
291

Code Classification as a Learning and Assessment Exercise for Novice 
Programmers 

Errol Thompson 
Department of Information Systems 

Massey University, Wellington 
New Zealand 

e.l.thompson@massey.ac.nz

Jacqueline Whalley 
Computer and Information Sciences 
Auckland University of Technology 

New Zealand 
jacqueline.whalley@aut.ac.nz

Raymond Lister 
Faculty of Information Technology 
University of Technology, Sydney 

Australia 
raymond@it.uts.ac.au

Beth Simon 
Computer Science and Engineering Department,  

University of California, San Diego 
 USA 

esimon@cs.ucsd.edu

Abstract
When students are given code that is very similar in 
structure or purpose, how well do they actually recognise 
the similarities and differences? As part of the BRACElet 
project, a multi-institutional investigation into reading and 
comprehension skills of novice programmers, students 
were asked to classify four code segments that found the 
minimum or maximum in an array of numbers. This paper 
reports on the analysis of responses to this question and 
draws conclusions about the students’ ability to recognise 
the similarities and differences in example code. It then 
raises questions with respect to an approach to teaching 
that uses variations in code examples. 
Keywords:  Computing education, novice programming

1 Introduction
The first few months of learning to program can be a 
disconcerting time for students. It can be equally 
disconcerting for their teachers.  Many teachers have had 
the experience of talking to a student about a program 
written by that student, only to discover that the student 
cannot explain the functioning of portions of that 
program. While tempting to attribute such an inability to 
plagiarism, recent research indicates that many novice 
programmers struggle to reason about code at any level of 
abstraction above the concrete code structures 
themselves. 
The Leeds Working Group investigated the program 
reading skills of novice programmers (Lister et. al.,
2004). The novices, who had completed approximately 
one semester of programming, were asked to answer a 
number of multiple-choice questions. The Leeds Group 
collected data from over 600 novices, at twelve 
institutions in seven countries, and found that one quarter 

of the students performed on the multiple choice 
questions at a level consistent with chance. Furthermore, 
the Leeds Group analyzed transcripts from approximately 
30 students who were asked to “think out loud” as they 
attempted the multiple choice questions. Almost all of 
these students answered the questions by hand executing 
(“tracing”) the code (Lister et. al., 2004; Fitzgerald, 
Simon, and Thomas, 2005). A follow-up study asked 
eight academics to solve a single multiple choice question 
from the Leeds study (Lister, Simon, Thompson, 
Whalley, and Prasad, 2006). In contrast to the students, 
seven of the eight academics used a higher level approach 
to answering the question. These seven academics 
analyzed the code to determine what computation was 
performed by the code. (The code counted the number of 
common elements stored in two integer arrays.) While 
they did some hand execution of the code, the academics 
stopped well short of completely hand executing the code 
(unlike many students in the Leeds group study). 
Studies in many disciplines have consistently found that 
experts reason at higher abstract levels than novices (Chi,  
Glaser, and Farr, 1988). The classic study was of chess 
players (Chase & Simon, 1973). Chess novices tend to 
remember the position of each piece in isolation, whereas 
experts organize the pieces into higher level attacking and 
defensive combinations. In a study of programming that 
reflected the earlier chess studies, Adelson (1984) 
demonstrated that expert programmers reason at a more 
abstract level than novices. 
In light of the research on the differences between 
novices and experts, one of our teaching aims should be 
to encourage students to reason about their code at a level 
above the concrete code. However, a number of the 
questions used by the Leeds group deliberately contained 
small bugs, which might have discouraged students from 
reasoning at a high level, and instead may have 
encouraged them to concretely hand execute code. While 
many of the students studied by the Leeds Group 
answered the questions by hand executing the code, it 
could be argued that this is a result of the type of question 
asked, not of the preferred thinking style of the students. 
This work explores a different kind of assessment 

This quality assured paper appeared at the 19th Annual 
Conference of the National Advisory Committee on 
Computing Qualifications (NACCQ 2006), 
Wellington, New Zealand. Samuel Mann and Noel 
Bridgeman (Eds). Reproduction for academic, not-for 
profit purposes permitted provided this text is 
included. www.naccq.ac.nz



292

question, which asks students to make explicit statements 
about their understanding of a code – by asking them to 
identify similarities and differences in a set of related 
codes.  We explore whether students answering this type 
of question are more likely to identify higher level 
purposes in the codes. 

