
Dynamic Value-Based Diagnosis System for Assembler
Programs

Li Lin1 and Yunfei Jiang*2 and Zhaofu Fan2 and Chengqi Zhang1

Abstract. Program diagnosis is playing an increasingly important
role in computer science. The key steps are general models, slice
algorithms and techniques of candidate generation. In this paper,
we transferred value-based model and trajectory concept in
software diagnosis, which is simple, general and accepted
technique applicable to Assembler language program diagnosis
system. We have also given a diagnosis system (ADS) and
rewritten the PUSH and POP instructions slice strategy which is
inconsistent with the definition of conflict set.

Keywords: Value-based diagnosis; Program slicing; Dynamic
trajectory; Assembler program

1 INTRODUCTION

Software diagnosis is becoming an important field in software
engineering and applications. Its difference from debug is: debug
softwares just find syntactic errors, but, software diagnosis
means to find semantic errors. This kind of errors often occurs
and is very difficult to be detected. Many researchers have
finished some related work in this area, such as value-based
model [1, 2], trajectory slice [3-5], conflict set [18-19], hitting set
[18-19] and PDG [3]. Here, we integrated their methods and
presented a system for diagnosing assembler language programs.

A key advantage of value-based model can generate a general
model for the production of system descriptions, which can be
used to derive diagnosis for differently structured individual
systems. This advantage is nowhere more apparent than in the
software error diagnosis (or debugging) area. Here, the
“value-based” means the computation of slice and diagnosis
based the input and output value only.

E.g.1. A symbol function program. (Figure 1)
1. MOV AX, CX ; CX is unknown

2. CMP AX, 8000H

3. JG L1

4. MOV BX,

5. JMP END

6. L1: MOV BX, 8000H

7. END: HALT

1 University of Technology, Sydney, Australia, email: {linli,
chengqi}@it.uts.edu.au (Li Lin, Chengqi Zhang)
2 Zhongshan Univeristy, Guangzhou, PR of China, email:
{lncsri05, is11}@zsu.edu.cn (Yunfei Jiang, Zhaofu Fan)

* corresponding author.

Figure 1. A symbol function program.This program is
written in Intel 8086 assembler language. If CX>0 then

BX=1, else BX=-1.
Obviously, when CX is less than or equal to zero, BX is

evaluated to –1, so in the line 6, “8000H” should be replace by
“0FFFFH”.

In this paper, an Intel 8086 assembler language diagnosis
system was introduced which is implemented in C language
under Windows operating system. The foundation of this system
is model-based diagnosis principles which is proved by Rieter
[1987]. However, the components of hardware diagnosis are
instead by statements in software language.

This paper included general model in section 2; slice
algorithm in section 3; in section 4, we inferred an algorithm to
compute hitting sets; in section 5, we gave an example, we
discussed related work in the last section.

2 GENERAL MODEL

The key issue of using model-based diagnosis to debug depends
on developing a general model for programs. Such model must
be automatically derived from the source code. Moreover, it is
independent to the program and suitable to Assembler language.
As we know the Assembler programs are different from the other
high level language, such as JAVA, C or Pascal. Because it
cannot be composed by the three structures: sequence, loop and
branch, because of JMP instructions are necessary in Assembler
language for improving memory and running efficiency.

Fortunately, there are many researchers have found the
strategies to deal with these problems, such as value-based model
[C Mateis, 1990], trajectory [B. Korel, 1988], slice [M. Weiser,
1982, 1984, B. Korel 1988], conflict set [J Kleer, 1987, R. Reiter,
1987] and hitting set [R. Reiter, 1987,L. Lin 2003] concepts,
now. In this paper, all of these techniques are integrated in the
Assembler language program diagnosis system (ADS), and the
result is acceptable.

In order to make this paper self-contained, some related
definitions and theorems are introduced briefly.

Definition 1 (Diagnosis, [Reiter, 1987]). Let (SD, COMP) be
a system and OBS a set of observations. A set ∆ ⊆ COMP is a
diagnosis iff

SD ∪ OBS ∪ { ¬ AB(C) | C ∈ COMP \ ∆ } ∪ {AB(C) |
C ∈ ∆ }
is satisfiable.

