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Abstract. We propose a spatial ontology that brings together three
aspects of spatial knowledge, namely connectivity, proximity and
orientation. These aspects are rich enough to represent knowledge
about physical space and each of them can be described in terms of a
fixed subsumption hierarchy. The three subsumption hierarchies can
then be combined into a relation hierarchy; the way the former are
combined into the latter depends on the application domain. For an
illustration, we examine how spatial knowledge is represented in
natural languages, with an analysis of spatial prepositions in English as
a particular case. We obtain a relation hierarchy :Yt from the
subsumption hierarchies using Formal Concept Analysis. We argue
that :Yt is a suitable ontology for the representation of physical space,
as other natural languages would also result in the same relation
hierarchy fit. It can also form part of computer-aided design systems to
enable visual representations of verbal spatial descriptions. which
might have been the result of discussion between designers.

1. Introduction

"Much of real world design takes place in domains with a spatial
component" (Chandrasekaran 1999). Software tools that are to be developed
to support the design process therefore need suitable representations of
spatial knowledge. As Goel (1995) pointed out, sketches are a very
important tool in the early stages of design, because they do not force
designers to be committed to precise representations as, for example, CAD
systems do. On the same account, qualitative representations are needed for
spatial reasoning to support the early stages of the design process within a
computing environment. This paper will examine spatial relations and show
how generic qualitative representations can be derived.
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Spatial relations can be subdivided into several classes and intensive
research has been conducted to investigate their properties. Over the last
few decades, three classes of spatial relations have emerged as natural
candidates for representing spatial knowledge: connectivity, orientation and
proximity. They have often been studied independently of each other. Only
rarely have all three aspects been combined. An exception is the work of
Kettani and Moulin (1999), who developed a spatial model to support
navigation through natural language instruction. Their model is very specific
and a more general model is still in need. In this paper, we propose an
approach that combines connectivity, orientation and proximity together
with their subsumption hierarchies. These hierarchies are discussed in more
detail in Sections 2,3 and 4. We show how Formal Concept Analysis (Wille
1982; Ganter and Wille 1999) can be used to define a relation hierarchy flt
representing an ontology for a particular domain, by locating each of the
relevant aspects of spatial knowledge on some level of flt. The Formal
Concept Analysis (FCA) is conducted on examples from the spatial
knowledge domain. For the sake of simplicity, we will be analysing a set of
English prepositions that describe spatial relations. The resulting relation
hierarchy could therefore also be referred to as a "Meta-Lingua," since its
definition is linguistically motivated.

However, as natural languages are often assumed to encode our internal
representations of the real world, fltoffers a generic representation of spatial
knowledge suitable for applications of different kinds. Note that this paper
is not meant to answer the question whether universal concepts of the world
actually exist in the reasoning agents' mind, but rather to explore the
possibilities of a set of universal concepts to solve computational issues in
spatial knowledge representation.

The research reported here stemmed from the observation that distinct
natural languages can embrace very different concepts to describe the same
spatial situation. For example, when comparing the use of above and on in
English with the use of prepositions in the Mexican language Mixtec, a
completely different structure is revealed (Regier 1996) as shown in Figure
I. Work employing universal primitives to represent these spatial situations
using conceptual graphs (Sowa 2000) was reported in Brennan (1999).
Spatial relations themselves were stipulated, while objects were described as
concepts in terms of their orienting axes in 3-D space. The notion of shape,
a very important point in design, can also be added to the object concept as
needed. This representation is too weak to describe some spatial situations
and contexts. However, the weakness of this representation can be overcome
by refining the stipulated spatial relations. The relation hierarchy flt
provides a valuable tool to create these refinements.

We focus here on binary spatial relations, as these are the most common
ones. We assume that spatial relations can be expressed in terms of the three
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relation classes of connectivity, proximity and orientation. We examine
these classes and their associated subsumption hierarchies in the next three
sections. In Sections 5 and 6, these hierarchies are incorporated into the
relation hierarchy fit, representing a spatial ontology.

