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Abstract

A priority algorithm is presented for the maximum late-
ness problem with parallel identical processors, precedence
constraints, and preemptions. The algorithm calculates a
task's priority by constructing a schedule for the set of its
successors. It is shown that the presented algorithm con-
structs an optimal schedule for the problem with two proces-
sors and arbitrary precedence constraints, and for the prob-
lem with an arbitrary number of processors and precedence
constraints in the form of an in-tree. The proof also indicates
that this algorithm allows the best worst-case ratio currently
known for the problems with precedence constraints.
Keywords: parallel identical processors, precedence con-
straints, maximum lateness, preemptions.

1. Introduction

The priority algorithm presented in this paper is intended
for the maximum lateness problem which can be stated as
follows. A set N = {1, 2, ... , n} of n tasks Gobs, operations)
is to be processed on m > 1 identical parallel processors
(machines) subject to precedence constraints in the form of
an anti-reflexive, anti-symmetric and transitive relation on
N. Iftask iprecedes task i.denoted i -+ j, then the process-
ing of imust be completed before the processing of j begins.
All processors are available from time t = O. Each processor
can process at most one task at a time, and each task can be
processed by any processor. The processing time of task j is
denoted by Pj and is an arbitrary real number. The process-
ing of any task can be interrupted at any time and resumed
later on the same or another processor, i.e. the preemptions
are allowed.

A schedule s is a vector function s(t) = (Sl (t), ... ,sn(t)),
where each Sj(t) is a continuous from the left piece-wise

constant function, which has a finite number of points of
discontinuity, and is equal to 1 if task j is processed at time t,
and is equal to 0 otherwise. The completion time of task j in
schedule s, denoted by Cj(s), is the smallest 't satisfying the
equality J~sj(t)dt = Pi- It is necessary to find a schedule,
which minimizes the criterion of maximum lateness

where dj is a due date associated with task j.
The problem above is usually denoted by

P\prec,prmpILmax, where P specifies that the tasks
are to be processed on several parallel identical processors,
prec indicates the presence of precedence constraints, and
the term prmp indicates that the preemptions are allowed.
The non-preemptive counterpart of Pjprec,prmplLmax
is the problem Piprec.p j = 1lLmax, which differs from
Plprec,prmplLmax only by two assumptions: all tasks have
the same processing time of one time unit (indicated by
the term p j = 1) and the preemptions are not allowed,
i.e. if a processor begins executing a task, then it con-
tinues processing until the completion of this task. If all
due dates are equal to zero, then Plprec,prmplLmax and
Piprec.p] = llLmax convert into the makespan problems
Plprec,prmplCmax and Psprec.p , = llCmax with the
criterion

Cmax(s) = maxCJ(s).
jEN

Although Plprec,prmplCmax and Psprec.p , = 11Cmax
are NP-hard (Ullman, 1975), and therefore more general
Plprec,prmplLmax and Piprec.p j = llLmax problems are
also NP-hard, there are several important particular cases
allowing polynomial-time algorithms. Thus, the Brucker-
Garey-Johnson algorithm (Brucker, et al., 1977) solves the
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problem P!in- tree,pj = I\Lm£1 •• , where the term in-tree in-
dicates that the partially ordered set of tasks in Piprec.p] =
l!Lma .• is restricted to an in-tree. The Garey-Johnson al-
gorithm (Garey and Johnson, 1976) solves the problem
P2lprec,pj = IILma.1"'where the term P2 specifies that the
number of processors in Piprec.p] = I!Lmm is restricted to
two. BothP2!prec,pj= IILma .• andPlin-tree,Pi= IILma .•
are also amenable for the algorithm presented in (Zinder and
Roper, 1998). In the case of arbitrary number of processors
the algorithm presented in (Zinder and Roper, 1998) satis-
fies the following performance guarantee

Lma.•(s') :::::(2-~) i.; (s") + (I -~) max z/, - r(m),
111 111 aEN

(I)
where

r(m) = { m,~3
m-2

m

s' is a schedule constructed by this algorithm, and s" is an
optimal schedule for the Piprec.p] = IILma .• problem. In
particular case, when all due dates are equal to zero, this per-
formance guarantee coincides with the best currently known
performance guarantee for the Piprec.p] = IIC,1IIL1"problem
obtained in (Braschi and Trystram, 1994) for the algorithm
of Coffman and Graham (1972). On the other hand, both
classical algorithms presented in (Brucker, et al., 1977) and
(Garey and Johnson, 1976) violate (I). The worst-case per-
formance of the algorithm from (Brucker, el al., 1977) was
analyzed in (Singh and Zinder, 2000b). Examples can also
be presented to show that there are arbitrary large instances
of the maximum lateness problem satisfying the inequality