Here, “AB (·)” means “abnormal” or “work incorrectly”,
“ ¬ ” means “not”.

Figure 2. A simple circuit of a full adder.

E.g. 1. (As shown in Figure 2) COMP={X1, X2, O1, A1, A2};
“ X” stands for XOR-gate, “ O” stands for Or-gate and “ A” stands
for And-gate. OBS={A=1, B=0, C=1, X=1, Y=0}.

SD={
…

in1(X1)=A;
in2(X1)=B;
in1(X2)=out(X1);
in2(X2)=C;
…
}
Definition 2 (Conflict set, Reiter, 1987). Let (SD, COMP,

OBS) be a diagnosis system and CS an exact mode assignments.
CS is a conflict set of (SD, COMP, OBS) iff

SD ∪ OBS ∪ { ¬ AB(C) | C ∈ CS}
is inconsistent. A minimal conflict set as conflict set where no
subset is a conflict set.

Definition 3 (Hitting Set, Reiter, 1987). Let C be a collection
of sets. A hitting set for C is a set H ⊆ cs∈8 such that

{}≠∩ SH for each S ∈ C. A hitting set is said to be
minimal if no proper subset of it is itself a hitting set.

Theorem 1 [Reiter, 1987]. A set ∆ ⊆ COMP is a (minimal)
diagnosis for (SD, COMP, OBS) iff ∆ is a (minimal) hitting set
of the collection of minimal conflict sets.

So, when we want to get the diagnosis of a system, we just
need to compute the minimal conflict sets and hitting sets, which
can be computed by Theorem Prover (TP) [R. Reiter, 1987] and
Boolean Algorithm (BA) [L Lin, 2003] respectively. For,
software debugging, it is difficult to get the standard system
description (SD), so, one need to find an efficient concept, slice,
to replace system description.

Definition 4 (Programming Language, [Wotawa, 1996]) A
programming language L is a tuple (S, E) where S denotes a set of
logical sentences regarding syntax and E contains logical
sentences describing the behaviour.

Definition 5 (Program, [Wotawa, 1996]) Let L = (S, E) be a
programming language, A program Π is an element of {x|
SD x}. The behaviour of the program is given by E.

Definition 6 (Slice, [Weiser, 1984]). A slice S of a program
Π on a slicing criterion C = (n,V) is any program with the
following properties:

(1) S can be obtained from Π by deleting zero or more
statements from Π .

(2) Whenever Π halts on an input I, S also halts on input I.
The resulting values of variables v ∈ V at position n must be
equivalent for both programs.

Similar to minimal conflict set, minimal slice is defined as
whose proper subset is not slice. Obviously, the program is a slice
itself.

The slice can be divided into two types: static slice and
dynamic slice. The static slice is decided by analysing the static
program. The dynamic slice depends on actual running
environment.

E.g. 2 Static slice. (See Figure 1) The minimal static slice (7,
{BX}) is {1, 2, 3, 4, 5, 6, 7}. That is all the statements may be
influence BX, however, we know, only one of {4, 5} and {6} can
be executed in once running. So, the dynamic slice is {1, 2, 3, 4,
5, 7} when CX is larger than zero and {1, 2, 3, 6, 7} otherwise.

In the next section, we will introduce the slice algorithms
which inferred from in [B. Korel, 1988].

3 SLICING ALGORITHMS

The dynamic slicing criterion and the dynamic slice are defined
in [B. Korel, 1988] using the executed program path that is
named a program trajectory.

E.g. 3. Program trajectory. (Continue E.g.2)
If the input of CX=1, the program trajectory is {1, 2, 3, 4, 5,

7}; if CX=8001, the program trajectory is {1, 2, 3, 6, 7}.
Definition 7 (Dynamic Slicing Criterion, Korel, 1988). Let T

be the trajectory of program Π on input x. A dynamic slicing
criterion of program Π executed on input x is a triple C = (x, Iq,V
), where I is an instruction at position q on T and V is a subset of
variables in P.

Generally, a dynamic slice is a subset of static slice.
Moreover, the result by dynamic may be more exactly and easily
to be estimated.