Figure 1. Disparatespatialconcepts

2. Connectivity-Based Topology Relations

The Region Connection Calculus examines all possible connectivity
relations between regions I. Randell et al. (1992) identified several
connectivity-based topological relations such as discreteness or overlapping,
and represented them in a subsumption hierarchy (or lattice). These
connectivity notions are very intuitive and their naming is therefore adopted
in this paper. However, it is important to note that our approach is not a
mereo-topological but a set theoretical approach. While this does not
interfere with the intuitive notions of connectivity such as overlapping or
being part of, it does justify some modifications to the original RCC
relations that we found useful. Some of the original RCC specialisations
such as PP (i.e., proper part) and TPP (i.e., tangential proper part) are not
included in our subsumption hierarchy of connectivity-based topology
relations, in order to increase readability. In addition, we add the notion of
pseudo-equality, which enables to represent intuitive notions such as objects
being "next to each other". Recall that pseudo-equality allows for the
distance between two points or sets (i.e., regions in this case) to be zero
without the points being the same or the regions sharing any point. This has

1 In RCC, regionsare generallythoughtof as a representationof the spacethat is
occupiedby a spatialentity,i.e., an object that is abstractedfor the purposeof
conductingspatialreasoning.
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been shown in Vakarelov et al. (2002) to be a very useful approach for
region based theories of space. In the Region Connection Calculus (RCC)
(Randell et al.1992), the external connectedness relation EC is stronger than
the connectedness relation C. Two regions are connected if they share at
least one point and externally connected if they share at least one closure
point. In contrast, we ignore EC and define as a counterpart the relation
DC=D, which is stronger than .....c. Intuitively, DC=D(X,y) means that x and y
are "very close to each other," in the sense that they do not share any points
(including closure points) but are close enough. The relation =D represents
the fact that there are closure points from each of the sets that are pseudo-
equal i.e., they are distinct points but the distance between them is zero. The
relation DC#) has no counterpart in RCC, but it implies the traditional RCC
notion of disconnectedness. Figure 2 shows all the relations used, and the
resulting relation hierarchy.

Figure 2. Lattice defining the relation hierarchy of connectivity-based topological
relations where C(x,y) means x and y are connected; PO(x,y) means x and y have a
nonempty intersection, and neither y is included in x nor x is included in y; P(x,y)
means x is included in y; p.1(x,y) means x contains y; DCo(x,y) means x and yare

not connected but are pseudo-equal; DC"o means x and y are not connected and are
not pseudo-equal

Though more specific than the RCC discreteness notion DC (due to its
exclusion of pseudo-equality), the relation DC"D is not restrictive enough for
many purposes such as the representation of natural language expressions of
proximity, as it accounts for the large range of cases where the regions do
not share a point or are not very close to each other. As discussed in detail in
Brennan and Martin (2003), the notion of proximity needs to be carefully
defined in order to account for different grades of disconnectedness.

3. Spatial Proximity Relations

Brennan and Martin (2003) presented a theory of nearness. It was assumed
that objects are abstracted as points and positioned into a pseudo-metric
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space, with a pseudo-distance D. Points that are perceived as important by
the cognitive agent are called sites. The agent's common-sense knowledge
about an object abstracted as a site is reduced to a weight 0) that codes
various properties such as size, danger, or desirability of reaching the object.
The weights are used to define the influence areas of these objects. For any
site p, the influence area of p is denoted by IA(P), and is computed from D
and 0). The function IA is the basis for the formal definition of nearness,
whose generic notion is assumed to satisfy axioms (AI) and (A2) below.
Axiom (AI) is straightforward, just stating that every site is near itself.
Linguistically, there might be cases where an object is not considered near
itself, but formally this is a convenient assumption. From the case studies
we have done, we could conclude that any two sites whose influence areas
do not intersect have no nearness relation. Axiom (A2) expresses this
property.

(AI) For all sites p, Near(p,p)
(A2) For all sites p,q, 1A(p) n lA(q) = 0 -+ ~Near(p,q)

A "family" of nearness relations for specific distance and weight satisfying
(AI) and (A2) were defined, Table 1, resulting in a relational tree shown in
Figure 3, starting with s-nearl as the most general nearness notion of the
"family." The various nearness relations are defined as follows, where the
relations marked s are symmetric and the relations marked with a are
asymmetric:

TABLE I. Nearness Relations

s-nearI(p,q)
s-near 2(p,q)
a-near2(p,q)
a-near3(p,q)
s-near4(p,q)
a-near4(p,q)

=Dej IA(P) n IA(q) "* 0
=Dej P belongs to IA(q) or q belongs to IA(P)
=Dej (IA(p) nIA(q)f0) and ro(p) ~ ro(q)
=Dej p belongs to IA(q)
=Dej P belongs to IA(q) and q belongs to IA(P)
=Dej IA(P) is a subset of IA(q)

Each of these six notions were shown to be useful in different contexts in
a series of case studies. For example, within the context of small-scale
spaces, i.e., spaces whose structure is within the sensory horizon of the
agent, a magnetic field setting was examined which lead to the definitions of
s-nearl and s-near4. This particular interpretation shows a space of three
permanent two-bar magnets and a nail (i.e., an unmagnetised iron object).
The scene is shown in Figure 4.