1.1 Code Explanation: BRACElet Question 10 
The multi-institutional BRACELet Group studied 
students who had completed one semester of 
programming (Whalley, et al., 2006).  One of the aims of 
BRACElet was to explore the ability of students to reason 
at a higher level than merely hand executing code. 
BRACELet developed a question set within two 
pedagogical frameworks. These frameworks are the 
revised Bloom’s taxonomy of educational objectives 
(Anderson et al., 2001) and SOLO (Biggs, 1999, Biggs 
and Collis, 1982). 
Of the 11 questions used in the BRACElet study, the first 
nine were multiple choice questions.  Two of these nine 
questions were taken directly from the Leeds group study.  
The tenth question in the BRACElet study required a 
short answer response. Students were given a piece of 
code and were asked to "explain in plain English" what 
the code did. The complete question is given in appendix 
2. One type of response given to the question was an 
explanation of the computation performed by the code 
(e.g. “it checks to see if the array is sorted").  Only one 
third of students gave such a response. Many of the 
remaining students gave a line-by-line description of the 
code, without giving any indication of understanding 
what the code did as a whole. The results for this 
BRACElet "explain in plain English" question are 
consistent with the Leeds study – in both studies, many 
students did not manifest an ability to reason abstractly 
about code.  
However, the "explain in plain English" question is open 
to the same criticism as the Leeds Group questions – the 
type of response given by students may be due to the 
form of the question, not the preferred thinking style of 
the students. The instruction "explain in plain English" is 
ambiguous.  Students may have misunderstood the 
instruction, and thought a line-by-line explanation was 
required. 
In this paper, we analyze student responses to the 11th

question from the BRACElet study. This 11th question, 
like the 10th “explain in plain English” question, was 
intended to elicit a student response demonstrating higher 
level thinking. However, the 11th question is constructed 
differently, to avoid the ambiguity of “explain in plain 
English”. 

2 Code Classification: BRACElet Question 11  
Question 11 focuses on the classification of four code 
segments.  Students were asked to describe ways of 
separating the four code segments into groups – that is to 
suggest criteria that could be used to classify the code and 
indicate which codes fit each criteria (see Appendix 1 for 
details). Many classifications are possible. For example, a 
student might classify the segments according to whether 
the segments use a “for” loop or whether they use a 

“while” loop. A higher level response would be to 
classify the segments according to the computation 
performed by the segments – some of segments find the 
maximum element of the array, while others find the 
minimum. No limit was given on how many 
classifications a student should give, so a student was free 
to give many classifications at differing levels of 
abstraction (whereas the instruction “Explain in plain 
English” encourages a response at a single level of 
abstraction). A table with six rows in it was provided for 
answers, though some students added rows to the table as 
needed and many left some rows blank. However, 
students were specifically told that more than one 
classification was possible. 
In terms of the revised Bloom’s taxonomy, this 
classification question is targeted at the “cognitive 
process” level of “understand: classifying”.  
This classification question lends itself to several research 
questions. For example, when presented with code 
segments, do novice programmers recognise when two 
segments of code are performing the same computational 
task? Is it possible that the language constructs used in 
the code hide the similarity in purpose from many 
novices? When comparing the performance of students 
between the “explain in plain English” question and this 
classification question, is there a consistency in the level 
of abstraction chosen by an individual student?  

3 Analysis approach: the SOLO taxonomy 
The student responses to the classification question were 
analysed using the SOLO taxonomy (Biggs, 1999, Biggs 
and Collis, 1982). The SOLO categories devised for 
analyzing question 11 are presented in Table 1. 
A similar set of categorisations were devised to analyse 
the answers to question 10 (Whalley et al., 2006; Lister et 
al., 2006). The same broad principles were used to define 
the categories for analysis of questions 10 and 11. 
However, the focus of question 10 was on eliciting a 
single response from the student, whereas question 11 
was written so that many differences in the code 
segments could potentially be used for classification. This 
difference in the two questions leads to some differences 
in how the SOLO categories are defined for each 
question.  

• Unclassified “X” student responses referred to things 
that had no relationship to programming (e.g. “bags on 
desk”) or responses where the four authors could not 
identify the relationship between the classification and 
the code segments. The use of classifications unrelated 
to programming may have been a result of the example 
of classification provided by the supervisor of the 
assessment as these “X” responses all came from 
students at one institution. 

