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Abstract
An essential component in the design and fabrication of large scale integrated optical
circuits is the photonic crystal (PC) waveguide, a device which can channel light, with
minimal loss, around tight bends using band gap effects. In this paper, we present a rig-
orous formulation for the coupling and propagation of waves in a PC crystal waveguide
and show that, for sufficiently long guides, it is possible to generate simple, exact quasi-
analytic forms for the energy properties of the guides.

1. Introduction
Photonic crystals, with their capacity to inhibit propagation
for ranges of frequencies in some or all directions, will likely
form the building blocks of components that will figure in
future optical integrated circuits [I]. The devices in such cir-
cuits will be linked by waveguides (eg, Fig. I) and
significant work is being devoted to understanding
propagation in guides, and reflection losses that occur at
bends. Much of this effort has been computational and has
failed to yield significant insight into the processes involved.
To date, the modelling of waveguide propagation has been
limited to coupled mode theory [2] which has provided a
qualitative description of the transmission properties of
guides, although the limits of its applicability are not clear.

Closely related is the issue of coupling radiation into and out
of the guide. The solution of this problem requires a
comprehensive knowledge of the modes of the guide and to
date there is no literature that solves the full circuit problem
involving coupling into the guide, propagation and coupling
out of the guide. The paper outlines a rigorous theory which
accurately and efficiently models the process and can be
extended to handle the interfacing of guides to other devices.
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Fig. 1 Intensity in a 21
layer guide (plane-wave
illumination), wave-
length A/ d = 3.2, ra-
dius a / d = 0.3 , index
v =3.

2. Theoretical Formulation
2.1 Overview

The key step is the computation of Bloch modes of the crystal - full solutions of the
wave equation for an infinite lattice - which provide a complete basis for the solution
of field problems. We consider a rectangular symmetric crystal in which the component
layers are gratings of dielectric cylinders. Between the layers, the modes are expanded
as a superposition of down (C) and up (f+) travelling plane waves, where the f. are
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vectors of plane wave coefficients. Bloch modes occur in forward-backward pairs and
are solutions of the eigenvalue equation

is the inter-layer translation operator and Rand T are the reflection and transmission
matrices for the component grating layers - computed using multipole techniques[3].
The forward and backward propagating states, respectively (F~ F:J and (F: F~f,
corresponding to the eigenvalues A = diag(IlJ and K1

, are highlighted by the diago-

( )( )( J
-I

F F+ A 0 F F+nalisation of g = - 1 - , the translation operator. Here, F_
F F OK F F ++ - + -

are matrices comprising the columns of eigenvectors f. from the solution of the eigen-
value equations above. This theory underpins the study of propagation in a finite slab
which can be modelled with two key parameters: the propagation constants A above,
and the reflection matrix for a semi-infinite crystal R,) = F+F.=-'[4].

2.2 Properties of a Single Guide

We model a single guide as a cavity of width
h between two identical semi-infinite crystals
characterised by their Roo' Consistency conditions
for up- and down-travelling waves in the horizontal
cavity then yield the dispersion equation
detG(k,ao) = 0 where G = I- RooPR",P. Here,

the propagation matrix P = diag [exp (i Xph ) ]

characterises the phase variation of the plane wave

fields across the cavity; Xp = Jk2 -a~ ,

a p = ao + 21t P / d (for a lattice of period d), and

the real solutions ao of the dispersion equation
correspond to propagating modes (Fig. 2). These
values allow the separation of adjacent maxima in
field plots (1t / ao) to be calculated. However, the
evanescent modes, which are needed to form the complete basis required in the calcula-
tion of the energy properties, cannot be generated in this way - due to implicit assump-
tions of quasiperiodicity (i.e. real a 0) in our calculation of scattering matrices.
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Fig.2. Dispersioncurvesfor a
guideof width hld=5.0(violet),3.0
(blue), 1.0(cyan),0.7 (green),0.4
(red).Otherparametersas in Fig. 1.

2.3 A periodic array of waveguides

The computation of a complete set of modes can be achieved by considering a periodic
array of waveguides which, if sufficiently separated and operated in a bandgap, gives
rise to negligible cross-talk. We follow the treatment of Sec. 2.1 and proceed to com-
pute the Bloch modes of this periodic waveguide structure, formulating both the eigen-
value matrix A and Roofor this structure. Within an L -layer crystal, the field is ex-
panded in forward and backward propagating Bloch modes, while, in free space, in
terms of plane waves. Fields are matched at the upper and lower interfaces and we de-
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rive expressions for vectors of reflected (r = R8) and transmitted (t = T8 ) plane wave
coefficients involving the reflection and transmission scattering matrices

R = (Roo - pLRooPL) (I - RooPLRooPI.r' and T = (I - R~) pL (I - RooPLRooPI.r'
where P = F_AF.=-I is the interlayer propagation constant. These forms are strikingly

similar to the standard Airy formulae for the slab Fabry-Perot interferometer

with cross layer propagation constant ~ and interface Fresnel reflection coefficient p.
In a guide of sufficient length supporting only a single propagating mode, the inverses
that arise in both Rand Tare rank- I perturbations that may be analytically inverted by
the Sherman-Woodbury formula. This leads to the analytic form for the transmitted

flux ET =1v_8 1
2 (1-1 P n2

/11- p\12L 12 where Il is the sole propagating eigenvalue

and p is the (1,1) element of F.=-IF+ - a close relative of Roo. Fig. 3 compares the

model transmittance with that computed for a finite crystal of dimension 11x 11 cylin-
ders (a / d = 0.3, v = 3) with a unit width channel of length lId cut through the centre
ofthe crystal. The blue curve, which was computed using a full multipole theory[5], is
for the finite structure with a point source located in the centre of the channel 0.5 d from
the channel entrance, while the red curve was computed using the expression for
ET above. As is evident from Fig. 3, the discrepancies between actual and modelled po-

sitions of the transmission maxima and minima are remarkably small (less than 0.3%).
Fig. 4 displays the field intensity in mid-channel of the photonic crystal waveguide of
similar geometry but with length L = 2Id (as in Fig. I). The dashed curve is the actual
data from the multi pole theory calculation while the solid curve is from the asymptotic
model, the spatial dependence of which for a monomodal guide can be shown to be
g(n) =11ln - PIl21.-n 1

2
• There is outstanding agreement in the location of the maxima

and minima, and also in the fringe visibility given by v = 21 P 1/ (1+ I P 12
) •
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Fig. 3 Transmittance comparison. Fig. 4 Mid-channel intensity plot.
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