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Abstract
Meaningfully managing the relationship between representations and the entities they represent remains a challenge 
in robotics known as grounding. Useful insights can be found by approaching robotic systems development specifi-
cally with the grounding and symbol grounding problem in mind. In particular, Semantic Web technologies turn out 
to be not merely applicable to web-based software agents, but can also provide a powerful extension to existing 
proposals for grounded robotic systems development. Given the interoperability and openness of the Semantic Web, 
such technologies can increase the ability for a robot to introspect, communicate and be inspected - benefits that 
ultimately lead to more grounded systems with open-ended intelligent behaviour.
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1	 Introduction
The symbol grounding problem [4,10, 28,30] is a preva-
lent topic in Artificial Intelligence relevant to problems 
in knowledge representation, psychology and robotics. 
The problem is that of making the interpretation of a for-
mal symbolic system intrinsic to the system itself, rather 
than depending on the interpretation in the minds of the 
human designers of the system [9].
The symbol grounding problem is related to the more 
recent and general concept of groundedness. Ground-
edness is the degree to which the entities of a system’s 
representations correspond meaningfully to the entities 
that they represent [28]. Grounding and groundedness 
is a multidimensional and graded property of systems: 
different representations and systems can afford many 
different degrees of expressiveness, relevance, faithful-
ness, correctness, accuracy/precision, robustness, adapt-
ability, timeliness, efficiency, self-awareness, awareness 
of others, functionality, transparency, testability and un-
certainty management. Given these many dimensions, 
there is often no clear answer as to whether the entities 
in one system are definitively more meaningfully con-
nected to reality than another, however it is possible to 
draw conclusions and make useful comparisons about 
these individual characteristics of a system’s grounded-
ness.
One view of the development of robotic systems is, as 
a process, principally concerned with grounding: creat-
ing meaningful representations, maintaining those rep-
resentations and acting upon them in an appropriate and 
timely manner. In theory, robots need not make use of 
any form of symbolic representation—they could, for 
example, be purely reactive—however, many practical 
robots in use and under development today make some 
use of symbolic representations. While these symbols 
may be ‘second-class’ entities that have been created on 
an ad-hoc basis and may be difficult to inspect, they are 
nevertheless abstract entities intended to refer to external 
entities or concepts. Groundedness with respect to these 
symbols is then the problem of how the symbols mean-
ingfully correspond to real-life entities and concepts: the 
symbol grounding problem.

If the symbols in robotic systems are promoted to ‘first-
class’ entities with independent existence and meaning, 
it then becomes possible to relate these symbols to con-
cepts in a formal ontology. Doing so can enrich both the 
robotic system and the ontology. A robotic system en-
riched with a formal ontology is more grounded—the 
ontology can allow for greater adaptability, self-aware-
ness, awareness of others, functionality, transparency 
and testability. Conversely, an ontology enriched with 
concepts of a robotic system has symbols whose mean-
ing have been ground to reality via the robot: the robotic 
system fixes the meaning of the ontology, helps identify 
problematic constructions and can even be used as a rea-
soning mechanism in itself (a difficult problem may, in 
fact, be best solved by experimentation or exploration in 
the real world).
In this paper we introduce OBOC (Ontology Based Ob-
ject Categorization), a combination of Semantic Web 
technologies and robotic systems that has been im-
plemented on a Sony four-legged AIBO robot. While 
OBOC is narrowly focussed on the problem of recogni-
tion of objects and communication, related work by Vogt 
[27] and by Gärdenfors and Williams [8] has shown that 
categorisation is an essential process in understanding 
and constructing grounding capabilities. Categorisation 
is an important capability for robots because it allows 
them to deal with and efficiently store, reason with and 
communicate complex information captured by their 
internal and external senses. In OBOC, Semantic Web 
technologies enable categorization, communication and 
reasoning by providing standard protocols and languag-
es for defining and sharing ontologies (using the Ontol-
ogy Web Language, OWL). The result, a system com-
bining the robot’s physical and sensory capabilities with 
high-performance reasoning capabilities of the Racer 
inference engine, is a vast improvement over closed ro-
botic systems that are unable to rapidly adapt to novel 
situations. And while our experiments with OBOC have, 
to date, focused on categorization and communication; 
there is no reason the framework would be unsuitable for 
extensions such as sharing actions and intentions.



