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Abstract
In large scale visual surveillance applications, classification
of human behaviors is very important. Classes of interest in-
clude suspicious human behaviors which should be effectively
detected so as to alert supervisors' attention. In this paper,
a data-based neural network such as the Modified Proba-
bilistic Neural Network (MPNN) is introduced to approxi-
mately partition the classification space nonlinearly in order
to achieve an acceptable classification performance while re-
ducing computational complexity. The paper shows that this
kind of network is able to achieve a good trade-off between
classification accuracy and computational complexity. The
performance of MPNN is compared to that of more conven-
tional classification methods such as Hidden Markov Models
(HMM) and the Multilayer Perceptron (MLP).
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1 Introduction
In many unmanned visual surveillance systems, automated
detection of suspicious pedestrian behaviors is of particular
importance in order to alert relevant authorities for attention
[Foresti and Roli 2000], [Koller-Meier and Van Gool 2001].
Detection of suspicious human behavior involves the model-
ing and classification of human behaviors with certain rules.
However, the modeling of human behavior is nontrivial since
the observed input space of human movement can be very
large due to the apparent randomness and complexity in hu-
man behavior. The idea is to partition this observed input
space into the discrete states of the human movements and
then classify the human behavior appropriately.

One possible approach is to use the state-space based
modeling [Bobick and Wilson 1995], [Campbell and Bobick
1995], [Starner and Pentland 1995]. The state-space ap-
proach defines each static posture (position) as a state and
describes a motion sequence by the composition of these
states with some transitional probabilities [Goddard 1994].
For activity recognition, the joint probability is calculated
through the states (motion sequence), and then the most
likely motion sequence is selected for classification. Some
well known examples of this method are Hidden Markov
Model (HMM) [Yamato et al, 1992] and its variations
[Brand 1997]. These methods are based on well-established
mathematical frameworks. However, their implementation
is difficult due to their intrinsic nonlinearity which generally
does not provide closed-form solutions. Some approximation
methods [Hammersley 1964], [Pavlovic and Rehg 2000] such
as dynamic programming, variational inference, and other
techniques have hence been proposed.
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Another approach is based on Artificial Neural Network
(ANN) techniques such as the Multilayer Perceptron (MLP)
[Haykin 1996], [Rumelhart et al. 1986] or Self Organising
Map (SOM) [Kohonen 1995]. These stateless data-modeling
methods can be trained heuristically to nonlinearly partition
the input space. However, their use is difficult due to large
computations and intractability. Nevertheless, the nonlin-
ear partitioning is necessary for many complex modelling
and classification, and it is feasible that some approximated
nonlinear partitioning could still achieve acceptable classi-
fication while reducing computational complexity to a rea-
sonable level. This is an engineering solution where one step
back in output performance would guarantee several steps
ahead in overall performance including reduced computa-
tional complexity and possible recovery of tractability.

In this paper, the Modified Probabilistic Neural Network
(MPNN) which approximates the General Regression Neural
Network (GRNN) is introduced to classify the human behav-
ior in a car park as either suspicious or unsuspicious. The
GRNN algorithm shows its nearest optimality in Bayesian
sense and has proven to work very well for classification.
The paper examines the performance of MPNN and com-
pares its performance to other conventional methods such
as HMM and MLP.

2 Method

In wide-area visual surveillance applications, human "behav-
iors" are often interpreted from human movement. In this
work, the detection of suspicious behavior follows the steps
reported hereafter. First, moving objects in the scene are de-
tected by subtracting a model of the background scene from
the current frame. The background model and subtraction
are computed in accordance with the approach presented in
[Cucchiara et al. 2000]; however, other background subtrac-
tion methods could be successfully exploited, or, alterna-
tively, other techniques based on the optical flow analysis or
feature tracking.

The moving objects detected as a result of the background
subtraction are typically pedestrians and vehicles, and com-
bination of them such as groups of people. Since our goal is
the classification of pedestrians' behaviors, relevant features
from those subjects must be extracted and reliably tracked.
To this aim, we assume that trajectory-related information
such as the velocity of subjects' head or body movement at
each time frame can provide adequate information for be-
havior classification.