Lma .•(s') > (2 - ~) Lma.1"(s·) + (I - ~) maxda, (2)
111 m aEN

where s' is a schedule constructed by the algorithm from
(Garey and Johnson, 1976) and s' is an optimal schedule
for the maximum lateness problem

The above observation can be viewed as a motivation for
the development of a preemptive counterpart of the algo-
rithm presented in (Zinder and Roper, 1998) and its com-
parison with the preemptive versions of the algorithms in
(Brucker, et al., 1977), (Garey and Johnson, 1976), and
(Coffman and Graham, 1972), described in (Lawler, 1982)
and (Muntz and Coffman, 1969;1970). In particular, the pre-
emptive versions of the algorithms in (Brucker, et al., 1977)
and (Garey and Johnson, 1976) solve P!ill- Iree,prll1p!Lma .•
and P2Iprec,prmpILma .•, respectively. It will be shown that
the algorithm presented in this paper also constructs an op-
timal schedule for both problems. Moreover, the corre-
sponding proof shows that this algorithm has also a good
worst-case performance. More precisely, usually perfor-
mance guarantees for the maximum lateness problem are
given in the form

for m odd
for nt even,

Lma.,(s')::::: yLma.•(s") + (y- I)maxda - 0,
aEN

where s' is a schedule constructed by the considered algo-
rithm, s" is an optimal schedule, and y and 0 are constants

(see for example (I)). Correspondingly, for the makespan
problem

To the authors knowledge, for the problems with preemp-
tions and precedence constraints, the best currently known
value of y is 2 - ~. This y was obtained in (Lam and
Sethi, 1977) for the Muntz-Coffman algorithm (1969,1970).
The algorithm presented in this paper also allows this y.
The worst-case analysis of the preemptive version of the
Brucker-Garey-Johnson algorithm can be found in (Singh
and Zinder, 2000a).

The algorithm presented in this paper assigns to each task
j some value IIj and calculates the task's priority as a sum
of the remaining processing time and fJ.}. The tasks are as-
signed to processing according to their priorities. The main
idea of the considered approach is to calculate fJ.} by con-
structing a schedule for the set of the successors of task j.
Each such schedule as well as the resultant schedule is con-
structed by a priority algorithm described in Section 2. An
iterative procedure calculating IIj, for each j E N, is pre-
sented in Section 3. Section 4. is concerned with the analysis
of the algorithm.

2. Priority Algorithm

The priority algorithm described below will be used for
constructing a schedule for the entire partially ordered set
of tasks as well as schedules for partially ordered sets in-
duced by different subsets of N. Let M ~ N be an arbitrary
subset of N and suppose that a non-negative number II} is
associated with each task j E M. Consider the partially or-
dered set of tasks induced by M, i.e. for a moment we ignore
all tasks that do not belong to M and preserve all precedence
constraints which exist between tasks from M. We will re-
fer to any schedule for this partially ordered set simply as a
schedule for M. In constructing a schedule for M, the prior-
ity algorithm determines an increasing sequence of points in
time, which will be referred to as points of allocation. The
first point of allocation is t = O. At each point of allocation,
the algorithm selects tasks which will be processed in the
time interval between this and the next point of allocation;
determines the amount of processing time, which each of
these tasks will receive in this interval; and determines the
next point of allocation.

The selection of tasks for processing and the allocation of
processing times are based on the tasks priorities. The pri-
ority of any task j at time t = 0 is Pj + folj. For any other
point in time, the priorities are calculated as follows. Let s
be a schedule for M constructed by the priority algorithm,
and let II < ... < Iq be the corresponding points of alloca-
tion. We define two functions T\j(1 ,s) and P j(t ,s), where for
each i< q

for any ti :::::t < 11+ I,
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and

Pj(I,S) =Pj- t' T]j(x,s)dx,. io for any Ii ::::;I ::::;t.; 1.