2	 Grounding, Symbol Grounding, 
Anchoring and Categorization

Grounding concerns managing the relationship between 
representations and the entities they represent in a mean-
ingful fashion. This relationship is important because it 
affects the way an intelligent system can potentially be-
have, how it can interact with its environment, and what 
it is capable of achieving [28]. Related to grounding are 
sub-problems of symbol grounding, anchoring and cat-
egorization. Conceptualizing these sub-problems as re-
strictions on the general problem of grounding creates a 
clearer understanding of the issues.
It is important to realize that grounding or grounded-
ness is a multidimensional process or capability: it is not 
possible to merely claim that a system’s representations 
meaningfully correspond to external entities, for the def-
inition of meaningful is a complex and loaded term. By 
conceptualizing grounding as a multidimensional and 
graded property, we can analyse different capabilities 
of systems and thereby compare different systems even 
though it may not be meaningful to claim that a system 
is objectively grounded or that one system is objectively 
more grounded than another entirely different system. 
Williams et al. [28] offer a framework for analysing 
groundedness; in their framework, the groundedness of 
a system is analysed in terms of a set of gradings along 
multiple dimensions. While they make no claims that 
their analysis is exhaustive, they offer sixteen dimen-
sions: expressiveness, relevance, faithfulness, correct-
ness, accuracy/precision, robustness, adaptability, time-
liness, efficiency, self-awareness, awareness of others, 
functionality, transparency, testability and uncertainty 
management.
The Symbol Grounding Problem [9] is, in fact, a restric-
tion on the general grounding problem (or conversely, 
grounding is a generalization of symbol grounding). 
Where grounding is concerned with the relationship be-
tween a system’s representations and reality, the symbol 
grounding problem is concerned only with those sys-
tems whose high-level representations form a symbolic 
system. A symbolic system is a set of arbitrary tokens 
that are manipulated on the basis of explicit rules (that 
are also defined in terms of arbitrary tokens), and sub-
ject to a semantic interpretation. Intuitively, a symbolic 
system may be seen as systems that are implemented us-
ing high-level programming languages (C, C++, Java, 
Python, Lisp, etc.) or that resemble the logic-based ap-
proaches of “Good Old Fashioned AI” (GOFAI).
In fact, symbol grounding relates to work that dates as 
far back as the ancient Greeks in their search for “true 
reality” and their study of metaphysics. More recently, 
prominent work by Kent [10], Searle [22] and Harnad 
[9] have raised the challenge in the context of AI. Searle 
[22] introduced the well known Chinese Room thought-
experiment. Searle uses the Chinese Room to argue that 
computer programs are syntactic and lack the semantics 
that allow it to understand. Since no amount of syntax 
will ever produce semantics, Searle concluded that a 
purely symbolic system will never be able to understand 
what it is doing because of the lack of intentionality i.e., 
the inability to link internal representations to exter-
nal objects or states [30]. Harnad [9] later identified a 
core challenge of the argument, and posed the question 

of how ‘the semantic interpretation of a formal symbol 
system be made intrinsic to the system, rather than just 
parasitic on the meanings in our heads?’ In other words, 
how can arbitrary symbols be grounded and given mean-
ing? This is the challenge underlying the symbol ground-
ing problem and the more general problem of grounding 
representations.
Harnad’s [9] own response to the symbol grounding 
problem was to propose combining connectionism (sub-
symbolic) methods with symbolism (symbolic systems) 
into a hybrid model. Harnad uses connectionism as a 
way of representing icons and categories—internal ana-
log transformations of sensory data—that ‘pick out’ or 
‘distinguish’ concepts. He sees the relationship of icons 
and categories to sensory input as beyond the need for 
semantic interpretation—the icons and categories are 
merely causal responses to sensations. These can then 
be fixed to the elementary symbols of a symbolic sys-
tem: when one has a sufficient set of elementary symbols 
grounded via an iconic connectionist network, then the 
rest of the concepts and symbols in a complex language 
can be generated by symbol composition alone. This, 
Harnad argues, is a solution to the symbol grounding 
problem.
If we, however, view symbol grounding as a multidi-
mensional property then one recognizes that the prob-
lem isn’t merely a matter of finding a ‘solution’. Differ-
ent systems have different degrees of groundedness—a 
more grounded system might have the capability to in-
trospect upon the relationships between its icons and 
sensations, or it might be based on the idea of anchoring 
meanings to external objects rather than sensations as 
in work by Vogt [27]. Furthermore, different choices of 
elementary symbols can result in systems that are more 
expressive, robust, adaptable, transparent and testable, 
and therefore more grounded. For example, a system 
that can represent the categorization of a ‘soccer ball’ in 
terms of its shape, texture and purpose would be more 
grounded than other system that treats ‘soccer ball’ as an 
elementary symbol.