In particular, in this work we decided to use subjects' head
as feature since heads can be rather accurately extracted
from the detected moving objects. The technique used is a
simple template matching under weak perspective assump-
tions. An example of successful head extraction process is
shown in Fig. 3 to Fig. 6.



When different sets of movement information are dis-
played in the observed input vector space, the constella-
tion of different behaviors form distinct clusters. One or
more clusters will correspond to the suspicious behavior and
should be used to generate an output to alert the security
person. However, the clustering (partitioning) of these be-
haviors is a nontrivial task. In the next section, the MPNN
is introduced which can partition the input space effectively
with reduced computations.

2.1 Introduction to MPNN

The MPNN was initially introduced by Zaknich et al in
[1991]. It is closely related to Specht's GRNN and his pre-
vious work, Probabilistic Neural Network (PNN) [Specht
1990]. The basic MPNN and GRNN methods have simi-
larities with the method of Moody and Darken [1990]; the
method ofRBF's [Powell 1974], [Broomhead and Lowe 1988];
the CMAC [Miller et al. 1990]; and a number of other
non-parametric kernel-based regression techniques stemming
from the work of Nadaraya and Watson [1964].

A standard version of the GRNN equation, which is sim-
ilar to the Nadaraya and Watson equations, is

where
l!<.=training vector for class i in input space;
l!<.i=single training vector in the input space
u= single learning or smoothing parameter
Yi= scalar output related to l!<.i
NV = total number of training vectors

In above GRNN equation 1, each and every training data
pair{l!<.i->Yi}is incorporated into its architecture, (ll<.;is a
single training vector in the input space, and Yi is the asso-
ciated desired scalar output). This requires very large com-
putations.

If it can be assumed that there is a corresponding scalar
output Yi for each local region of the input space which is
represented by a centre vector fi' then the general algorithm
of MPNN given in equation 2 can nonlinearly approximate
GRNN equation within acceptable accuracy. The centre vec-
tors fi for each cluster can be readily estimated from K-
means clustering algorithms [Zaknich et al. 1991].

This method reduces the complexity in computation sig-
nificantly while performing acceptable partitioning for clas-
sification. The general algorithm for the MPNN is then:

with

where
l!<.=input vector
fi = center vector for class i in the input space
u= learning parameter
Yi= output related to fi
Zi= no. of vectors ll<.;associatedwith each fi
M = number of unique centers fi

A Gaussian function is often used for f; (l!<.)as defined in
equation 3. However, many other suitable radial basis func-
tions can be used. Tuning simply involves finding the opti-
mal o giving the minimum mean squared error (mse) of the
network output minus the desired output for a representa-
tive tuning set of known sample vector pairs by a convergent
optimization algorithm. [Zaknich et al. 1991]

3 Experiment

3.1 Overview of experiment
As an experiment, a number of different user scenarios in
a parking space were simulated. In each scenario, an actor
acted in either a normal or suspicious behavior. In normal
behaviors, the actor entered the parking area and walked to
their car with natural movements. In suspicious behaviors, a
person kept wandering around cars, with possible intention
to steal belongings or damage a car. Each scenario lasted
for 10 seconds, with frames sampled at 5 Hz, thus producing
50 frames per scenario. The starting time of each scenario
was chosen randomly, assuming that a behavior would last
for much longer than the scenario's duration.

(1)

Figure 1: Surveillance Image from Open Car Park
For each scenario, the subject's head was located and

tracked. The magnitude of the head velocity at each frame
was then computed and stored for behavior classification.
In this way, each scenario provided a 49-feature vector de-
scribing the pedestrian's speed pattern. Figure 1 shows an
example of typical normal and suspicious pedestrian behav-
ior.
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Figure 2: Speed of head movement at each time frame for
normal pedestrian behavior (above) and suspicious

pedestrian behavior (below)



In this paper, 160 samples from the normal and suspicious
behaviors each were used to train the network. It should be
noted that 160 samples may not be considered a large train-
ing data size. We intentionally limited the training sample
in order to see the network performance in limited training
sample conditions. For performance comparison, other 72
independent user behavior samples were classified and the
performance was compared.