• Prestructural responses were focussed on line counts or 
position on the page. Again this seems to reflect the 
example of classification given to the assessment 
group. 

• Unistructural responses focus on a language construct 
or a single statement of the code. Examples would be  



293

Table 1: SOLO categories for Question 11 

SOLO
category 

Description 

Relational 
[R] 

Classification based on a precise 
summary of what the code does as 
a whole 

Relational with 
Error
[RE] 

Classification has a relational 
description but code segment 
selection is not in agreement with 
description. 

Advanced 
Multi-structural 
[AM] 

Classification based on a summary 
of a fragment of the code. 

Multistructural 
[M] 

Classification based on two or 
more language constructs of the 
code

Unistructural 
[U] 

Classification based on one 
language construct  

Prestructural 
[P] 

Classification is related to a code 
characteristic such as position on 
page or number of lines of code but 
not to an understanding of the 
code. 

Unclassified 
[X] 

Classification did not have any 
relationship to the code. 

Blank 
[B] 

No classification performed 

contains a for loop or i = 0. This reflects a focus on 
the code as written with no interpretation. 

• Multistructural responses were based on combining two 
unistructural responses. An example is initialising i 
before loop. This is focussed on two aspects related to 
the loop that appear in separate statements in the code 
rather than just the language construct. 

• Advanced Multistructural responses showed an ability 
to recognise what a small segment of the code is doing, 
and thus recognise some of the details of the 
implementation. Such responses tended to focus on the 
operation of the loop with statements such as test from 
the beginning of the array or from first to last 
(forward). These statements recognise the operation of 
the loop control constructs and that it is being applied 
to an array of values. 

• The relational responses were either find maximum or 
find minimum. These statements show an ability to 
summarise the code segment in total. The student 
clearly recognised the purpose of the code segments. 

• The relational with error responses were classifications 
that had a relational description but the application of 
the classification to the code segments did not agree 
with the description. The student seemed to recognise 

the purpose of the code but then confuse the detail 
when classifying. For example, a number of students 
correctly realized that some code segments found the 
maximum, and others the minimum, but they 
incorrectly identified which segments did each. This 
error can at least partly be attributable to answering the 
question under exam conditions. Others made 
statements at a relational level, but which were wrong 
such as stating the code counted the number of 
elements in the array. 

4 Results
A total of 110 students from two institutions comprising 
three class groups are included in this analysis. All the 
students who completed the question sets were either 
completing their first programming course or beginning 
their second programming course at their respective 
institutions. 
Question sets in a range of programming languages were 
prepared by institutions to match the programming 
languages being taught at those institutions (Java and 
Delphi).  
The two institutions whose data is part of this study used 
the question set as part of an assessment exercise for 
students either completing or towards the end of their first 
programming paper or in the first week of their second 
semester of programming during 2005.  

4.1 Could the students classify? 
In examining four code segments, do the novice 
programmers know how to identify similarities and 
differences? An indicator of whether the students could 
apply a classification strategy could be based on the 
number of blank (B), unclassified (X) and prestructural 
responses (P). 

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

R RE AM M U P X B

Category of highest classification

%
 o

f p
ar

tic
ip

an
ts

Figure 1: Distribution of question 11 responses by 
highest SOLO category (N=110) 

The blank (B) responses (27% - see Figure 1) are the 
number of students who did not attempt to answer the 
classification question. This percentage is much higher 
than non-response rates for the nine multiple choice 
questions (< 2%) and question 10 (< 4%). Because the 
authors do not have access to think-out loud data for these 
students, it is difficult to determine why they made no 
attempt at the question. This low response rate may be 
because questions 11 was the last question in the paper 
and students ran out of time. Alternatively the lower 



294

response rate may be an indicator of the level of difficulty 
that students felt with this question. 
The proportion of the students within each quartile of 
performance on the MCQ scores (25% of students in each 
quartile based on their score in the MCQs – that is 
questions 1-9) indicates that 46% of the lowest quartile 
(Q4) students did not attempt question 11 (see Figure 2). 
For the other quartiles, this percentage is much lower, 
closer to 20%. This may indicate that those students who 
were struggling with the exam may have lacked the time 
to answer Q11. 
It is interesting to consider the relationship between no-
response and prestructural responses for questions 10 and 
11. These responses for the “explain in plain English” 
question are more likely to produce no response (B) to the 
classification question (see Figure 3). However, only a 
small number of students gave such responses to Q10 
(see Figure 7), so it is difficult to draw firm conclusions. 
Whereas a non-response to Q11 may indicate either an 
inability to classify, an uncertainty of what to do, or 
simply a lack of time to complete the task, the 
prestructural response type (9% see Figure 1) and “X” 
response types (4% see Figure 1) are more readily 
attributable to difficulty with performing the task.  