3	 Symbolic Systems, Ontologies 
and the Semantic Web

Many ‘intelligent’ systems today incorporate some form 
of symbolic system—even if those symbols and rules 
are tightly embedded as the atoms and constructs of the 
mainstream programming languages used to implement 
the system. For example, a soccer playing robot might 
use a set of tokens to represent the position of a ball: it 
may have a set of rules hard-coded as C++ functions to 
predict the path of the ball, and move to a strategic posi-
tion. In seeking to create more grounded systems, we 
recognise however, that such hard-coded rules restrict 
our ability to adapt such systems to novel situations. 
By exposing the symbols of a system as first order con-
structs in and of themselves (rather than entities in the 
software engineer’s mind) it is possible to create more 
grounded systems.
Formal ontologies, particularly ontologies described us-
ing expressive formal languages, is one approach to con-
structing symbolic systems. Such ontologies are logical 
structures intended to present and independent model of 
reality—each symbol is defined for consistent seman-



tics, robust reasoning and communication.
In recent years, Semantic Web efforts have resulted in 
the development of standard languages for expressing, 
reasoning with and communicating ontologies. The Web 
Ontology Language (OWL) is an established standard 
with widely available and efficient reasoners. By inte-
grating (or implementing) the high-level symbolic sys-
tems of a robot with Semantic Web technologies, it be-
comes possible to make use of widely available tools, 
communication protocols, reasoners and best practices, 
thereby enhancing and improving the groundedness of 
the robotic system.
The use of ontologies in robots is novel [8] and few, if 
any, implementations and evaluations have been report-
ed. Perhaps the most related research is Schlenoff [19] 
who described the use of an ontology of obstacles to aid 
in path planning and obstacle avoidance. Other applica-
tions of ontologies have primarily been demonstrated in 
systems that are used for image and document classifi-
cation [3,21,24], communication and object mapping in 
mobile robots [11,27] and also object learning [14]. 

4	 Object Recognition in Robot 
Soccer

RoboCup is an international robot soccer initiative de-
signed to advance the field of Robotics. It involves an 
annual competition involving soccer, rescue and house-
hold robotic systems where international teams of auton-
omous mobile robots compete against each other under 
different conditions. 
The robot soccer domain is a complex and dynamic en-
vironment. In the 4-Legged League, Sony AIBO robots 
fight for possession of an orange ball in order to pass it to 
team-mates or shoot for goal. The playing field is 5.4m 
by 3.6m, made of green felt, and defined using white 
boundary lines and colour coded beacons. The four ro-
bots on each team are physically identical: principally 
interacting via their single camera, single chest-mount-
ed range-finding sensor, joint actuators, joint-feedback 
sensors and wireless LAN (for robot-to-robot commu-
nication). The robots independently and autonomously 
process their motor-sensory data in order to construct 
a model of the current state of the field. A robot must 
be able to recognise the goals, the ball, other players, to 
reason about their position, and to select appropriate re-
sponses. This domain demands not merely on competent 
ball skills, but the fusion of sub-symbolic information 
into symbolic representations that guide strategy and 
that are shared with other robots to coordinate play.
We have targeted RoboCup as the domain to explore 
our ideas on object categorisation through ontologies 
and grounding because of the mixed demands for so-
phisticated object recognition, prediction, planning and 
communication in a dynamic environment. The UTS 
Unleashed! Robot Soccer System that competed in the 
Four-Legged RoboCup Competition in 2003 and 2004 
(and has since been used for non-competitive research) 
was selected as the platform for development as it al-
lowed us to focus entirely on the design and implemen-
tation of OBOC without having to redevelop the exten-
sive infrastructure required for fundamentals such as 
locomotion and vision.

The RoboCup environment has been largely crafted to 
assist with the AIBO’s sensory capabilities. Standard-
ized colours and lighting conditions allow for objects to 
be identified using straightforward colour segmentation 
techniques. For example, the ball is usually perceived as 
a large, round area of orange colour (although this can 
be complicated by occluding objects and shadows). The 
robots ground their colour concepts to sensory stimuli 
derived from their cameras. Colour concepts effectively 
form icons and of the physical objects; the colour seg-
mentation capabilities of the robot effectively form the 
causal link and elementary concepts of Harnad’s [9] ap-
proach to symbol grounding. These elementary concepts 
can be used to build knowledge: combined into predi-
cates that are used to describe the world and its behav-
iour within the robots knowledge base.