3.2 Performance
3.2.1 Modified Probabilistic Neural Network

The MPNN had 20 input states and Gaussian Radial Basis
Functions for nonlinear approximation. The head's speed
was quantized to 20 states (as shown in Figure 2-vertical
axis) and the number of input states were chosen accord-
ingly. Section 2.1 described the network architecture in de-
tail. The classification performance of MPNN is reported in
Table 1.

Input \ Classified
Normal behavior
uspicious behavior 96 0

Table 1: Performance table for MPNN

In this kind of application, the most serious type of error
occurs when a suspicious behavior is misclassified as normal
behavior. This corresponds to false dismissals of dangerous
situations. Consequently, an optimal classification should
reduce this error as much as possible. For MPNN, this error
is limited to 4% only. This means that 96% of pedestrians
who show suspicious behavior will be detected correctly and
the security officer will be alerted accordingly.

3.2.2 Hidden Markov Model

The HMM network was a left to right network with 10 hid-
den states and 20 observation states. The number of ob-
servation states was set at 20 to model 20 quantized head
speed values, and the number of hidden states was cho-
sen empirically. A higher hidden state number resulted in
a too sparse state space and a lower number resulted in
compromised accuracy. Learning was performed by stan-
dard backward-forward technique with Expectation Maxi-
mization algorithms [Rabiner 1989].

The classification performance was:

Input\Classified
Normal behavior

Suspicious behavior 28% 72%
Table 2: Performance table for HMM

Results in Table 2 shows that 28% of suspicious behav-
iors were misclassified as normal behavior and that only 72%
of suspicious behavior alerted the security officer correctly.
The poor performance of HMM in this experiment is likely
due to the lack of training data that represents all possible
behaviors, or the limited number of features used for classi-
fication. This again emphasizes the importance of a network
that can interpolate within the given training sample in or-
der to learn all of possible input space effectively.

3.2.3 MultiLayer Perceptron

The MLP network had 1 input layer with 20 neurons, 1 out-
put layer with 2 possible outputs, and 1 hidden layer with 5

hidden neurons. The number of neurons in the input layer
corresponds to possible head speeds and other parameters
were chosen empirically. The training was performed by
the standard back-propagation algorithms. The classifica-
tion performance was:

Input\Classified
Normal behavior

Suspicious behavior

Table 3: Performance table for MLP

The performance of MLP was very competitive in terms
of accuracy. Also the time required at run time to perform
the classification of a scenario is reasonably limited and def-
initely less than the scenario duration itself. The MLP only
drawback might be its long training time (in the order of
a few hundreds of seconds with a normal PC), which is ex-
pected to grow more than linearly with the number of ex-
amples. This long training time may affect widespread use
in real life applications where the training set should be con-
siderably larger than in our experiment.

3.3 Resultsand Analysis

The results show that MPNN was able to achieve more accu-
rate classification in this experiment where the training data
are limited. As the training data increase, it is possible to
show that the accuracy of HMM and MPNN becomes com-
parable. However, the training time increases significantly
for both. This confirms that the MPNN can provide ac-
ceptable classification accuracy with less computation, since
it was proven able to achieve good classification with only
limited training data.

MLP classification provided comparable accuracy to
MPNN for the same training data. However, its training
time is expected to be exceedingly long in many real life
visual surveillance applications with a substantially larger
training set.

4 Conclusion and Future Works

In this paper, it was shown that an MPNN is able to perform
effective classification in a visual surveillance application,
even with a limited training data set. In the experiments
performed, MPNN proved superior to other methods such
as HMM and MLP.

A possible future approach could be that of combining
techniques based on ANNs with HMM: the nonlinear clas-
sification capacity of ANNs combined with the probabilistic
inference framework of HMM might be able to achieve bet-
ter performance than either separate approach. Some works
have already been proposed on combining MLP with HMM
for speech recognition [Xinye et al. 2000]. However, MPNN
combined with HMM seems to promise improvement over
MLP-HMM network in terms of effectiveness and computa-
tional efficiency.

The clustering of MPNN can further be improved using
various clustering algorithms such as Kohonen's Self Organ-
ising Map [Kohonen 1995] or popular Support Vector Ma-
chine (SYM) [Burges 1998] methods.



Figure 3: Current Frame of the Scene at time t

Figure 5: Subject Detected in the Current Frame at time t
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