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Abstract - We present a dependence testing algorithm that
considers the short width of modern SIMD registers in a
typical microprocessor. The test works by solving the
dependence system with the generalized GCD algorithm
and then simplifying the solution equations for a particular
set of dependence distances. We start by simplifving each
solution lattice to generate points that satisfy some small
constant dependence distance that corresponds to the width
of the register being used. We use the Power Test to
efficiently perform Fourier-Motzkin Variable Elimination
on the simplified systems in order to determine if
dependences exist. The improvements described in this
paper also extend our SIMD dependence test to loops with
symbolic and triangular lower and upper bounds as well as
array indices that contain unknown symbolic additive
constants. The resulting analysis is used to guide the
vectorization pass of a dynamic multimedia compiler used
to compile software agents that process audio, video and
image data. We fully detail the proposed dependence test
in this paper, including the related work.
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1. Introduction

Vectorization of multimedia code, particularly image
processing instructions, not only resolves many speed
bottlenecks under a single processor environment, it
also enables many algorithms to be applied in real-
time.

Single Instruction Multiple Data (SIMD) instructions
allow multiple data elements to processed in parallel by a
single instruction, which permits a small amount of
instruction level parallelism to be achieved when SIMD
instructions can be applied. This parallelism translates
directly to performance improvements in such processor
demanding tasks as speech and video coding, image effects
and real-time video processing.

The availability of dependence information is still
one of the most important factors in determining the
legality of transforming scientific and multimedia
code into vector form. Historically this has been
achieved through a sequence of complex loop
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transformations such as loop fission and scalar
expansion [1], where the vectorization of single
statements is determined by the acyclic condensation
of the dependence graph [1, 7].

However, this kind of vectorization was not
designed with short SIMD parallelism in mind, where
register lengths are small and loop unrolling methods
are often preferred [2]. It has been observed from
such methods that, for dependence to dependence
exist, it is a necessary condition the distance between
dependent iterations be smaller than the width of the
SIMD register being used [3].

This class of dependence testing is often ignored in
the literature in favor of methods that try to determine
the existence of solutions anywhere within the lower
and upper bound of the loop index variables [1, 4, 7].
Furthermore, systems that aim to vectorize scientific
and multimedia code often use the results of such tests
to guide the legality of their vectorization methods.
We believe that such dependence tests are often
unsuitable or irrelevant in the context of dependence
testing for short SIMD parallelism and hence are
sources of imprecision.

The D-test has recently been proposed in the
literature by Bulic ef a/ [3]. It is an extension to the
Banerjee inequalities that takes into account the
number of elements processed in the SIMD register.
It is not clear whether this test considers real solutions
that give rise to the short minimum or maximum
dependence distance. It is also not clear whether this
test may be applied to triangular loops or loops with
symbolic lower and upper bounds other than at run-
time. Whether this test can be extended to testing
particular direction vectors is not discussed.

The Power Test [S] is a novel test that seeks to
reduce the worst-case exponential time complexity of
Fourier-Motzkin Variable Elimination (FMVE) by
solving a linear programming problem rather than an
integer one using LP-relaxation. While SIMD
dependence testing is not discussed with this
technique we argue that there exists an extension that



would make this possible by introducing an additional
inequality corresponding to the width of the SIMD
register.

The Omega Test [6] is an extension of FMVE to
Integer Programming and is well suited to accurate
dependence testing due to its all-integer property.
Due to its accuracy and the availability of a solid
implementation, the test is often considered as a
benchmark when comparing a range of dependence
tests. We argue that the Omega test is strongly
applicable to the class of SIMD dependence testing
we are describing in a similar treatment to [S]. That is,
by appending additional integer constraints that bound
the distance between dependant iterations we propose
that we could prune those dependences that do not
affect short SIMD vectorization from the Data
Dependence Graph.

Other popular tests such as the GCD test, Delta test
[1, 4] and the Banerjee inequalities are in their basic
form unsuitable for the described class of dependence
testing, however application of Banerjee inequalities
to SIMD vectorization dependence testing is
described in [3]. Since our test has adequately
addressed the dependence problem in our compiler,
we have left application of the other methods to SIMD
testing for future study.

