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Abstract

In this paper, a hybrid model is introduced which combines
a linear regression model in parallel with a nonlinear regres-
sion model such as the Modified Probabilistic Neural Net-
work (MPNN). This model provides a first order approxi-
mation of the underlying mechanism using linear regression,
and then use the MPNN to capture the local details of in-
terest. This model allows the selected data regions of inter-
est be modeled more accurately by a nonlinear compensator
while the rest of the data regions are approximated by a lin-
ear regression model. The experiment on surveillance image
modelling shows that the proposed model achieves improved
performance over conventional methods such as MultiLayer
Perceptron (MLP) or Volterra Filter based modelling.
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1 Introduction

In visual surveillance applications, efficient image processing
techniques are very important due to intensive computations
required. Many methods have been proposed to achieve ef-
ficiency in visual information processing from various dis-
ciplines such as Engineering, Statistics and others. In this
paper, we propose a hybrid modelling system that models
the surveillance images in two separate signal spaces in order
to achieve reduced complexities while achieving satisfactory
modelling performance.

In many surveillance image processing applications, it is
reasonable to assume that the region of interest within the
image may only be the small region where the human subject
is located. If a nonlinear modelling technique is utilized to
model the whole details of the image, it is clearly ineffective
since many redundant information must also be modeled in
detail. In such cases, it is reasonable to approximate the
coarse grained overall structural background information of
the image firstly by a linear regression model, and then to
apply a nonlinear regression model to obtain the fine grained
model of the significant information such as the human lo-
cation or movement that require attention. The nonlinear
model approximates significant human related information
by modelling the local complexities which are represented by
the difference between the linear approximation of the im-
age and the training sample image. This allows the selected
local regions of interest (e.g. human location) to be modeled
more accurately by a nonlinear model in a separate domain
(see figure 4-3), whilst the rest of the regions are approxi-
mated adequately by the linear regression model utilizing all
available data (see figure 4-2). This method promises to be
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very effective and efficient especially for large image process-
ing applications by reducing the computational complexity
while achieving good modelling performance.

The proposed hybrid system is a parallel combination of a
linear regression model and the Modified Probabilistic Neu-
ral Network (MPNN). In this hybrid model, the linear regres-
sion model provides a reasonable structural approximation
of the underlying image, while the MPNN approximates the
human-related complexities occuring in specific regions of
the image by effectively adjusting a single smoothing param-
eter". This model achieves superior modelling performance
over conventional nonlinear modelling techniques such as the
MultiLayer Perceptron (MLP) and Volterra Filters.

2 Method

The model is a linear regression model connected with
MPNN in parallel as shown in Figure 2, and described in
equations 1 and 2.

where

(2)

and
.:!e.=input vector,
.:!e.;=training input vector,
y; = scalar training output,
YN,= difference between the linear approximation and the

training output,
£; = center vector for class i in the input space,
Z;= no. of vectors .:!e.;associatedwith each £;,

Wo= initial offset,
W;= weights of the linear model.

The linear regression model is firstly approximated by us-
ing all available training data in a linear regression analysis.
Then the MPNN is constructed to compensate for the local
nonlinearities. The local nonlinearities are represented by
the difference between the linear regression output and the
training output data as shown in equation 2.

lSpread value used for General Regression Neural Network or
Modified Probabilistic Neural Network.
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Figure 1: Combination of Linear Regression Model with
MPNN as Nonlinear Regression Model

2.1 Introduction to MPNN
The MPNN was initially introduced by Zaknich et al [1991].
It is closely related to Specht's GRNN and his previous work,
Probabilistic Neural Network (PNN) [Specht 1990]. The ba-
sic MPNN and GRNN methods have similarities with the
method of Moody and Darken [1988]; the method of RBF's
[Powell 1985], [Broomhead 1988]; the CMAC [Albus 1975],
[Miller et al. 1990]; and a number of other nonparametric
kernel-based regression techniques stemming from the work
of Nadaraya and Watson [1964].

The general algorithm for the MPNN is:

with

f.( ) _ -(~ - £;)T(~ - f;)
,~ - exp 20"2

~= input vector,
y; = scalar training output,
f; = center vector for class i in the input space,
Z;= no. of vectors ~;associated with each f;
M = number of unique centers f;

A Gaussian function is often used for f;(~) as defined in
equation 4, however many other suitable radial basis func-
tions can be used. Tuning simply involves finding the opti-
mal 0" giving the minimum mean squared error (mse) of the
network output minus the desired output for a representa-
tive tuning set of known sample vector pairs by a convergent
optimization algorithm [Zaknich et al. 1991].

The MPNN can approximate arbitrary functions to a
predetermined acceptable accuracy by adjusting a single
smoothing parameter. Another important advantage of the
MPNN is that its output is guaranteed to reduce to zero for
the inputs which are not represented in the training data set.
This property of MPNN makes it a very good candidate as
a nonlinear compensator.

2.2 Nonlinear compensator

Linear regression model offers many advantages over non-
linear ones especially for weakly nonlinear adaptive appli-
cations [Hayes 1996]. Linear models, especially in Finite

Impulse Response (FIR) form, can be guaranteed to be sta-
ble, fully analyzable and can also be adapted quickly. For
nonlinear problems, some higher order models can be used
but their adaptation, computation time and complexity in-
creases very quickly. A practical solution to this problem
is to retain the linear part of the modelling and replace the
second or higher ordered modelling part with a simpler non-
linear model algorithm such as MPNN.