Theorem 2. (Wotawa, 2002) Let Π be a program of size n,
SD a logical model of Π (SD = COMPUTE_MODEL(Π)),
and V a set of variables having a wrong value at position n after
executing Π . From V the set of observations is defined as OBS
= {AB(v) | v ∈ V} ∪ { ¬ AB(v) | v∈ variables(Π)}. Any
slice (n, {x}) with x∈ V is a minimal conflict for (SD, {1, . . . ,
n}, OBS), i.e., SD ∪ { ¬ AB(s) | s ∈ (n, {x})} ∪ OBS is
contradictory.

Proof. (See [Wotawa 2002])
Theorem 2 shows that the (dynamic) slice in software

diagnosis is equivalent to the “ conflict set” in model-based
diagnosis.

As shown in Figure 2, in model-based diagnosis, the diagnosis
objects are the components: {A1, A2, X1, X2, O1}, the input,
output and connections (OBS and SD) are considered “ always
normal” even it may be wrong sometimes, so in software
program diagnosis, we still discard the abnormal of input and
output. It means the expected input and output is always right.

The Assembler language program is difficult to be partitioned
into some procedures, because it is unstructured language. So,
PDG (Program Dependency Graph, F. Tip, 1995) is more
complicated than that of the other languages. However,
Assembler language is easier to be compiled and executed. So,
the program trajectory can be found quickly and simply. If we get
the trajectory, the slice can be found in time complexity O(n) (n
is the number of lines).

Program slicing [M Weiser, 1984] is a key technique for
debugging. Now, we give an algorithm to compute the dynamic
slice of Assembler program.

Algorithm 1. The algorithm of computing dynamic slice.
Step 0. Run the program and find the program trajectory;
Step 1. The program trajectory is obviously a candidate slice

(the largest one);

Step 2. Running the program trajectory and get all the relevant
output;

Step 3. Let n1 equal to the first line number;
Step 4. Delete the line n1 from the slice (program trajectory in

the first time) and get a new candidate slice C;
Step 5. Running candidate C again, and compare the current

output with the first one;
Step 6. If the result keeps the same, the line n1 is not in the

minimal slice, delete it from the new slice; else, keep it in the new
slice set; (value-based)

Step 7. n1= n1+1;
Step 8. If n1 is larger than the last line number, stop; else,

repeat step 4.This algorithm is according to the definition of
minimal slice.

If there are more than one slice, this algorithm just get the
“ last” one, i.e. the line number is the largest one.

E.g. 4.
1. MAIN3 PROC

2. MOV AX, 3

3. INC AX

4. MOV AX, 4

5. MAIN3 ENDP
Figure 3. Program MAIN3.

There are two minimal slice for (5, {AX}), {2, 3, 5} and {4,
5}. Here, only the “ last” one {4, 5} can be get, but, {2, 3, 5}
which useless lose.

In software debugging, the program instructions can be
divided into three classes: input/output (OBS), control
instructions (SD) and imperative constructions (COMP). So, the
software errors can be divided into three types: (1) input/output
instructions, (2) control instructions and (3) imperative
constructions. In this paper, we just discuss the third (Section 3)
type errors; the other will be discussed in the future.

4 ALGORITHM OF COMPUTING HITTING
SETS

The method to compute minimal hitting sets is Boolean algebra
algorithm, which can process about five-hundred statements and
one hundred variables at the same time, it is enough in Assembler
program, as shown in Figure 4, see [L Lin, 2003].

Figure 4. The comparison of HS-tree() (the number of

|CS| is less than or equal to 7), BHS-tree (+) and Boolean
algebra algorithm (O).

5 ASSEMBLER DIAGNOSIS SYSTEM (ADS)

In this section, suppose input/output and control instructions are
all right. Such as: “ in” , “ out” , “ jmp” , “ jxxx” , etc. we debug
imperative instructions only, such as: “ mov” , “ add” , “ sub” ,
“ mul” , “ div” , “ inc” , “ dec” , “ shl” , “ shr” , “ and” , “ or” , “ not” ,
“ cmp” , “ pop” , “ push” , etc.

5.1. “PUSH” and “POP” instructions
Moreover, this algorithm can get slice including “ PUSH” and

“ POP” instruction.
E.g. 5. PUSH-POP program.
1. MAIN4 PROC

2. PUSH AX

3. PUSH BX

4. PUSH CX

5. POP DX

6. POP AX

7. MAIN4 ENDP

Figure 5. Program MAIN4.
(7, {AX})= {3, 6, 7} according to the minimal slice definition.