This paper is organized as follows. Section 2
describes the required preliminaries, definitions and
conventions used within this paper. Section 3
describes our modified approach based on lattice
simplification and some extension to symbolic and
triangular bounds. Section 4 describes the evaluation
of the simplified inequality system based on the
Power Test. Section 5 gives some qualitative results
using an example as well as discusses some
implementation  details based on the SUIF2
framework.

2. Dependence Testing

Our treatment of dependence testing is applicable to
array reference pairs with at least one non-constant
dependence distance. Note that for simplicity we
assume perfectly nested loops.

2.1 Iteration Space

In this paper, we consider normalized perfectly nested
loops of depth » where the array indexes are simple
linear combinations of the index variables or symbolic
constants and the array references have s subscript
positions.

doi, =1/, u,

doi, =/ ,u,

S A(A i) s foliennd,)) = (21
S, .= A(g (i d,). 8, (e 0,))
enddo

enddo

In this paper the loop limits /,u, may contain
constants and additive symbolic expressions and
I, ,u, are linear functions of i,...,i,_, for 1<k<n.
The iteration vector i for a given iteration of the
innermost loop is an in Z" where
i ={i,i,,...,i,} contains the iteration numbers for

element

each of the loops in order of nesting level.

The iteration space ® contains the set of vectors i in
Z" bounded by the loop limits:

®={7|l, <i, <u,k=1,....n} (2.2)

Index vectors i and j are lexicographically ordered
denoted by i < j, iff / < or there exists an index
{:1<!/<nsuchthat i, = j,...i_, = j_,and j, < j,.

2.2 Dependence Distance

If two iterations i, , access the same memory
location and at least one is a write and 7 < ; then the
iteration j depends on i , denoted 5 and distance
vector is d=j—1 . Since i<j we have true

dependence if d > 0.

2.3 Dependence System
Considering the perfect loop nest described in Section

2.1, a dependence exists from S, to S, if and only if

there exits integer vectors i and

where 7 < jand f(i)=g(j).
The array subscripts can be written as
f(i)=i"A+a where the coefficients and additive

expressions are integer constants. The linear
dependence equation may be conveniently written as:

iTA+a=]"B+b (2.3)



Where A,BeZ"" and 5,5 eZ". This is the class of

well-known Diophantine equations for which a
number of algorithms exist that determine the
existence of integer solutions in polynomial time. To
determine the set of integer solutions we formulate the
dependence system as follows:

- = A} -
] ; i =b—-a 2.4
(757 )(_B] a 2.4

This may be written in the form:
(i;7)c=¢ 2.5

In our implementation, we solve the Diophantine
equations by reducing the matrix C to echelon form
by applying a unimodular transformation U. This is
achieved by applying a sequence of elementary row
operations to C equivalent to Gaussian Elimination
adapted to integers and applying the same row
operations to the identity I to obtain a unimodular
matrix U.

To solve the system of equations we replace 2.5
with an equivalent system by a unimodular

transformation:
(i:7)=10 (2.6)
UC=¢ 2.7
Where U is a unimodular matnx satisfying

det(U)=+1 where a unimodular U~ exists such
that 7 =(7;/)U" . Constructing U via Gaussian
elimination such that UC = S is echelon generates the
equation:

S =

0}

2.8

From Equation 2.8 we can solve for some of the
components of 7 by simple back-substitution. Note

that if S has rank » = rank(S) then the solution vector .

f will contain m=2n—r unsolved variables. The

remaining unsolved components of [ are free
variables for which any integer value will generate a
solution to 2.3. It is sufficient to write
7 =(7;f,) where 7, are constant and 7, are free

variables. Substituting 7 into 2.6 gives the set of all
solutions denoted by (;,]) , e
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Where U, and U, are the left and right sub-matrices
of U such that U=[U,|U,]. We are now able to

define the dependence distance as:

d=7(U,-U,) (2.10)

We also define a vector b, that represents the variable
component of the dependence distance at level &
(corresponding to the free variables) and an integer

constant c, that represent the scalar component of the
dependence distance at level &:

d =b -T+c (2.11)

For the remainder of this paper we will assume
that Ek #0 3k, 1<k <nsince the inverse case has a

trivial SIMD dependence test that cannot be improved
with our methods. We will also write the set of all

solutions to 2.5 where ¥ is an initial solution and B is
a basis matrix whose columns spans the null space of
C:

(i;7)=%+BT (2.12)
Where 7 is the vector consisting of the unsolved free
variables. In our discussions we will assume that the
null space basis matrix is full rank.

