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Abstract
Waveguides may be formed in photonic crystals (operated in a band gap) by removing a
line of scatterers. The utility of photonic crystals in the future development of optical
circuits will be dependent on fabrication quality and, particularly, the regularity of the
crystal. The paper investigates their sensitivity to fabrication defects through a study of
the effects of disorder in the radii and refractive indices of the scatterers.

Introd uction
High efficiency waveguides can be formed in a photonic crystal for frequencies inside a
band gap by removing lines of scatterers (Fig. I) [I]. In this paper we model fabrication
defects in two-dimensional waveguides based on a finite cluster of dielectric cylinders,
arranged in a square lattice with lattice constant d . by introducing random
perturbations in the parameters characterising the material and optical properties of the
guide. The guide is excited by a line source parallel to the cylinders, located close to
the entry of the guide. The resulting field intensity is calculated using a multi pole
method yielding high accuracy [2]. Quantitative results characterising the effects of
fabrication defects are obtained by Monte Carlo simulation [3].

Corresponding studies of straight and bent waveguides of equivalent length indicate that
in both cases such structures exhibit remarkable tolerance to defects for quite high
levels of disorder in both the radii of the cylinders and their refractive indices (ie,
variations of up to 20% in either parameter) (Fig. 2). Beyond these levels of disorder
we observe a transition to a regime in which the field decays exponentially and thus is
localised. There is a strong similarity between the features of straight and bent guides.

Figure I. Plots of electric field intensity for a straight guide (252 cylinders) with
no disorder and with radius O.3d at wavelengths: (left) A = 3.3d (in the band
gap), and (middle) A = 5.0d (outside the gap). At right: guide with bends (226
cylinders with radius 0.3d) at A = 3.3d . The length of this guide (measured
down the centre of the channel) is equal to the length of the straight guide.
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Outline of multipole method

In this study we consider in-plane propagation with the E field parallel to the cylinders.
The wave equation is solved for a point source V2G(r) + k? n' (r)G(r) = 8 (r - c),

where G is the Green function due to a source at c, The exterior field may be
represented by a Wijngaard expansion, valid outside the rods:
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where the sums are over rods (q) and cylindrical harmonics (m). the first term
represents the real source. and the remaining terms represent scattering by all cylinders.
A local expansion is also valid in an annulus outside each (( 'th) rod:

X~

G( ) - ~[A' J (k I - I) + B' H11'(k I _ I)] IIlIargik r-c, )r - L... 11/ 11/ r C, 11/ 11/ r C, e
m=-cx;

These expressions for G must be consistent, and Grafs addition theorem is used to
compare them given their use of different origins. We thus find
A,;, = K,;, + I I S,::~)B~or, in matrix form, A = SB + K . where K is associated with
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the source and SB is due to scattering by all cylinders q 1= (. Another relation
between A and B is needed to solve this system; this is obtained from the boundary
conditions at each cylinder boundary, in particular B = RA. Combining these equations
to obtain a linear system in the B coefficients yields the equation (I - RS)B = RK .
This system is then solved to find the B,:, and thus the entire field. The method is
efficient and accurate even for disordered structures.
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Figure 2. Straight guide with disordered radius: perturbations of radius are uniformly
distributed on [0,8ad) for 8" = 0.03 (top) and 8" = 0.10 (bottom). with 50

realisations in each simulation. In each row there are two individual crystal realisations.
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and a histogram of the attenuation coefficients y of the realisations for the intensity along
the centre of the guide.

Results of Monte Carlo simulations

Quantitative results characterising the effects of disorder on a waveguide were obtained
by a Monte Carlo method. Ensembles of 50 realisations of a crystal with disordered
cylinder radii and refractive indices were analysed using the multipole method: for each
ensemble, disorder was introduced by uniformly distributed perturbations of selected
parameters. The results are comparable for levels of disorder in each parameter (ie,
radius and refractive index) that are equivalent, relative to the size of that parameter.
Figure 2 displays results for perturbations of radius in the straight guide: the
perturbations are uniformly distributed on [O,ood) for 00 = 0.03 (top) and 00 = 0.10

(bottom). Each row contains density maps for the intensity of the electric field for two
individual crystal realisations, and a histogram (including all realisations) of the
attenuation coefficients y (the slope of a straight line fitted to the log of intensity along
the centre of the guide). It is clear that there is still strong guiding at the 00 = 0.03

level, with little attenuation. However, at 0
0

= 0.10 we observe exponential decay of

the intensity-an indication of Anderson localisation-with the attenuation coefficients
now clearly shifted away from 0: the channel is effectively closed.

Figure 3 plots the logarithm of the mean intensity (over all realisations) along the centre
of the guide, for both the straight guide (black) and the bent guide (red in first segment
of guide, green in second and blue in third). The vertical lines indicate the start and end
of the guide, and the source is positioned at 0 on the horizontal axis. The figure
indicates that guiding is preserved for quite high levels of disorder (eg 00 :::; 0.06) and
that in this regime, at least to first order, the beat length (and hence the propagation
constant) for the bent and straight guides are equivalent. For larger 0

0
we observe

exponential decay (on average) of the intensity along the guide, again characteristic of
Anderson localisation.
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Figure 3. Comparison of logarithm of mean intensity of straight and bent guides with
disordered radius at the same levels of randomisation: centre of guide.
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