It is well known that magnets attract unmagnetised iron objects and
attract or repel other magnets depending on their polarity. A bar magnet sets
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up a magnetic field in the space around it, and a second body responds to it
(Sears et al. 2000). For example, if a nail happens to be within a magnetic
field, it will be drawn towards the magnet. The second magnet does not have
to be within the first magnet's field to either be drawn to or repelled from it,
it is sufficient when the second magnet's field gets into contact with the first
magnet's field.

In this interpretation, the term magnetic field describes the region within
which the friction with the table top is not enough to stop an object (the
magnets or the nail) from moving. This means that the influence areas
depend on the frictional characteristics of the object being attracted or the
frictional characteristics in addition to the magnetic properties of a magnet
being attracted or repelled. In order to consider the spatial setting of the
magnets, we assume that the observing agent is moving the magnets into the
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positions shown and then holding on to them. This allows their fields to
intersect without them being physically moved at first encounter. The nail in
the scene is not affected by any of the magnets. The nearness relations
between these magnetic objects and even between unmagnetised iron
objects and magnets are truly symmetric. This results in exactly one model
of the scene, Table 2, where T stands for a True and F stands for a False
nearness relation.

TABLE 2. Model of nearness in the scene in Figure 4

MI M2 M3 Nail

MI T T T F

M2 T T T F
M3 T T T F

Nail F F F T

The model clearly satisfies axiom (AI) with every object being near
itself. Axiom (A2) is satisfied by the nail, whose influence area does not
intersect with the influence area of any of the magnets, being not near any of
the magnets. It can be observed that the magnets whose influence areas
intersect are also near. The definition of s-nearl in Table 1 expresses this
symmetric nearness notion. It is the most general nearness notion in our
"family" of nearness relations for specific (D, ro). Its formulation was
derived from the context of proximity spaces, in which two sets are near
each other if they share at least one closure point. Adopting this to a
universe containing distinctive points, i.e., sites and their associated areas of
influence, nearness holds for two sites if their influence areas intersect.

This does not only make sense in the context of proximity spaces, but is
also a reasonable approach for physical space. Worboys (2001) conducted
studies in the domain of environmental spaces. His experimental results
were analysed in the context of influence areas and used to validate the
general nearness notion s-near l , It was found that s-nearl was satisfied in
99.56% of all empirical cases (230 out of 231 cases recorded by Worboys).

In addition to notion s-nearl , it can also be noted that in the model
shown in Table 2, two sites are always near whenever one of them belongs
to the influence area of the other. For example, magnet M2 is in the
influence area of magnet MI and MI in the influence of M2. The nearness
notion s-near4 is a specialisation ofs-nearl as defined in Table 1.

Asymmetric aspects of nearness arose from the examination of an
environmental space setting, depicted in Figure 5(a). It is a small-scale
space, because the scene can be observed from a single viewpoint by the
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cognitive agent. Moreover, since it is also interpreted in a natural language,
linguistic restrictions are imposed on its possible models.

The scene contains a bicycle next to a house which is in the vicinity of a
church. A tree is shown in the distance. According to Talmy (1983), natural
language expressions representing spatial relations are commonly
asymmetric. Such an asymmetry can occur when the objects differ greatly in
the value of some common property such as size. While a small object might
be near a large object, the large object is usually not correctly described as
being near the small object, in natural language terms. For the scene
depicted, the bicycle is definitely near the house, but not the other way
around as can be seen in all four models shown in Tables 3 and 4.