The priority of any task} at any point! is Pj(I,S) +/1;, where
larger Pj(I,S) +/1j means higher priority. It is easy to see
that for any point of allocation Ii, Pj(li,S) is the remaining
processing time of task } at time u.

At each point of allocation Ii, all tasks, which are avail-
able for processing, are split into several subsets. Each sub-
set is comprised of all tasks with the same priority. The
subsets are assigned to processors in the decreasing order
of the corresponding priorities. If the number of tasks in
the current subset is greater than or equal to the number of
remaining processors, then these tasks occupy all these pro-
cessors. Otherwise, the tasks from the current subset are
assigned one task per processor. The allocation terminates
when either no subsets of tasks or no processors have left
for allocation. Then the next point of allocation is selected,
all processors are released at this point, and the allocation
procedure repeats.

More specifically, let u be a point of allocation, I:'.be the
length of the time interval between this and the next point of
allocation, M' S;; M be a set of all tasks of the same priority
available for processing at Ii, and OJ(li,S) be the amount of
processor time that a task j E M' receives in the time interval
[li,li+I:'.]. Then OJ(li,S) = IA-~'Ik,where k is the number of
processors allocated to A'I'. Consequently, if no processors
are assigned to the set M' then, k = 0 and OJ(li,S) = 0 for
all } EM'. Observe that, in the time interval [Ii,t, + 1:'.], all
tasks from M' receive the same amount of processing time,
and that 1M' I ~ k. The next point of allocation is chosen by
calculating the largest I:'.satisfying the following two condi-
tions:

OJ(I;,S) ::::;Pj(li,S),

for any task j assigned for processing at the point of alloca-
tion Ii; and

for any two tasks / and /' available for processing at
the point of allocation tt and such that P/ (Ii,S) + /1J' >
P)"(li'S) +/1j'" The first condition ensures that no task re-
ceives the amount of processing time that exceeds time re-
quired for its completion. The second condition guarantees
that if at one point of allocation task / has a priority higher
than task J", then at the next point of allocation the priority
of / is not less than that of r.

If a subset M' is assigned to k processors, where IM'I >
k, then the actual schedule for these tasks is obtained by
McNaughton's algorithm (McNaughton, 1959). In accord
with this algorithm we select a processor and allocate to this
processor from time t, an arbitrary task it EM'. After that
we select an arbitrary task hEM' and allocate this task to
the same processor from time Ii + Oil (I;,s). We continue
to allocate tasks one after another to the selected processor
until we reach a task j,., which cannot be allocated entirely

to this processor. Then we allocate task i. to the selected
processor only till the time point t, + 1:'.. After that we select
another processor and allocate task },. to this new processor
from time tt in such a way that the total processing time for
this task on both processors becomes OJ,(Ii, s). We continue
to allocate tasks to this second processor until we encounter
a situation that next task cannot be allocated entirely to this
processor by time t, + 1:'.. Then we allocate this task only till
the time t, + 1:'., again select a new processor and allocate to
this new processor the considered task from time Ii for the
remaining processing time, and so on.

In what follows, the priority algorithm described in this
section will be denoted by P.

3. Calculation of /1'S

For any task} let K(j) be the set of all successors of l- i.e.
K(j) is the set of all tasks i such that} -> i. The approach
presented in (Zinder and Roper, 1998) suggests to calculate
each /1j using a schedule for K(j). Moreover, (Zinder and
Roper, 1998) suggests to construct this schedule using Ili
which have been already assigned for all i E K(j). In this
case, the value of Ilj depends on the algorithm A used in the
construction of the corresponding schedule. To reflect this
fact we will use the notation Ilj(A). In what follows we will
assume that all Il'S are calculated using the same algorithm
A. More rigorously, the calculation of Il'S can be described
as follows.

(I) For each task j E N such that K(j) = 0, let Ilj(A) =
maxiENdi - d].

(2) Select any task j E N satisfying the following two con-
ditions:

(a) The value of Ilj(A) has not been specified.
(b) The values of /1i(A) have been specified for all

iE K(j).
Ignore for a moment all tasks from N - K(j) and pre-
serve all precedence constraints between tasks from
K(j). Construct a schedule sj for the set K(j) using
the algorithm A. Set

Ilj(A) = max{ max [Ci(sj) +IlM)],maxdi -dj}.
iEK(j) lEN

Repeat step 2 until values of Ilj(A) have been specified
for all tasks} E N.