5	 Applying OWL to RoboCup
The use of expressive ontologies in RoboCup allows 
for both feature-based and context-based categorisation. 
Furthermore, ontologies enable these concepts and cat-
egorisations to be shared with other robots. These are 
discussed in further detail below.

5.1	 Feature Based Categorisation
Using OWL properties, we can define abstract concepts 
(such as the ball) from the elementarily grounded con-
cepts. For example, a concept corresponding to Ball 
can have the necessary property hasColor constrained 
to the concept Orange. One can furthermore use OWL 
to define both sufficiency conditions: all objects with 
hasColor Orange are instances of Ball.
In practice, three factors govern the robot’s performance 
with feature-based categorization:

1.	 The quality of the elementary symbols for describ-
ing terms in the ontology and distinguishing ob-
jects in the real world (can we distinguish colours, 
shapes, movements?)

2.	 The quality of the ontology in defining objects cor-
rectly and in sufficient detail 

3.	 The scope of the robot’s application and the simi-
larity of objects that need to be distinguished 

For example, no teams in the RoboCup 4-legged league 
would currently be able to distinguish an orange soccer 
ball from a piece of ripe orange fruit: given the elemen-
tary grounding of these systems, there is no attribute 
that can be used to distinguish them. In practice, these 
recognition problems can have a significant impact on 
play—stray orange objects in the background can some-
times be identified as balls.
We cannot, however, expect to be able to solve these 

Figure 1: Raw camera image and extracted objects in 
the raw image



problems completely. Even as human beings, our highly 
sophisticated object recognition system is perceptually 
limited and suffers from a range of mistakes including 
optical illusions, hallucinations and other phenomena 
such as change blindness. Some uncertainty in an on-
tology (with respect to the elementary grounding) is in-
evitable—we must accept this fact and handle it grace-
fully.

5.2	 Context Based Categorisation
Often contextual information is able to distinguish simi-
lar objects. For example, a round orange object in a fruit 
bowl is likely to be an orange or mandarin, whereas a 
round orange object on a RoboCup field is more likely to 
be a ball. In both cases the percept of round orange thing 
is similar, yet the classification is very different. An 
OWL ontology can be used to represent such contextual 
information. For example, we can express contextual in-
formation about the goal box in the following way:
	 GoalBox ⊑ Ǝ1isBehindOf.GoalKeeper ⊓ 
		  Ǝ1isNear.OwnBeacon
Using this technique, a robot would be able to use the 
ontology to determine the relationships between recog-
nised objects and be able to successfully categorise them 
based on context. This is similar to how some systems 
use ontologies for image classification [3,21] and also 
for the use of Relational Object Maps [11].

5.3	 Concept Learning and Sharing
OWL has been specifically designed for inter-operability 
among semantic web systems, and so is ideal for allow-
ing robots to communicate. Ontologies allow robots to 
share knowledge about a single recognised object, even 
if they have different categorization capabilities. Ontol-
ogies not only allow two concepts to stand for the same 
object in respect to different groundings [25], but for the 
defined semantics and relationships to be compared, in-
tegrated and fused.
Consider the following example where Robot 1 fuses in-
formation from Robot 2:

Robot 1 (Initial): 
	 Ball ⊑ Ǝ1hasShape.Round ⊓ Ǝ1isMovable.True,
	 RoboCupBall ⊑ Ball
Robot 2 (Initial): 
	 PinkBall ⊑ Ǝ1hasShape.Round ⊓ 
		  Ǝ1isMovable.True ⊓ Ǝ1hasColour.Pink

Robot 1 Fused (After): 
	 Ball ⊑ Ǝ1hasShape.Round ⊓ Ǝ1isMovable.True,
	 (RoboCupBall ⊔ PinkBall) ⊑ Ball, 
	 PinkBall ⊑ Ǝ1hasColour.Pink
If Robot 2 recognises a round, pink object and categoris-
es it as a PinkBall any robot that receives a message de-
scribing all the ontological features of PinkBall will be 
able to infer that this object is a type of Ball and respond 
accordingly. Obviously, a key assumption here is that 
overlapping symbols are jointly grounded or are defined 
in separate name-spaces—this is necessary, and implied 
in our use of ontologies that are intended to represent an 
‘objective’ view of reality. If the meaning of Round is 
not known to be identical between Robot 1 and 2, then 
these should be given different symbols or name-spaces 

in the ontology: they should only be related or equated 
when more information is known. Note, also, that Robot 
1 need not be able to perceive Pink—if it is merely look-
ing for any Ball to kick, it can still communicate with 
Robot 2 about the existence of the PinkBall and reason 
about it as a ball, even if it cannot independently classify 
an object as being specifically a PinkBall without the 
assistance of Robot 2.