TABLE 3. Models 1 and 2 ofneamess in the environmental small-scale space of
Figure 5

Modell Model 2

church house bicycle tree church house bicycle tree

church T T F F church T F F F

house T T F F house T T F F

Bicycle T T T F bicycle T T T F

Tree F F F T tree F F F T

TABLE 4. Models 3 and 4 ofneamess in the environmental small-scale space of
Figure 5

Model 3 Model 4

church house bicycle tree Church house bicycle tree

church T T F F church T F F F

house T T F F house T T F F

bicycle F T T F bicycle F T T F

Tree F F F T tree F F F T
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The whole influence area of the bicycle is enclosed in the influence area
of the house, but not conversely. This example and similar ones justify the
introduction of the asymmetric nearness notion a-near4 defined in Table I.
The bicycle can also be considered near the church in certain contexts as
shown in Models I and 2 in Table 3. For example, if the emphasis is on the
bicycle being parked next to the house and near the church, and not, for
example, near the station where it is usually parked. The bicycle is therefore
considered to be near the church, while in this context, it would not be said
that the church is near the bicycle. The asymmetric nearness notion a-near2
accounts for this kind of situations. The relationship between house and
church is symmetric in some contexts, abstracted in Models I and 3, but
asymmetric in other contexts, abstracted in Models 2 and 4 in Table 3 and 4
respectively.

In the FCA that will be performed in Section 5 on a set of spatial
prepositions, proximity relations are only considered when regions are not
connected. The reader should however keep in mind that proximity relations
are also true when regions overlap. Although the original framework
assumed a point-based universe for representing existing spatial entities, it is
possible to adapt the theory to a region-based universe. The point-based
universe is mainly chosen for simplicity and to derive more general
properties of nearness thanks to a high level of abstraction. However, to
investigate the properties of spatial knowledge, especially in the context of
design, it is desirable to represent the original spatial entities as regions
instead of points. These regions, as in RCC, represent the space that a
physical object occupies. We assume that all the objects are two
dimensional projections resulting in geometrical figures such as circle,
triangles or rectangles. This is also important for consistency reasons,
because proximity relations do provide a specification of the discrete
relations discussed in Section 2, which assumed point-based regions.

In order to generalise the framework of Brennan and Martin (2003) to a
region based approach, the notion of influence area needs to be redefined.
We will adopt Kettani and Moulin's (1999) approach to influence areas,
which assumes projections of buildings onto a map image resulting in
geometric figures. The influence area is then calculated from the outer
boundary of these figures using simple Euclidian geometry. While for
practical applications, this approach will most likely be directly adopted, for
the purpose of abstraction, we will be defining the influence areas of regions
by considering these geometric figures as sets of points and generating their
influence areas from their closure points and the stipulated notion of weight.

Definition 1 (Influence Area of Regions) Let a region R be given. Let R'
be the closure of R, and let w(R) be the weight of R. The influence area of R
is defined as the union of sets of points P where for each closure point r in
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R' and each point p in P the distance between p and r is at most equal to
meR).

Note that the influence area of a region R contains R '. The influence
areas of regions can be used to determine the degree of nearness between
regions in the same way as for points. This means that regions can only be
considered near if their influence areas intersect. Nearness notions for
regions are denoted by adding a superscript R to the original notion's name
when referring to objects abstracted into regions instead of points, in
accordance with the fact that the notions for regions generalise the notions
for points. The relation hierarchy of nearness relations, previously defined
for a point-based universe and adapted to a region-based universe, is shown
in Figure 6.

Figure 6. Lattice defining the relation hierarchy of proximity relations where
Near(x,y) means x is near y and s-nearl R to a-near4R denote different nearness

notions between regions

4. Orientation Relations

Orientation or direction relations are also a very important aspect of spatial
knowledge and can be used in conjunction with connectivity to describe the
position of objects to each other in a qualitative way (Hernandez 1994).
Spatial descriptions of directions can be classified as either relative or
absolute. The most studied relative reference system is no doubt the left-
right system, but as we have previously seen, the Mexican language Mixtec
does also use a relative reference system. However, the research in the field
of spatial reasoning has mainly focused on the Cardinal direction system,
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for the obvious reason that many of its applications are within the field of
Geographic Information Systems. What all frameworks do have in common
is the alignment differentiation, with vertical and horizontal alignment
differences born from the simple fact that gravity is omnipresent on this
planet. In the spatial reasoning community, the vertical orientation relations
have not been studied very deeply, as the focus is on geographic space
which is generally restricted to two dimensional maps.