3. Symbolic Dependence Testing

In this section we describe our approach to short
SIMD vectorization dependence testing based on
lattice simplification and Integer Programming.

3.1 Generalized Dependence Distance

While we have a simplification for dependence
equations with that have dependence distance that
depends on a single free variable, this simplification is
omitted here. We proceed with the more general,
multiple free variable case.

We start with Equation 2.11 describing the

dependence distance where b, is non-zero.

Let w = VL-1 (where VL is the vector stride), we
can solve for the values of the free variables that give
a specific dependence distance. Let us define the
following sets of equations for the (<) direction vector
carried at level k:



b-T=1-c,

(<) : 3.1)

b t=w-c,

And similarly for the (>) direction vector:

b -1 =-1-c,
(>) 3 32)

(=) - F=—, 3.3)

Using 3.1-3.3 we can solve for the (possibly infinite)
values of 7 that generate solutions to Equation 2.5 that
satisfy a particular dependence distance when
substituted into Equation 2.12.

The question we wish to ask is whether we can
generate all such points in the form of a new solution
equation that replaces 2.12 for a particular
dependence distance. Let us arbitrarily choose the (<)
direction vector and a particular dependence

distance de{l,...,w} . We  start by

augmenting A’ = 5: with the identity to produce 1A’

where A’ e Z™" (A’ looks like a length m column

vector in Z™') and reducing A’ to upper triangular
using the technique described in Section 2. Assuming
A has an inverse we end up with the following:

7S'=d-c, (3.4)

Where S'is in row-reduced echelon form. In this way
we can test for the existence of integer solutions for
each of the possible distances d. If there are no
solutions for any dependence distance then we have
no dependence. If at least one solution exists then we

can solve for 7' to obtain:
f=%+BT (3.5)

This is the set of all vectors f that generatc a
particular dependence distance d when substituted
into Equation 2.12. Substituting the points? into 2.12
gives us the desired result:

initial s

e
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Proof: Assume rank(S")=1 . This implies that

' € Z" " has m-1 free variables. Expanding 3.5 gives
the equations:

Lh=x,+a h+..+a, T

! (3.7)
Yk, 1<k<m-1

Substituting the equations for ¢ into Equation 2.12
gives Equation 3.6.

The motivation behind Equation 3.6 is to determine
the set of solutions to the original dependence
equations that satisfy a constant dependence distance
d. According to Equation 3.6, changing J only
changes the initial solution of the new result set. Note
that this is a simple substitution of the free variables
f with the corresponding variables in 7 (with one less
free variable) where matrix product is used to perform
the substitution.

3.2 Implementation of the Algorithm

To test for a particular direction vector at level k& we
start by deriving the equivalent system as described
by Equation 2.7. We then test for integer solutions to
t| for each particular distance d, according to Table 1.

Table 1. Distance sets for each direction vector.

Direction Vector Distance Set
(<) d e{l,...,w}
(>) dl.e{—l,...,—w}
(=) d, {0}

Since S’ is row-reduced echelon, it is inexpensive to
test each of these distances unless w 1s large. If any
particular distance 4, has an integer solution then we

generate for it an initial solution and null-space basis
matrix according to Equation 3.5. The initial solution
and the basis matrix of the null-space basis matrix are
then used to derive the solution set according to
Equation 3.6. At this point we have the sub-system
defined by Equation 3.9.

[ -(F+BX)<BB7<i—(3+B¥) (3.8)



The matrix BB’ is constant for all values of d and has

one less column than the basis matrix B, which spans
the original null space. Since the matrix is constant,
the projection matrices may be reused for each
distance being tested. Only the RHS need be projected
to test for a feasible system of inequalities.

To prove the existence of integer points in the
region bounded by the inequalities defined in
Equation 3.9 we may use any appropriate integer

programming method. However, since BB’ has one
less column than the original basis, we can perform a
consistency check on each row of system 3.9 prior to
resorting to such methods.