But, suppose line 5: “ POP DX” is missing, (line 5 is not in the
slice), but AX value is incorrect either. This contradicts to the
conflict definition. AX is wrong, but the conflict {3, 6, 7} all
work normally.

To compute the slice by Algorithm 1, we can get the correct
result: (7, {AX})={3, 4, 5, 6, 7}. The PDG and revised PDG is
shown in Figure 6 and Figure 7.

Figure 6. The PDG of MAIN4.

Figure 7. After revised version of PDG.

The slicing algorithm can only get the last dynamic slice if
there are more slices. Obviously, only the last one influences the
diagnosis result. This method will improve the result, such as
static slice or finding all dynamic slices. It can also deal with the
problem of “ PUSH” and “ POP” operators correctly.

We write a program to compute timetable in Figure 8.

E.g. 6. A program to compute timetable.
0. START:

1. MOV CX,0000

2. MOV AX,1

3. MOV DX,1

4.L1:

5. MOV BX,AX

6. MUL BX,DX

7. MOV [CX],BX

8. INC AX

9. ADD CX, 2 ;(should be “ADD CX, 1”)

10. CMP AX, 0A

11. JNZ L1

12. MOV AX,1

13. INC DX

14. CMP DX, 0A

15. JNZ L1

16.END:
Figure 8. A program to compute timetable.

According to the definition of slice, ADS removes the
statement one by one and tests the result. Through testing, ADS
gets the result that only line 1 and line 9 affect the result of CX, so
the slice is {CX, 16}={1, 9}.

The ADS user interface is shown in Figure 9.

Figure 9. The slicing result (blue lines for register CX).
This program includes 17 lines. The trajectory extends 668

lines.

6 RELATED WORK

Software diagnosis was initially predated by Shapiro several
decades ago [E. Shapiro, 1983]. The idea is using programs (in
this paper is C language) to find and correct faults in other
programs (in this paper is Intel 8086 assembler language). Mateis
et al, [Mateis et al, 2000] have finished some research about
JAVA programs, they have finished a series papers about this
area. Weiser [Weiser, 1984] presented the concept slice that also
can be used in diagnosis and debugging, although it is used in
program parallel firstly. Korel gave some methods to compute
dynamic slice through the executed path -- program trajectory
[Borel, 1988] Agrawal improved the algorithm by four
approaches, which should improve the efficiency. Some of the
proposed techniques use dependencies between variables and

statements or knowledge about the program structure
specification which is explicitly written by the programmers.

We think that these ideas can be combined with our
value-based model (when extended to handle recursive
functions) and should provide better discrimination of bug
candidates.

7 CONCLUSIONS

In this paper, we have implemented a system can do both slice
and diagnosis. The value-based model presented here is
practicable and proved by other researchers [Wotawa, 2002,
Agrawal, 1990]. The program trajectory extends the original
programs to the actual series that can be used explicitly. It can
overcome the problem of “ JMP” . After we get conflict, we can
compute hitting sets by Boolean algorithm which costs the less
running-time and memory.

All the Assembler instructions are analysed in this paper
including PUSH and POP. Moreover, if we want to diagnose a
sub-program, the trajectory technique is also a good tool. The
algorithms and definitions mentioned in this paper are suitable to
Intel 8086 Assembler languages diagnosis, except pseudo
instruction. Moreover, it can be transplanted to other type
assembler languages easily.

The open problems need to be improved are listed in the
follow. Firstly, in general, “ program trajectory” makes a program
too longer the original program when it contains loop. Secondly,
the program diagnosed need be compiled and executed firstly, so,
if a language program cannot be compiled or causing more
time-consuming, the algorithms mentioned in this paper are not
suitable. Thirdly, the correction need be added in the future
version. Finally, all the methods are derived from first-principle
theories, if expert knowledge is adopted may lead to more
detailed and efficiently results.

ACKNOWLEDGEMENTS

Special thanks to Prof. F. Wotawa and Dr. R. Chen from Austria,
and S.C. Zhang from UTS Australia, for their helpful comments
on earlier drafts of this paper. We also want to thank the referees’
advice. The work described in this paper was partially supported
by the Natural Science Fund of China (NSFC) under grants
60203015 and 60137039.