Our classification differs from the one that Frank (1998) proposed by
categorising orientation relations into relative and absolute ones. The
resulting relation hierarchy of orientation relations is shown in Figure 7.
Note that only examples of the Cardinal direction system and the left-right
system are shown for, respectively, absolute and relative reference systems.
Other relations and systems are indicated by ellipsis and can easily be added
to the conceptual structure as needed.

T

.L

Figure 7. Lattice defining the relation hierarchy of orientation relations

We will now show with examples from natural spatial language how, by
analysing their formal concepts, these three fixed subsumption hierarchies
can be combined into an ontology for the domain of natural spatial
language.

5. Formal Concept Analysis of Spatial Relations

The conceptual structure of spatial knowledge is assumed to be sufficiently
represented by connectivity, orientation and proximity. But their associated
hierarchies need to be merged in order to represent the "Meta-Lingua" we
are striving for. It is therefore necessary to identify the correct links between
these hierarchies in the final relation hierarchy flt. In order to achieve this,
we analyse some examples of spatial relations, represented by spatial
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prepositions from English, in terms of the spatial primitives represented in
the hierarchies of connectivity, orientation and proximity.

In the following we will analyse the English prepositions on, in, above,
under, infront of, behind, at, next to, near and offas shown in Figure 8.2

Figure 8. Illustration of the spatial prepositions analysed

The prepositions can be fully described in terms of connectivity,
proximity and orientation, as shown in Table 5. For example, the preposition
in can be adequately described by the connectivity-based topological
relation P, meaning part of. None of the other sub-relations have any impact
on this relation. The other relations are more complex and include
orientation relations in their descriptions. For all relations that refer to
objects that are not pseudo-equal, we need to consider proximity in addition
to orientation. Note that s-nearl R is the most general notion of nearness,
hence implies all the other ones. This fact will be accounted for in the
Formal Concept Analysis.

We analyse the prepositions and their sub-relations, as stated in Table 5,
using Formal Concept Analysis (Wille 1982; Ganter and Wille 1999), in
order to derive a meaningful hierarchical structure for our spatial ontology.
For the sake of an easy analysis and representation, the prepositions (i.e.,
objects) are represented by numbers as introduced in Table 5 and their sub-
relations (i.e., attributes) are indexed alphabetically as in Table 6.

The context of the spatial relations represented by English spatial
prepositions and the sub-relations they can be described with, is shown in
Table 7. The rows represent the objects (spatial prepositions) and the

2 This figure was inspired by Langenscheidt (1993).
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columns represent the attributes (sub-relations with which the prepositions
can be described). The symbol x signifies that the spatial prepositions in the
corresponding row can be described (at least in part) with the sub-relation in
the corresponding column.

TABLE 5. English prepositions described in terms of connectivity, proximity and
orientation relations, i.e., objects

ill Preposition Connectivity Proximity Orientation
1 m P
2 on DC=D vertical, UlJ

3 above DC"D s-nearlR vertical, up
4 under DC"D s-nearlR vertical, down
5 in front of DC~D s-nearlR horizontal, relative, front
6 behind DC"D s-nearlR horizontal, relative, back
7 at DC=D horizontal
8 next to DC~D s-near4R horizontal
9 near DCtD s-nearlR horizontal

10 off DC~D »Near horizontal

TABLE 6. Alphabetically indexed sub-relations, i.e. attributes

ill Relation ill Relation ill Relation ill Relation
a p e up i front m a-nearr
b DC:D f down j back n a-near3R

C DCtD g horizontal k s-nearlR 0 s-near4R

d vertical h relative I s-near2R p a-near4R

q »Near

The context of the spatial relations represented by English spatial
prepositions and the sub-relations they can be described with, is shown in
Table 7. The rows represent the objects (spatial prepositions) and the
columns represent the attributes (sub-relations with which the prepositions
can be described). The symbol x signifies that the spatial prepositions in the
corresponding row can be described (at least in part) with the sub-relation in
the corresponding column.