0

10

20

30

40

50

Q1 Q2 Q3 Q4

%
 o

f p
ar

tic
ip

an
ts

 in
 q

ua
rti

le

P X B

Figure 2: Percentage of prestructural (P), unclassified 
(X), and blank (B) responses in each quartile (N=110) 

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

R M U P B

Q10 category

%
 o

f p
ar

tic
pa

nt
s 

in
 c

at
eg

or
y

P X B

Figure 3: Percentage of P, X, and blank responses to 
question 11 for each response category for question 10 

Prestructural (P) and unistructural (U) classifications are 
more common in the lower three quartiles (see Figure 2). 
However, only a small number of students gave such 
responses, so it is difficult to draw firm conclusions. 

With 68% of the students providing non-blank, non-X, 
classifications, it would appear that classification is 
possible for novice programmers.  

4.2 How did they classify? 
The total number of classifications was 319 at an average 
of 3.94 classifications per student (N = 81, standard 
deviation 1.86). This excludes the students who did not 
attempt to classify (B). The maximum number of 
classifications for any student was ten classifications. 
Most of the supplied classifications were categorised as 
unistructural (51.7% see Figure 4). 
A unistructural (U) classification is based on a language 
construct rather than the operation of more than one part 
or all of the code. As there are more language constructs 
in the code that there are relational descriptions of the 
code, we shouldn’t be surprised to see this category 
dominant in the overall classifications for this question. 
However, 21% of the students had a unistructural 
classification (U) as their highest classification – that is 
they gave only unistructural or prestructural and 
unistructural responses. This category was only behind no 
response (B) as the highest classification category used 
(see Figure 1). Does this mean that this question tends to 
promote a unistructural response or is a unistructural 
classification easier to identify than a more complex 
multistructural (AM, M) or relational (R, RE)? 

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

R RE AM M U P X

SOLO category of classifications

%
 o

f c
la

ss
ifi

ca
tio

ns

Figure 4: Distribution of SOLO Categories for Q11 
(N=110) 

A preferred response would be to see the relational (R) 
category dominating the highest classification used and 
the other categories (M, and U) represented strongly in 
the overall distribution. This would indicate an ability to 
both recognise the purpose of the code segment and to 
recognise the detail of the code. From the perspective of 
using code examples in teaching, this would mean that 
novice programmers recognised what made the code 
different even though they recognised that the code 
achieved the same objectives. 
There is an indication that the students were moving 
toward this profile when the relational (R) and relational 
with error (RE) are combined. Together they represent 
26% of the highest responses (see Figure 1). 
The advanced multistructural (AM) category also has an 
element of a relational understanding. In this category, 
the students have recognised that the way that the loop is 
constructed impacts the direction in which the array is 



295

processed. Students for whom AM was the highest 
category (15% - see Figure 1) failed to interpret the 
process carried out within the loop as finding the 
maximum or minimum. 
Our results indicate that a significant number (63%) of 
the students could identify valid criteria to classify the 
code segments. Not all of these accurately assigned the 
code segments based on the identified criteria. Although 
21% classified on the basis of a language construct, a 
reasonable proportion (26%) used or attempted a 
relational classification. 

4.3 Depth, width and range of classifications 
Another way of looking at a set of responses from a given 
student is to examine the highest SOLO response given 
by the student (depth), the number of classifications 
provided by a student (width) and the number of different 
classification categories (range). 
The average width varied according to depth (see Table 
2), with the lower classifications having a lower average 
width. However, the standard deviations are large, so 
there is not a clear trend in average width as a function of 
depth. 
If a relational response is a demonstration of better 
understanding, there might be an expectation that the 
average range of categories per student would be higher 
for the relational category than for the other categories 
(see Figure 5). This would also reflect the fact that a 
lower highest category has fewer categories that are even 
lower. In Figure 5, the two relational categories have a 
slightly higher average range, and there is possibly a 
trend down to the unistructural category. However, it is 
difficult to see any major differences in the categories 
shown. It would appear that students, regardless of their 
highest classification category, work within a limited 
range of classification types. The average for all students 
was 1.8. 