3.3 Unknewn Additive Symbolic Constants

Symbols and constants that appear anywhere within
the loop bounds or array indices are appended to the
dependence system as single variables in the same
fashion as in [5]. For such symbols we first verify
that they are not modified anywhere within the loop
nest (modified variables require a more elaborate
scheme such as Induction Variable Substitution [1]).

3.4 Symbolic and Triangular Bounds

We represent the trapezoidal dependence system as
follows where L and U are sparse matrices in Z™"
that select the index variables and unknown symbolic
quantities determined by Section 3.3 to form
trapezoidal or triangular bounds. Since the solution
equations provide a mapping from program variables
to free variables, we can write the dependence system
as follows to derive inequalities that only depend on
free variables generated by the solution equations:

7+L(i+l§?)£i+]§?sﬁ+U(f+ﬁ7) (3.9)

This works by replacing variables in the lower and
upper bound with their corresponding free variables
using the relationship in Equation 3.5. Note that if
none of the loop bounds are symbolic, then L and U
will be zero matrices and the equation becomes the
same as Equation 3.9 after applying the simplification
in Section 3.1. Otherwise, after simplification and a
little manipulation, we end up with the following
bounds for use by the Power Test for the particular
dependence distance d being tested:

(1-L)BB)7 27 -(1-L) (3 + B¥)
. . (3.10)
(1-U)BB)7 < —(1-U)(%+B¥)

Proof: By substitution of Eq. 3.6 into Eq. 3.10.

Application of the Power Test in this form is
convenient as the matrix approach does not require
any symbolic computation since each variable in the
dependence system will be replaced by one of the so
called “free” variables represented in a matrix form.
Note that we actually have three inequalities
generated for each row since we also have:

7+L(i+ﬁf’+1§1‘s'?)sa+u(z+1‘;z'+1§fs'i’)(3.11)

To generate actual bounds on the free variables using
Equation 3.12 we may rewrite it in the following form:

[ -ii—(U-L)(+B¥)<(U-L)(BB7)(3.12)

This is useful when there is at least one free variable
involved in a lower or upper bound (so we can
generate an additional bound for it), or if there are free
variables in the lower and upper bounds that cancel
out with one another to yield a constant comparison of
the form /, —u, <0 . Note that a number of

calculations in Equations 3.11-3.13 are independent of
the dependence distance being tested and therefore
may be calculated once only for every dependence
distance (for a particular level k) being tested. To
further improve performance, sparse computations
may be used where it is appropriate to do so.

4. The Power Test

The Power Test [5] attempts to determine the
feasibility of particular direction vectors by relaxing
the Integer Programming (IP) problem to a Linear
Programming one. Using the inequalities derived
from dependence system in combination with
inequalities implied by the direction vector being
tested, the Power Test forms a set of bounds on each
of the m free vanables. If a contradiction is found for
any free variable then the solution space is empty
which implies no dependence for that direction vector.

4.1 Deriving Bounds
The Power Test starts with inequalities of the form:

[<bt, +bt,+...+b,_1,  Su 4.1



For a particular free variable #, we have the bounds:
t,<|(u-bt,—...=b_t,,) /b, |
t2[(1-bt,—...=b_t, )/ b, |

The floor and ceiling operators are necessary to keep
results in the integer domain. If b, exactly divides

each of the free variables, then the bounds reduce to:

4.2)

V} 3 3

k < |71 1 s k-1

b | b b

R ' 4.3)
1l b b

k= bk bk 1 bk k-1

Equation 4.3 is used to generate a list of bounds for
each free variable in the dependence system. The
Power Test may then visit each pair of lower and
upper bounds for each free variable to search for
contradictions to prove independence. Note that
when b, is negative it is important to reverse the

inequality in order to generate a sensible bound (e.g.,
this will convert a lower bound to an upper bound).

5. Results

The enhancements made to our SIMD dependence test
allow us to perform dependence testing on a greater
variety of loop nests, including those with symbolic or
triangular loop bounds or with unknown symbolic
quantities in a subscript position.