6	 Ontology, System Design and 
Implementation

The aim of our research is to implement and evaluate an 
ontology-based approach to categorization. The archi-
tecture, design and development of this system, OBOC, 
is briefly described below.

6.1	 RoboCup Ontology
Using Protégé for development, a domain specific ontol-
ogy was created for the 4-legged robots. Represented in 
this ontology are both ConcreteObjects such as goals, 
players, balls, regions and beacons; and AbstractObjects 
such as colour, shape, heading and position. The robot’s 
beliefs and perceptions about the transient state of the 
soccer field are maintained and shared as assertions 
(ABox), while the ontology (TBox) is used and shared 
for recognizing and classifying those objects as specific 
and defined concepts. 

6.2	 System Design
Figure 2 illustrates the foundation for the design model. 
The entities of the system are described below: 
Object Categoriser: responsible for categorising ob-
jects based on properties and context. 
Ontology Management: manages existing classes and 
creates new classes in the ontology. In addition it servic-
es queries from the Concept Learner and communicates 
with the Ontology Reasoning entity to categorise a class 
based on the properties and/or context. 
Concept Learner: queries the ontology for categorised 
concepts to infer identifiable properties and features of 
the object that it represents. 
Concept Merger: is responsible for identifying seman-
tic relationships between concepts. 
Ontology Reasoning: performs queries on the ontol-
ogy using the reasoning services of a third party compo-
nent—Racer, located on a server. 

6.3	 Ontology Based Categorisation Tool

Figure 2: System boundary model of the OBOC 
system
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A proof-of-concept tool has been developed and evalu-
ated. The Protégé API was used to access and manage 
the ontologies, while the Racer server was used for onto-
logical reasoning. The tool allows users to interact with 
the RoboCup Soccer ontology by enabling properties to 
be entered via a graphical user interface and immediate-
ly respond with categorized objects. Although this tool 
has been developed for a specific platform, the methods 
and techniques could be integrated into any robot infra-
structure where high level object recognition capabilities 
is required for communication and collaboration.

7	 Results
Our experimentation and interaction with OBOC does 
indeed confirm our claims:
OBOC successfully identified beacons, balls and other 
objects via the ontology. When colours were changed on 
the soccer field or in the ontology, OBOC responded ap-
propriately. 
While, not an ideal solution, simple qualitative heuris-
tics proved sufficient for managing situations of uncer-
tainty (other approaches are addressed as future work in 
the following section). 
OBOC allowed human developers to richly query the 
state of the perceived world and rapidly understand the 
particular consequences of ontology modification. 
OBOC responded in a timely and efficient manner. The 
theoretical upper bounds of ontological reasoning were 
not a practical problem. 
While the current approach would violate of the rules 
of RoboCup (the use of an external reasoning server is 
prohibited), these results are very promising.

8	 Generality and Future Work
The OBOC system is a starting point for a holistic ap-
proach to grounding robots. In this section, we focus 
on the feasibility of incorporating other extensions to 
OBOC. We claim that it is possible for future versions of 
OBOC to support tasks including reasoning, planning, 
ontology evolution, multi-agent knowledge sharing and 
coordination.

8.1	 Reasoning Support
OBOC already incorporates advanced reasoning capa-
bilities as a consequence of the use of logical formal-
isms. OWL is based on description logics (DL)—these 
have well-defined model-theoretic semantics and deci-
sions procedures that provide a sound and complete sup-
port for concept satisfiability, concept subsumption and 
instance checking. In fact, efficient reasoners such as 
FaCT, Racer or KOAN2 offer highly practical perform-
ance on standard case problems.
Nonmonotonic reasoning can simplify the expression of 
domain knowledge, and allows an agent to deduce in-
tuitive results in the case of uncertainty using defaults. 
While OBOC currently does not support nonmonot-
onic reasoning, extensions of description logics have 
been proposed based on defaults [1] and circumscrip-
tion [2], or may be layered with a nonmonotonic logic 
providing higher-level reasoning. Furthermore, integra-
tion of description logics with logic programming rules 

[5, 15,18,29] can enrich the expressivity of an ontology 
and introduce closed world reasoning into otherwise 
open-world DL ontologies.