We will refer to the above algorithm as Il-algorithm. Let
A* be an algorithm, which constructs for each task} E N
with K(j) # 0 a schedule for K(j) with the smallest value
of the criterion maxiEK(j) [Ci(S) + lli(A*)]. The following
lemma explains why values Ilj(A*) play an important role
in the following analysis.

Lemma 3.1 For an arbitrary schedule sfor N,
max[Cv(s) +1l\,(A*)] = Lma.,(s) +maxdi.
vEN lEN

By Lemma 3.1, the algorithm A* constructs a schedule for
K(j), which is optimal for the criterion maxiEK(j) [Ci(s) -
d;]. Since the problem of constructing such a schedule is
equivalent to the original problem, we will calculate Ilj us-
ing the priority algorithm P described in Section 2.
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4. Analysis

In this section we assume that all u's are calculated using
the priority algorithm P and that this algorithm constructs
the final schedule which will be denoted by s'', Suppose
that the schedule SU has been constructed using h points of
allocation. Let they be points tl, ... ,tlb where 0 = tl < ... <
tho For each point of allocation t., let 5; be the set of all
tasks, which are allocated for processing at point ti. Note
that 5" = 0 and the procedure terminates at this point. For
each point of allocation ti, i> 1, let F; be the set of all tasks,
which complete their processing in the time interval [ti-I ,til
at point ti. Since, for any j E F;, Cj(s!') 2: ti +pj(ti,i'),

Consider a task q satisfying the equality Cq(.S"')+/lq(P) =
maXjEN[Cj(S!') +/lj(P)]. Suppose thatti_1 < C,/(i') < ti, for
some i> I. This means that at point ti-l, task q belonged to
a subset, say N', which was allocated to the number of pro-
cessors less than IN'I. According to the algorithm P, there
is a task r E N' that completes its processing in the time
interval [ti-l,t;] at point t.. Hence, C,.(i') 2: t, + p,.(ti,S!').
Because q and r belong at point t;_1 to the same sub-
set, they must have the same priority at point ti, that is
/lq(P) = J.l,.(P)+ P,.(ti,s"). We have,

C,,(i') +/lq(P) < ti +/lq(P)
ti +/l,.(P) +P,.(ti,i') :::;C,.(i') +/I,.(P),

which contradicts the selection of task q. Therefore,
Cq(sI') = ti, for some i > I, and for this point of allocation

max[ti + Pj(ti,s") +J.lj(P)] = max[C\,(i') +/I\'(P)]. (3)
jEF; "EN

Among all ti satisfying (3) select the smallest, say ti«, and
select x E F;, such that

Let M» = 5;,-I, and for each I < i< i", we denote by M,
the set of all j E 5i-1 such that /lj(P) +Pj(ti,s") 2: f.ix(P) +
Px(ti' ,s!'). We will call an interval [ti-l, til complete iflMil2:
m. Otherwise we w.ill call the interval incomplete. Note
that sets Mi, and therefore the notion of completeness, are
defined only for points of allocation ti with I < i :::;i",

The following lemmas and the theorem outline the steps
in the proof of the presented results.

Lemma 4.1 If all intervals [ti-I, til, where I < i :::;r, are
complete, then for any schedule s

Lemma 4.2 For any task v E Si'-I

f.iv(P) +Pv(ti'-I ,i') = f.ix(P) +Px(t"-I ,f'),

and IMi,1 > m.

Lemma 4.3 Let [ti-l,ti] be an incomplete time interval.
Then for any task J, such that Pj(ti,s") > 0 and f.ij(P) +
Pj(ti,s") 2: pAP) +P.,.(t",s"), either J E M; or there is a
task j' such that r E M; and j' -> j.

Lemma 4.4 Let [tv-I, t,.] be any incomplete time interval,
then IM,·I 2: 2.

Lemma 4.5 Let s" be an optimal schedule/or the criterion
LlI/aAs), then

LII/ux(i') :::;(2-~) LmuAs') + (1-~) maxdi·m m jEN'

Theorem 4 ..1 Schedule s" is optimal for
P2Iprec,prmp[LlI/ax and Plin- tree,prmp!LlI/ax.
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