While no specific performance details are given in
this paper, we have found that in general the use of
the Power Test has allowed the test to perform some
20-30 times faster than a naive implementation based
on FMVE (which has exponential time complexity).
While this test is not as efficient as the D-test (which
is the only other specific test of this kind), we are able
to statically provide symbolic dependence testing
whilst determining whether solutions exist within the
width of the SIMD register being tested.

We also find that our test provides a useful synergy
with the Power Test by eliminating a variable from
the dependence system and simplifying the solution
equations by limiting the set of possible solutions.

5.1 Implementation

We have implemented the symbolic SIMD
dependence test as pass module for SUIF 2 [9]. For-
loops are normalized using a well-known algorithm to

simplify dependence testing. To improve the accuracy,
copy propagation, scalar expansion and function
inlining are also performed. Simplification and
standardization is applied to array index expressions
and loop bound expressions by applying in-order
visitors. At present no form of induction variable
substation (IVS) is currently applied.

5.2 Example

In the following example, we modified the matrix C
in Equation 2.5 such that the first m rows consist of
alternating loop index variables for the source and
sink of the dependence and the remaining variables
correspond to unknown symbolic quantities. Consider
the following perfect loop nest with a vector stride of
VL=2:

dol, =1N
dol,=1N

S, A(LLL+1)=_..
S, .=A(L,L +1,)
enddo

enddo

The dependence system in the desired form is:

1 0
-1 -1
(i 4 & & N) o 1(=(0 1)
0 -1
0 0

Reducing the matrix C to upper triangular and
applying the same sequence of elementary row
operations to the identity we obtain UC = S. Since U
is a unimodular transformation, the dependence
equations may therefore be rewritten as:

1 0

0 -1

(i 4 & j, N)o of=(0 -1)

0 0

0 0
This generates the solution vector 7 =(0,1,1,,1,,t;)
from which we derive solutions using Equation 2.9:

i=(+1,t+1,)

i=(+L1,)
N=t



The distance vector d for this system is therefore:
d=j-1=(0,1)

Since the dependence distance is non-constant at level
k = 2 we may test for SIMD dependences using
FMVE as follows. The sparse lower and upper bound
selection matrices L and U are simple for this
example, with N being the only symbol in the loop
bounds. The solution equations in matrix ‘orm are
defined by:

(7;]’;N)=f+l§?= +

[ TSR = =]
—_ 0 O O ©
~1

I 1
1 1
0 1
0 0
0 0

Suppose we wish to test for dependence at level k =2
when d; = 0, corresponding to (=) direction vector.
We start by solving the distance equation —#, =0 and

applying the simplification described in Section 3.1.

0 00
dy=0=(i;j;N)=5+B|0[+B| 1 0
0 0 1

Using Equation 3.11 we generate the inequalities:

0 0) (0 I -1 (0
0 -l -1

1 -1|7<

1

0

~J
v

1
I
I
-1 1
1

[ - N o I ==
_—0 O O
~J
v
O o - O
§ o o
o o o O
S em o =

—00

Projecting this system using the Power Test results in
the following feasible bounds on the free variables:

1
1< <, ,}SQSw

4

Testing for a d> = -1 corresponding to the (>) direction
vector also cannot prove independence. Finally, the
distance d> = 1 corresponding to the (<) direction
vector is disproved by the constant comparison 1 <0,
giving us the set of direction vectors {(=,=), (=,>)}.
Based in these results, the loop nest can be safely
vectorized using SIMD instructions.

6. Conclusion

An approach to symbolic SIMD dependence testing is
presented. The test uses a simplification to limit the

set of potential dependences to have a distance
between dependant iterations within the width of the
SIMD register. This property, along with the ability
to analyze complex loop regions, allows more
scientific and multimedia code to be vectorized than
with the classical approach. This translates to more
parallel code (i.e., SIMD instructions) being generated
in a compiler designed specifically for sound, image
and video processing.

Since the simplification process successfully
climinates a free variable from the dependence system,
the Power Test is more effective and computationally
less expensive. In particular, we achieve close to the
accuracy of the potentially expensive FMVE
algorithm but with lower time complexity. We also
give formulae that allow the entire test to be
implemented with matrix arithmetic. In practice, we
find this test alone to be sufficient to test the legality
of automatic parallelization of multimedia code.
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