The MPNN part will only model nonlinearities which have
been defined by the difference between the linear model and
the training data. Any data which is outside this training
data will produce a zero effect from the MPNN/GRNN and
the linear model will dominate. The linear modelling can
be achieved using the standard least mean square error rule.
The MPNN adaptation can be achieved as described in sub-
section 2.1.

The advantages of this model are:

1. There is a strong underlying linear influence to model
the structural information of the underlying image.

2. The MPNN embodies a simpler nonlinear function ap-
proximation, modelling only the small abrupt changes.

3. The MPNN can be more efficient than higher order
Volterra realizations.

4. The system is quick and easy to model any arbitrary
nonlinear systems.

3 Experiment

Consider the image in Figure 2 which shows the human sub-
ject in a typical surveillance image.

(3)

(4)

Figure 2: Large Scale Visual Surveillance Image

Figure 3 shows the gray level values of the pixels in the
320th row from the image in Figure 2. For clear display, we
are showing only a one dimensional view, however extension
to multidimensional is straightforward.

Figure 3: Gray Scale Level of Pixels from the 320th Row of
Surveillance Image
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Figure 4-1: Original Grayscale values from image
Figure 4-2: Piecewise linear regression output

Figure 4-3: The Difference/Residuals

The structural background information of the image in
Figure 3 can be approximated by a piecewise linear model
(Figure 4-2). The difference between the actual scene and
the background approximation (Figure 4-3) is then learnt by
the MPNN.

The difference in Figure 4-3 represents high frequency lu-
mination variations in space which provide useful informa-
tion for image analysis. For example, small spots of interests
such as number plates on the cars or human can be readily
detected from Figure 4-3. The residual or difference infor-
mation presented in Figure 4-3 still requires post-processing
methods such as the shape analysis or some pattern recogni-
tion methods to infer semantic significance of some particu-
lar patterns. It is evident that those patterns can be readily
extracted from Figure 4-3. In this paper, however we only
concentrate on the modelling of residuals. Effective pattern
recognition can be easily followed from effective modelling
in further experiments.

4 Results and Analysis

A few conventional modelling techniques have been com-
pared and their modelling performances are presented in
this section. The modelling performance is measured by
the difference between the desired (real) output (Figure 4-3)
and the approximation obtained by the particular modelling
technique. More comparisons are made on the basis of their
training and testing time, and finally their overall effective-
ness as a nonlinear compensator.

4.1 Volterra filters as a nonlinear model

Volterra filters for nonlinear modelling are frequently used in
various fields such as signal processing, communication and
image processing [Krusienski 2001]. In many practical prob-
lems, Volterra filters of higher order than three are seldom
used due to very large computation and slow convergence.

We used a third order Volterra filter to model the given
surveillance image.

MSE Training Time Testing Time
-22 dB 119 seconds 9 seconds

Table 1: The performance of Volterra filter as a nonlinear
compensator

The MSE from the network using the third order Volterra
filter was -22 dB. The nonlinear modelling performance was
acceptable however the long training and testing time makes
it difficult to use this method in real time visual surveillance
(image processing) applications.

4.2 MLP as a nonlinear compensator

MultiLayer Perceptron (MLP) is a well-recognised nonlinear
modelling technique. MLP has proven successful in speech
recognition and others [Haykins, 1996]. For details on MLP
see [Haykins, 1996].

For our experiment, the MLP architecture was chosen em-
pirically as a 20-5-1 network (1 input layer with 20 neurons,
1 hidden layer with 5 hidden neurons, and 1 output layer
with 1neuron).

MSE Training Time Testing Time
-40 dB 4 seconds91 seconds

Table 2: The performance of MLP as a nonlinear
compensator

The MSE for the network of a linear regression model
and a MLP was -40 dB. The nonlinear modelling perfor-
mance was improved by two orders from Volterra modelling.
However MLP did not prove to be an effective nonlinear
compensator due to its unpredictable output for the inputs
which are outside the region of interest (local nonlinear re-
gions). The output of a nonlinear compensator was required
to reduce to zero for the input which is outside the selected
nonlinear region, in order for the network to utilise its best
linear fit for those regions (refer section 2-2). MLP did not
prove to be an effective nonlinear compensator because the
MLP produced an unpredictable output for the inputs that
are outside the selected nonlinear regions, degrading overall
performance as a hybrid model.



4.3 MPNN as a nonlinear compensator

In our experiment, Gaussian function was used as the radial
basis function. Refer section 2.1 for details on MPNN archi-
tecture. Table 3 shows the performance of MPNN combined
with a linear regression model:

MSE Training Time Testing Time
-36 dB 12 seconds 6 seconds

Table 3: The performance of MPNN as a nonlinear
compensator

The MSE of the network of a linear regression model and
a MPNN was -36 dB. The nonlinear modelling performance
was comparable to MLP. MPNN proved be a better nonlin-
ear compensator by effectively reducing the MPNN output
to zero for the inputs outside the region of interest, allow-
ing the linear regression model to estimate the best fit. The
training and testing time were acceptable for the given task.

5 Conclusion and future work

This paper identified the effectiveness and utility of com-
bining a linear regression model with the MPNN. Although
the methods presented in the paper includes a simple lin-
ear model, it is possible to substitute the linear model for
any other justifiable analytic model such as simple Hidden
Markov Model and etc. for an appropriate class of problem.
Further research may be in combining a HMM with MPNN
to approximate more complex HMM techniques such as Cou-
pled Hidden Markov Model (CHMM) or Factorial Hidden
Markov Models (FHMM).
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