8.2	 Planning
OBOC currently only supports categorization, but by ex-
tending the robot ontology to incorporate descriptions of 
actions, it would be possible to improve the grounded-
ness of the robot’s planning capabilities. Implementation 
need not be overly sophisticated: in DL-based ontolo-
gies, the existence of a plan can be reduced to reasoning 
on satisfiability of DL [13]. Planning with DLs has been 
very important in the composition and automatic execu-
tion of Semantic Web services. These very same tech-
niques can be applied to autonomous robots for planning 
their goals.
In the longer term, future research will explore the rep-
resentation of even broader ranges of concepts. Ideally, 
it would be possible to represent not just a plan of the 
current robot, but also the intentions and likely plans 
of other robots (both team-mates and opposition). This 
level of sophistication would be cued by the opposition’s 
behaviours (i.e., inferring intention from behaviour) and 
is necessary to anticipate behaviour and perform actions 
such as deliberate (as opposed to opportunistic) inter-
cepts.

8.3	 Ontology Evolution
While the ontology-based approach used in OBOC al-
lows for rapidly evolving ontologies and sharing knowl-
edge, in richly dynamic environments the underlying on-
tologies may be subject to on-line revision: humans may 
supply new knowledge, robots may merge knowledge 
bases and rules of the game may change. In classical for-
malisms, such changes introduce inconsistencies and the 
effect is explosive: any conclusion can be obtained from 
reasoning, and the ontology turns out to be trivial. The 
agent must either support nonmonotonic reasoning or, in 
the case of more dramatic change, revise its own ontol-
ogy to allow the consistent addition of new knowledge.
There has been much recent work on inconsistency han-
dling in DL ontologies. Although standard belief revi-
sion applies for the propositional case, generalizing these 
results to description logics can present a challenge. 
Flouris [6,7] proposes a DL version of AGM postulates 
that serve as rational postulates for ontology contraction 
and revision operators, and Qi et al. [17] offer a model-
theoretic version of AGM postulates. These works lay 
the foundation for ontology revision. Revision methods 
include those of Qi [17], Meyer [12], Scholbach [20]. 
These methods allow robots to consistently revise their 
own knowledge in the face of new information.
Furthermore, ontology debugging and diagnosis may be 
useful for identifying and correcting (possibly with hu-
man assistance) the axioms that ‘cause’ inconsistency/
incoherence [16,20]. Ontology debugging systems such 
as Swoop [16] can be readily employed in OBOC for 
improving the testability and transparency (and there-
fore groundedness) of the system.

8.4	 Multi-agent Communication
While OBOC currently assumes that the ontologies 
shared between robots are in some way consistent or 



readily merged, in future it may be possible to support 
more loosely coupled coordination through techniques 
such as ontology mapping [23] to create translations or 
bridge axioms [26]. One solution is to have an ontology 
alignment protocol that can be interleaved with any other 
agent interaction protocol and would be triggered upon 
the receipt of an unrecognized message from a foreign 
ontology. Agents meeting each other for the first time 
would be able to negotiate the matching of terms in their 
respective ontologies and to translate the content of the 
message they exchange with the help of the alignment.

9	 Conclusions
Building on Harnad’s [9] ‘solution’ to the symbol 
grounding problem, we have designed an architecture 
for constructing robot systems that is attentive to the 
richer understanding of grounding and groundedness. 
In OBOC, very simple iconic and categorical represen-
tations are causally connected to the robot’s sensory 
subsystems—providing an elementary grounding upon 
which Semantic Web technologies are applied. The re-
sult is a richer, more flexible, more adaptive and there-
fore more grounded robotic system. While OBOC is 
currently limited to object categorization on the basis of 
features and context, the OBOC architecture and the on-
tology-based reasoning systems can be readily extended 
with greater capabilities.
There is much scope for future work. Outside the ro-
bot soccer field, we obviously do not have the ability 
to mark or colour code every object. Of course, the key 
point in OBOC is that the grounding still takes place via 
the sensors, even if those sensors are in-fact unable to 
distinguish or identify complex objects outside of the 
soccer field. Aside from improving the reasoning capa-
bilities of the system, there is also therefore much scope 
for improving the richness of the elementary grounded 
symbols of the system. The long term objective is to 
gradually enrich this elementary grounding, improve the 
reasoning capabilities, tool-set and detail of the system’s 
ontology—that is, to improve the system’s grounding—
so that it can respond to new objects and learn from oth-
er systems in unknown situations outside of the crafted 
soccer field.
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