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Abstract

Gait and face are two important biometrics for human identification. Complementary properties of these
two biometrics suggest fusion of them. The relationship between gait and face in the fusion is affected by
the subject-to-camera distance. On the one hand, gait is a suitable biometric trait for human recognition
at a distance. On the other hand, face recognition is more reliable when the subject is close to the
camera. This paper proposes an adaptive fusion method called distance-driven fusion to combine gait and
face for human identification in video. Rather than predefined fized fusion rules, distance-driven fusion
dynamically adjusts its rule according to the subject-to-camera distance in real time. Experimental results
show that distance-driven fusion performs better than not only single biometric, but also the conventional
static fusion rules including MEAN, PRODUCT, MIN, and MAX.
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1 Introduction the problem of face recognition in such scenario
i ] ] ] is that the resolution of the face image might be
Gait and face are two commonly used biometrics 44 Jow to provide enough information for accurate
for human identification. Both of them are unob- recognition. When the subject is closer to the
trusive biometric traits, and can be simultaneously camera, the resolution increases, and consequently
obtained by most surveillance systems. The acCu-  face recognition becomes more reliable. Thus the
racy of most gait recognition algorithms [5] heavily importance of gait and face in the fusion should dy-
relies on the extraction of motion characteristics. namically vary according to the distance from the

; Usually it is easier to recognize the side view gait subject to the camera. We call such an approach
than the frontal view gait due to the fact that there distance-driven fusion of gait and face.

are more motion characteristics in the side view of _ ' ]
a walking person. Up to the present, most reported ~ Lhere are several previous works on fusion of gait

experiments are performed on the side view gaits. ~ and face. For example, Shakhnarovich and Darrell
However, it is not realistic to expect only side view [6] proposed to combine virtual gait and face cues
gait in real applications. It is interesting to notice ~ generated by a 3D model derived from multiple
that in case of face recognition, the situation hap- ~ camera views. Kale et al. [4] proposed the fusion

pens to be the reverse: there is more information  ©f gait and face for a special ‘inverted ¥’ walking
in the frontal face than that in the side face. Thus  Pattern. Zhou and Bhanu [9] proposed a method
tecognition of the frontal face is generally easier  tO improve the side-view gait recognition by using
than that of the side face. These complementary the enhanced side-view face image generated from
properties of gait and face inspires fusion of them  the video. Table 1 summarizes the main differences
to get more accurate results. between this paper and the previous works. As can

be seen, the fusion rules adopted by the previous
Gait is believed to be a suitable biometric trait works are all among the four static rules: SUM,

for human identification at a distance [8]. But PRODUCT, MIN, and MAX, i.e., combine the gait
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Table 1: Differences Between This Paper and Previous Works on Gait and Face Fusion.

Work Biometrics No. of Cameras Fusion Rules
Shakhnarovich ~ Virtual frontal face and 4 SUM, PRODUCT, MIN,
and Darrell [6] side gait from a 3D model MAX
Kale et al. [4] Frontal face and ‘inverted 1 SUM, PRODUCT

3 gait
Zhou and Side face and Side Gait 1 SUM, PRODUCT, MAX
Bhanu [9] ‘
This paper Face and gait in 3 view 1 - Distance-driven fusion

angles

score and the face score through the operators sum,
product, min and maz, respectively. The rules are
predefined and remain fixed when the system is
running. Obviously none of them can respond to
the changes of the external conditions. In fact,
beyond the fusion of gait and face, almost all ex-
isting works on multi-biometric fusion are based on
fixed fusion rules. On the contrary, the distance-
driven fusion is an adaptive fusion scheme, which
can dynamically adjust the fusion rule according to
the external factor that affects the relationship be-
tween gait and face in the fusion, i.e., the subject-
to-camera distance.

The rest of this paper is organized as follows. The
distance-driven fusion of gait and face is proposed
in Section 2. The experiments are reported in Sec-
tion 3. Finally conclusions are drawn in Section 4.

2 Distance-driven Fusion

2.1 Gait Classifier

Human motion can be regarded as temporal varia-
tion of human silhouettes. The gait classifier used
in this paper is based on the silhouette images [7].
Assume the background to be steady?, then the sil-
houette images can be generated through training
a Gaussian model for each background pixel over a
short period and comparing the background pixel
probability to that of a uniform foreground model.
One example of the silhouette image is shown in
Fig. 1(b). After that, the smallest circumscrib-
ing rectangle of each silhouette is centralized and
normalized to the same size, and LPP (Locality
Preserving Projection) [3] is used to get the corre-
sponding low-dimensional embedding.