Table 2: Width of classifications. “M” omitted because 
of insufficient data.

Highest 
classification Average Min Max StdDev
R 4.46 2 6 1.08
RE 4.63 2 10 1.93
AM 3.65 1 7 1.78
U 4.04 2 9 1.94
P 2.60 1 4 1.20
X 2.17 1 5 1.46

0

0.5

1

1.5

2

2.5

R RE AM U

Highest classification

Av
er

ag
e 

ra
ng

e

Figure 5: Average range of classifications 

4.4 Recognising inverse classifications 
For the particular code segments in Q11, every 
classification has an inverse classification – that is the 
classification that includes those code segments that are 
not part of the initial classification. For example, for the 
relational classification “finds minimum”, the inverse is 
“finds maximum”. For the classification “for loop”, the 
inverse is “while loop”. For the classification 
“incrementing”, the inverse is “decrementing”. Although 
the question clearly states “Select criteria where at least 
one of the code segments would be classified differently 
to the others”, some students still used classifications that 
had no inverse or did not include the inverse 
classification. The average number of inverses is 1.5. In 
some cases, the student’s classifications were all very 
closely related. 
There does appear to be a trend of recognising the inverse 
classifications based on the highest classification used. 
The few students whose highest classification was 
prestructural (P – 4%) or unclassified (X – 9%) may 
make the reported averages meaningless for these 
particular categories. 

0

0.5

1

1.5

2

2.5

R RE AM U P X

Highest classification

Av
er

ag
e 

nu
m

be
r o

f i
nv

er
se

 
cl

as
si

fic
at

io
ns

Figure 6: Average inverses by highest classification 

4.5 How did this compare with question 10? 
The most noticeable differences in the categories for Q10 
and Q11 are observed for the multistructural (M) and 
unistructural (U) categories. There are fewer 
multistructural responses to Q11 (see Figure 4) than for 
Q10 (see Figure 7). To classify the code segments for 



296

Q11, it isn’t necessary to describe the whole code 
segment. Even a small feature of a code segment can be a 
point of difference. 
In contrast it could be argued that the “explain in plain 
English” question required an explanation of each line of 
code thereby placing an emphasis on multi-structural or 
relational type descriptions. A multistructural answer for 
Q10 represents a set of unistructural descriptions for each 
line of the code. This grouping of unistructural answers 
into a multistructural response is not a requirement for 
Q11. 
The difference in distribution of all classifications and the 
highest classification for Q11 and the distribution of 
categories for Q10 would appear to support this 
argument. 
This difference in distribution of categories between Q10 
and Q11 may also be a result of the difference in the 
cognitive skill level of the questions, as defined by the 
revised Bloom’s taxonomy. The cognitive skill level of 
the Q10 is “Understand: Summarising”, whereas the 
cognitive skill level for Q11 is “Understand: Classify”. 
Classify is a lower level cognitive process than 
summarise within the revised Bloom’s taxonomy. 
Students needed to both summarise and classify the code 
segments in order to reach higher SOLO categories. 
Identifying a unistructural (U) or prestructural (P) 
category avoided any summarisation of the code or 
identification of the purpose of the code. 

4.6 Consistency in Relational Thinking 
It is interesting to compare the performance of students 
on Questions 10 and 11, to see what percentage of 
students respond relationally to both questions.  The 
results are summarized in Table 3. 