Based on the formulae of Wille (1982), we determine all formal concepts
of the context in Table 5. A formal concept is defined as a pair (XY) where
X is the set of objects and Y is the set of attributes. The set X is called the
extent and the set Y is called the intent of the concept (X Y). Applying this to
the context in Table 5, we can see that none of the attributes is applicable to
all of the 10 objects as shown in the first line of Table 8. Object 1 is the
extent of attribute a and the set of objects 2 and 7 is the extent of attribute b,
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as shown in lines 2 and 3 of Table 8. In order to find all possible extents,
intersections are formed from the sets already formulated. For instance, the
intersection of the extents of a and b is empty, as can be seen on line 4 in
Table 8. Objects 2, 3 and 4 form the extent of attribute d; the intersection of
ds extent with the extents of attributes occurring above d in the table, results
in extents {2} and {3,4} shown on lines 7 and 8, respectively. Extents are
unique, therefore if an extent already exists it is not added a second time.
For this reason, attributes I, m and n are not added to the extent formulation,
because they have exactly the same extent as attribute k. Using the extents
i.e., sets of objects, we can then formulate the intents i.e., sets of attributes,
from our context, as shown in the third column of Table 8. Due to their
repetition, the attributes k.l.m.n.p are abstracted to one attribute and are
denoted by x in the Abstracted Intent column of Table 8.

TABLE 7. Context of spatial relations: spatial prepositions and their attributes

~
a b c d e r g h i j k I m n 0 p q

Objects

1 In :II:
2 on x x x
3 above x x x :II: X X X :II: X

4 under x x x x :II: :II: X :II: X

5 in front of :II: x x I X X I X I X

6 behind x I x :II: :II: X :II: X :II: X

7 at x :II:

8 next to x x x
9 near x x x x x :II: X x
10 off x x :II:

From Table 8, we can now draw a concept lattice of the context in
Table 7. This lattice is' shown in Figure 9. For drawing the lattice, we use
the abstracted intent. The structure ofthe concept lattice in Figure 9 outlines
the possible arrangement of the sub-hierarchies, shown in Figures 2,6 and 7,
within the final relation hierarchy representing our ontology for concepts of
physical space. We anticipate that this is possible, because the concept
lattice of the FCA provides the implicit and explicit representations of the
spatial data, to allow a meaningful and comprehensive interpretation of the
information.

Our main interest lies in the sub-relations, with which the spatial
prepositions can be described, and not with the prepositions themselves. In
order to analyse the hierarchical structure of the sub-relations, a lattice,
displaying the sub-relations only, is generated as shown in Figure 10. Note
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that more specialised levels in a lattice always inherit the sub-relations from
more general levels. We have therefore only added the additional relations
to each level or all relations for nodes that would otherwise have been
empty, in order to make the lattice more readable.

TABLE 8. Formal concepts from the context in Table 7

Attribute Extent Intent Abstracted

Intent

(L2,3,4,5,6,7,8,9, 1O} ( } T

a {I} {a} {a}

b {2,7} {b} {b}

{ } {a.b.c.d.e.f.g.h.ij.k.l.m.n.o.p.q} .1.

c {3,4,5,6,8,9,IO} {c} {c}

d {2,3,4 } {d} {d}

{2} [b.d,e} {b.d,e}

B,41 {c.d.k.l.m.n.o.p} {c.d.o,x}

e {2,3} {d,e} {d,e}

{3 } {c.d.e.k.l.m.n.o.p} [c.d.e.o,x}

f {4} {c,d,f,k,l,m,n,o,p} {c,d,f,o,x}

g (5,6,7,8,9,IO} {g} {g}

{7} {b,g} {b,g}

{5,6,8,9,IO} {c,g} {e,g}

h {5,6} {c.g.h.k.l.m.n.o.p} {c.g.h.o,x}

i {5} {c,g,h,i,k,I,m,n,o,p} {c.g.h.i.o,x}

i {6} {c.g.h.j.k.l.m.n.o.p} {c.g.h, i,o,x }

k {3,4,5,6,9} {c.k.l.m.n.o.p} {c.o,x}

{5,6,9} [c.g.k.l.m.n.o.p} {c.g.o,x}

° B,4,5.6,8,9} {c,o} {c,o}

{5,6,8,9} {c,g,o} {c.s.o}

Q {IO} [c.g.q} (c,g,a}

6. A Relation Hierarchy of Spatial Relations

As expected, the proximity relations are always a refinement' of the
topological relation DCtD. The final relation type hierarchy of spatial
relations therefore has the relation hierarchy of proximity relations from
Figure 6 as a refinement of DCtD. Orientation is a refinement of both
connectivity and proximity. These relations between the subsumption
hierarchies of connectivity, proximity and orientation are shown in

3 A relation R is a refinement of a relation S if R is a subset of S.
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Figure 11. The resulting hierarchy is refmed further by the relation
hierarchy fJl,