In detail, given the training data
(1)
1The proposed method can also be applied to the moving

background case, given the proper foreground extraction
algorithm, which is out of this paper’s scope.

G = [X1;X2; .. .5 Xp),
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where x; represents the row vector of a binary
silhouette image. Assume G to be a graph with
n nodes, an edge will connect nodes ¢ and j if x;
and x; are close. Here ‘close’ is defined by the
K-nearest neighbors. The symmetric n X n edge
matrix E can be obtained with g;; = 1 indicat-
ing an edge between nodes ¢ and j, and g;; =
0 otherwise. Then the transform matrix W, =
[w1 wo -+ wy] can be calculated by solving the
generalized eigenvector problem

GLGTw = A\GBGTw, (2)
where B is a diagonal matrix whose entries are col-
umn (or row) sums of E, L = B — E is the Lapla-
cian matrix. The w;’s in W are the solutions of
Equation (2) sorted by the corresponding eigen-
values. [ is the dimensionality of the subspace.
Finally, the projection of a video X is calculated
by Y = XW,. Suppose the gallery gait video of
person j is X;, the probe gait video is X, each
row (X;(2) or X(¢)) stores one frame. Then the
gait score G(X,j) = —dr(XWy, X;W,), where
dg(m1, mg) is the mean Hausdorff distance:

A(mi, ma) + A(ma,my),  (3)
meian(mjin [m1 (3) — ma (5)[1}4)

drr(my, ma)
A (m1, mz)

2.2 Face Classifier

The first step of face recognition is face detection.
Since the subject silhouette has already been ex-
tracted, face detection can be greatly simplified.
Through some empirical experiments, the upper
1/6 of the silhouette is chosen as the face region.
One example of the face image extraction is shown
in Fig. 1(c). The extracted face images are first
histogram equalized and then transformed into a
vector of unit length to reduce the variation of
illumination.

The face recognition algorithm used in this ap-
proach is Fisherface [1], which tries to find a feature
space that maximizes the ratio of the inter-person




(c)

Figure 1: Silhouette and face extraction: (a) the original image, (b) the extracted silhouette, (c) extraction of

the face image.

Figure 2: Estimation of the subject-to-camera dis-
tance. ’

difference and the intra-person difference by apply-
ing Fisher’s Linear Discriminant (FLD). In detail,
suppose §2p is the between-class scatter matrix
and Qw is the within-class scatter matrix, then
the projection matrix Wy = [w; ws ... wy] can
be calculated by solving a generalized eigenvalue
problem

QBW = /\zﬂww (5)

There are at most ¢— 1 nonzero eigenvalues, where
¢ is the number of classes. So in this paper, ¢ is
set to ¢c— 1. Suppose each video is represented as a
matrix, each row stores the normalized face vector
in one frame, the gallery video of person j is X,
the probe video is X, then the face score of X to
person j is :

F(X,j) = —dg(XWy, X; W), (6)

where dg is the Hausdorff distance defined in Equa-
tion (3).

2.3 Fusion Scheme

The whole fusion procedure is driven by the dis-
tance from the subject to the camera. A distance
can be estimated for each frame in the video. As
shown in Fig. 2, suppose the actual height of the
subject is H, his/her height in the image is k, the
distance from the subject to the lens is D, and the
focus of the lens is d, then

H/h =
D =

D/d, (7)
Hd/h = a/h, (8)

where o = Hd. Assume that the focus d is fixed
and the human height H is approximately the same
(when the subject is far away from the camera,
D/d is a very large number, the difference in H
only has tiny effect on h, thus the normal adult
height difference can be ignored), then « is a con-
stant number. A can be calculated from the silhou-
ette image.

