, 

and distance to downpipe outlets. Based on Mentens et al. (2006) work, five non-greened roofs 

showed an average water retention of 81%. According to this, is expected that 19% of retention may 

occur due to mortar/slab absorption and water puddle formation. This circumstance reinforces the 

conservative results when only a single soil column is considered as a theoretical evaluation of 

stormwater retention. 

In terms of a stormwater management perspective; the efficiency of stormwater retention and 

flow rate attenuation by green roofs on stormwater retention and flow rate attenuation is related to 

optimal soil depth, which, comprises the maximum depth supported by an existing structure without 

requiring a structural upgrade. Although deeper soils have higher efficiency, they are not considered 

the most suitable solution, since most existing buildings were not designed to support such 

additional loads without further strengthening. The actual efficiency in runoff attenuation will 

depend on the percentage of green roof coverage in urban areas. Importantly, the lower attenuation 

efficiency of shallower soils may be offset, if a greater area is retrofitted due to their lightweight 

characteristics. However, retrofitting housing with green roof technology requires a review of the 

existing roof structure to determine the excess loading capacity available. Whereas reinforcing the 

roof structure may not be viable economically, according to local regulations the load bearing 

capacity of the existing roof will regulate green roof soil depths. In other words it means that the 

suitability of the green roof retrofit will be subjected to admissible extra loads that can be applied 

per square metre to existing structures.  

In terms of extra loads applied per square metre to existing structures, a Green Roof 40 cm 

besides providing a better overall performance than a Green Roof 5 cm in terms of stormwater 

retention and peak flow attenuation, comprises a structural load eight times greater that is likely to 

overcome the design load of existing roofs, requiring a structural upgrade. Therefore on a wide 

scale, better capability in rainfall retention and peak attenuation does not comprise the most 

effective solution.  
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