REFERENCES

[1] F. Wotawa. (2002). On the relationship between
model-based debugging and program slicing. Artificial
Intelligence, 135 (1): 125-143.

[2] M. Stumptner, F. Wotawa. (1999). Debugging functions
programs. In: Proc. IJCAI-1999, 1074- 1079.

[3] F. Tip (1995). A survey of program slicing techniques.
Journal of Program Languages, 3 (3): 121- 189.

[4] M. Weiser (1982). Programmers use slices when
debugging. Communication ACM, 25 (7): 446- 452.

[5] M. Weiser (1984). Program slicing. IEEE Transaction on
Software Engineering, 10 (4): 352-357.

[6] G.W. Bond, B. Pagurek (1994). A critical analysis of
“ Model-based diagnosis meets error diagnosis in logic
programs” , Technical Report SCE-94-15, Carleton
University, Dept. of Systems and Computer Engineering,

Ottawa, ON.
[7] L. Burnell, E. Horvitz (1995). Structure and chance:

Melding logic and probability for software debugging,
Communication ACM, 38 (3): 31–41.

[8] G.W. Bond (1994). Logic programs for consistency-based
diagnosis, Ph.D. Thesis, Carleton University, Faculty of
Engineering, Ottawa, ON.

[9] L. Burnell, E. Horvitz (1993). A synthesis of logical and
probabilistic reasoning for program understanding and
debugging, in: Proc. Internet. Conference on Uncertainty in
Artificial Intelligence, Washington, DC, 285–291.

[10] S. Danicic, M. Harman, Y. Sivagurunathan (1995). A
parallel algorithm for static program slicing, Information
Processing Letters. 56: 307–313.

[11] G. Ferrand (1987). Error diagnosis in logic programming,
an adaption of E.Y. Shapiro’s method, J. Logic
Programming, 177–198.

[12] J. Ferrante, K.J. Ottenstein, J.D. Warren (1987). The
program dependence graph and its use in optimization,
ACM Trans. Programm. Languages System, 9 (3):
319–349.

[13] S. Horwitz, T. Reps, D. Binkley (1988). Interprocedural
slicing using dependency graphs, in: Proc. SIGPLAN’88
Conference on Programming Language Design and
Implementation, Atlanta, GA, 35–46.

[14] D. Jackson (1995). Aspect: Detecting bugs with abstract
dependences, ACM Trans. Software Engineering
Methodology, (2): 109–145.

[15] B. Korel, J. Laski (1988). Dynamic program slicing.
Information Processing Letters, (29): 155- 163.

[16] B. Korel, J. Rilling (1997). Applications of dynamic slicing
in program debugging. in: Proc. Third International
Workshop on Automatic Debugging (AADEBUG-97),
43-58.

[17] R.I. Kuper (1989). Dependency-directed localization of
software bugs. Technical Report AI-TR 1053, MIT AI Lab,
Cambridge, MA.

[18] J. de Kleer, B.C. Williams (1987). Diagnosing multiple
faults. Artificial Intelligence, 32 (1): 97-130.

[19] R. Reiter (1987). A theory of diagnosis from first
principles. Artificial Intelligence, 32 (1): 57-95.

[20] L, Lin, Y.F. Jiang (2003). The computation of hitting sets:
review and new algorithms. Information Processing
Letters, 86 (4): 177-184.

[21] E. Shapiro (1983). Algorithmic program debugging, MIT
Press, Cambridge, MA.

[22] F. Wotawa. (1996). Applying model-based diagnosis to
software debugging of concurrent and sequential
imperative programming languages. Ph.D. Thesis.
Technical University Vienna, Austria.

[23] C. Mateis, M. Stumptner, F. Wotawa. (2000). A
value-based diagnosis model for Java programs. DX’2000.
Morelia, Mexico.

[24] H. Agrawal, J. R. Horgan (1990). Dynamic program
slicing. ACM SIGPLAN Notices, 25(6): 246-256.

[25] A.S. Boujarwah, K. Saleh, J. Al-Dallal (2000). Dynamic
data flow analysis for Java programs. Information and
Software Technology, 42(11): 765-775.