As mentioned in Section 1, the reliability of gait
and face is affected by the subject-to-camera dis-
tance. When the subject is far away from the
camera, the resolution of the face image might be
too low to be accurately recognized, and thus the
fusion system should rely more on gait. When
the subject is closer to the camera, the resolution
becomes higher, thus face becomes more reliable
and deserves more weight in the fusion. A clas-
sifier ensemble method called temporal bagging is
proposed here to dynamically adjust the impor-
tance of gait and face in the fusion in real-time.
Instead of sampling the data set in the original
bagging ensemble [2], the whole video sequence is
divided into several subsets (with overlap) along
the time axis, each of which corresponds to a period
of time. The gait recognition algorithm usually
works when the video sequence includes at least
one walking cycle (two steps), thus each subset
should include at least one walking cycle. The
fusion rules in different subsets are different ac-
cording to the average subject-to-camera distance
of each subset. In detail, suppose there are N
video clips in the training set {X;,Xs,...,Xy}.
Divide each video into m subsets along the time
axis, each of which contains p frames including
at least one walking cycle. The overlap between
the neighboring subsets is v frames. Based on
each subset j, a gait classifier (Section 2.1) G¥ and
a face classifier (Section 2.2) F7 can be trained.
Moreover, for each subset j, the average subject-
to-camera distance D7 can be estimated. Note that
although the distance varies within each subset,
it is assumed that the variation in approximately
one walking cycle is not big enough to apparently
change the relationship between gait and face in




Table 2: Recognition Rates on the NLPR Gait Database.
Fusion of Gait and Face

View  Gait-Only Face-Only Distance

driven  SUM  PRODUCT MIN MAX
0° 82.50% 58.75% 90.00% 87.50% 87.50% 82.50% 66.25%
45° 82.50% 77.50% 95.00% 82.50% 82.50% 90.00% 77.50%
90° 80.00% 70.00% 90.00% 82.50% 77.50% 72.50% 87.50%
Avg. 81.67% 68.75% 91.67% 84.17% 82.50% 81.67% 77.08%
100% 100% 100%
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Figure 4: Recognition rates of distance-driven fusion with respect to o in (a) the lateral view (0°), (b) the oblique

view (45°), and (c) the frontal view (90°).

training. The algorithms are tested in different
views (0°, 45° and 90°). For each view, the recog-
nition rates of gait-only, face-only, and the fusion of
gait and face are compared. The compared fusion
methods include the distance-driven fusion and the
fixed fusion rules used by most previous works on
multi-biometric fusion [6] [4] [9], i.e. SUM, PROD-
UCT, MIN, and MAX.

3.2 Results

The recognition rates of gait-only, face-only and
their fusions in the three different views are tab-
ulated in Table 2. The best performance in each
case is highlighted by boldface. The results of the
fusion methods that are better than both single
biometrics are underlined.

As can be seen from Table 2, in all views, the
performance of neither gait-only nor face-only is
satisfying. Gait-only performs better at 0° and
45° than 90° because the former two present more
motion characteristics. Face-only performs much
worse at 0° than the other two views because there
is less information in the lateral face than the frontal
face. Among the fusion methods, the distance-

sidering the reliability of different biometrics under
different conditions. An unreliable single biometric
might deteriorate the performance of the other bet-
ter biometric in the fusion. Among the four static
fusion rules, no remarkable superiority of one over
the others can be observed. In summary, when the
subject-to-camera distance varies, the relationship
between gait and face varies accordingly, thus the
dynamic adjustment in the distance-driven fusion
is more suitable than the fixed fusion rules.

As mentioned in Section 2.3, the value of & in
Equation (8) may also affect the relationship be-
tween gait and face in the fusion. The recognition
rates of distance-driven fusion with respect to « are
shown in Fig. 4. The situations in different view
angles are similar. When o = 0, distance-driven
fusion is the same as face-only. With the increase
of @, the recognition rate rapidly achieves the level
higher than both face-only and gait-only, and keeps
relatively steady until « reaches a high value, say
1,000, when gait will dominate the fusion so that
the recognition rate reduces to the level of gait-
only. Note that the relatively broad range of a
with steady performance indicates that distance-
driven fusion is not sensitive to o, as long as its

driven fusion achieves the best performance in all
cases, which is remarkably better than those of
both single biometrics. As for the static fusion

e et O R e R

value is in a reasonable range, say [100, 800].

EHRRTR

methods, improvement over the single biometric is
not guaranteed. In the 0° view, only SUM and
PRODUCT achieve better result, in the 45° view,
only MIN achieves that, while in the 90° view, only

4 Conclusion

This paper proposes an adaptive fusion method
to combine gait and face for human identification

in video. Unlike the static fusion rules adopted
by most previous works on multi-biometric fusion,

e L I A T

MEAN and MAX can make it. This might be due
to the usage of the fixed fusion rules without con-
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the fusion rule in the distance-driven fusion is dy-
namically adjusted according to the distance from
the subject to the camera in real time. Experi-
mental results show that distance-driven fusion can
achieve better performance than conventional fixed
fusion rules including MEAN, PRODUCT, MIN,
and MAX.
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