({I),{a})

T

({2,7},{b}) ({S,6,7,8,2,JO),{g}) ({3,4,5,6,8,9,lO},{c})

({71,{b,g})

({lOI,{c;g,q}) ({2},{b,d,e})

1

Figure 9. Concept lattice of the context in Table 7

Figure 10. Sub-relation lattice where both occurrences of x stand for s-nearl R, s-
nearz", a-nearz", a-near3R and a-near-l''. More specialised levels in a lattice always

inherit the sub-relations from more general levels. Therefore only the additional
relations are added to each level or all relations for nodes that would otherwise have

been empty.
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Figure 11. Relations between the subsumption hierarchies

Orientation only refines that part of the hierarchy for connectivity that is
below -'C, because for concepts such as the ones represented by the
preposition in, orientation is not considered at all. This indicates that
orientation relations should be located lower in the [mal hierarchy than
connectivity relations. This is also a reasonable approach in the context of
Gapp's (1994) potential field approach to representing orientation relations,
where it is assumed that orientation is only considered if the reference
object and the object to be localised are sufficiently close to each other.
Therefore, orientation is not only a refmement of connectivity, but also of
proximity.

The Mixtec prepositions siki and sini do not consider the topological
relations, but only the orientation relations and the extent of the lower
object. The extent of the objects has already been covered by the concept
description in terms of the object's axes (Brennan 1999).

We therefore only need to add the orientation sub-hierarchy to the -'C
branch without a need for the distinction between pseudo-equal and pseudo-
unequal relations, which Mixtec does not account for. This way, the
hierarchy can then cover spatial relations in general even covering for
unfamiliar concepts such as the Mixtec examples. Topological and
proximity relations can be subsumed in this branch of the relation hierarchy
if needed. Figure 12 shows the relation hierarchy representing an ontology
for concepts of physical space based on the sub-hierarchies previously
discussed, with a hierarchical structure drawn from the Formal Concept
Analysis of English spatial prepositions. Due to (drawing) space limitations,
some of the sub-hierarchies are represented by symbols. For example, the
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relation denoted by Orientation can be subsumed by the relation sub-
hierarchy for orientation relations shown in Figure 7.

Figure 12.RelationhierarchyR for spatialrelations

7. Example for the Use of the Relations Hierarchy l1tin Design

An example of the use of the relation hierarchy fit in design could be a
formal representation of discussions between the designer and a client. Once
the client's requirements are mapped into some form of representation that
corresponds to the entries in the hierarchy, tools could generate potential
solutions. A more specific example could be as follows.

For the sake of simplicity, we will only consider simple geometric
figures such as rectangle, triangle or circle, and assume design in the
architectural domain. In the context of nearness notions, the influence areas
of objects can here be defined in part by existing building regulations with
the option of designer input i.e., the designer graphically placing objects in
certain positions and assigning them to certain nearness notions as needed
and for later usage. We assume that the designer requires two rectangles
with A being smaller than B and states that he or she wants A to be on the
left of B. If this is the only constraint given, we can now generate the
possible layouts by identifying all the relations that represent a
generalisation of the left-relation. The DC=D and all of the nearness relations
should therefore be considered for the generation of possible layouts to be
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presented to the designer. A number of possible layouts are shown in
Figure 13.

8. Conclusion and Outlook

This paper proposed a spatial ontology, bringing together three aspects of
spatial knowledge: connectivity, proximity and orientation. We used FCA
of English spatial prepositions together with the analysis of spatial concepts
in other languages to define the hierarchical structure of the ontology.

Figure 13. Possible layouts for rectangle A being to the left of rectangle B

The spatial ontology proposed in this paper provides a good starting
point for a comprehensive representation of spatial knowledge that can be of
interest not only to spatial reasoning, but also to the field of knowledge
representation in general. The third spatial dimension (up-down) is often
neglected, potentially causing problems in applications such as design or
robotics. The representation of spatial knowledge we propose could help
overcome this issue as it covers each dimension of the perceptual space.

Future work will focus on the formalisation of the ontology, as it offers
very interesting prospects, not only from a spatial cognition point of view,
but also in terms of a formal theory. Another possible and interesting
direction that could be taken is the application of the ontology to knowledge
representation systems or as part of computer-aided design systems that
enable the visual representation of verbal spatial descriptions, which might
have been the result of discussion between client and designer or a group of
designers.
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