0

10

20

30

40

50

60

R M U P B

SOLO Categories

%
 o

f s
am

pl
e

Figure 7: Distribution of SOLO categories for Q10 

Table 3: Comparson of relational and non-relational 
answers for Q10 and Q11 (N=78) 

Q10 
Relational 

Q11 
Relational 

Percentage Non- 
blank Responses 

No No 44%

Yes Yes 14%

Yes No 20%

No Yes 22%

Of the students who provided a non-blank answer to both 
questions (N=78), 58% were consistent over both 
questions.  That is, 58% of students either gave a 
relational answer to both questions, or a non-relational 
answer to both questions.  Furthermore, 44% of the 
students gave non-relational answers to both questions, 
suggesting that these students consistently have difficulty 
in identifying the function of a piece of code. 
Of the students who gave a non-relational answer to the 
"explain in plain English" question, only 22% gave a 
relational answer to Q11.  On that basis, it would seem 
that the instruction "explain in plain English" may be 
ambiguous to a degree, but it is a reasonably reliable 
indicator of a student’s ability to respond relationally. 
Conversely, of the students who did not give a relational 
answer to Q11, only 20% gave a relational answer to the 
"plain English" question.  On that basis, it would seem 
that both Questions 10 and 11 are reasonably reliable 
indicators of whether a student can extract meaning from 
a short piece of code.  

5 Using variations in teaching 
From a phenomenographic perspective, the space of 
learning is defined by the variations experienced by the 
learner (Marton, Runesson, and Tsui.  2003). If the 
learner does not experience variation in a dimension then 
they will not discern that dimension and consequently not 
learn what is required. Providing the appropriate 
variations in learning determines what is learnt and 
therefore the space of learning. 
Variations in how to program a particular algorithm 
opens up an understanding of the efficiencies and 
differences in approaches to writing code. Using a 
classification question such as Q11 gives the educator the 
opportunity to see how the learners understand the 
differences in the code. 
If learners are able to recognise different ways of 
implementing the same algorithm then the learner would 
use valid relational classifications. If these are provided 
along with advanced multistructural, multistructural, and 
unistructural responses, then the learner is also 
recognising the differences in the implementation of the 
algorithms. The educator may feel confident that these 
learners could comfortably learn from variations in 
sample code. 
In contrast, a learner whose focus is on unistructural 
classifications is focussed on coding constructs and is less 
likely to recognise that different implementations of an 
algorithm are implementing the same algorithm using a 
different approach. 
If the highest classification manifested by a student is 
multistructural then the learner is possibly beginning to 
see how coding structures work together. 

6 Conclusion
This paper has analysed student responses to a 
classification question that was presented as part of the 
BRACElet multi-institutional investigation into reading 
and comprehension skills of novice programmers. The 
results have shown that most students were able provide 
classifications for code segments and were able, with 



297

some degree of success, to apply the classification to the 
code segments. However, more than one quarter of the 
students studied did not attempt this question, thus raising 
the open question as to whether these students had the 
skills to answer this type of question. 
When the classification question is compared with the 
results of the “explain in plain English” question there is 
a difference in the number of multistructural responses 
and the unistructural responses. This may be more of an 
indication of the question structure rather than of the 
students’ ability to perform at these levels. With the 
degree of consistency in relational responses by students 
between Questions 10 and 11, it appears that both 
questions types are reasonably reliable indicators of 
whether a student can extract meaning from a short piece 
of code. 
The analysis presented in this paper does highlight a 
number of interesting questions for future study, 
including: 
1) Why did so many students not attempt to answer the 

classification question? Did they not understand what 
was required or is it a task that they could not 
perform?  Was it merely an issue of time? 

2) Would the percentage of students who attempted the 
classification question increase if the students had 
been more familiar with performing this type of task?  

3) Can a novice programmer’s ability to recognise 
patterns be fostered through the use of variations in 
code and classification type questions? 

4) Would providing alternative code samples help build 
the students ability to classify code segments 
relationally? 

5) How would developing the ability to recognise 
similarities and differences in code help a student’s 
understanding and writing of programs? 

6) Would a student who is able to identify the purpose 
of a code segment (a relational classification) in one 
language also recognise a code segment in a different 
language that has the same logic structure and is 
achieving the same task? 

7 References 
Adelson, B. (1984) When novices surpass experts: The 

difficulty of a task may increase with expertise. Journal 
of Experimental Psychology: Learning, Memory, and 
Cognition, 10, 483-495. 

Anderson, L. W., Krathwohl, D. R., Airasian, P. W., 
Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, 
J. & Wittrock, M. C. (Eds.) (2001) A taxonomy for 
learning and teaching and assessing: A revision of 
Bloom's taxonomy of educational objectives, Addison 
Wesley Longman. 

Biggs, J. B. (1999) Teaching for quality learning at 
University, Buckingham, Open University Press. 

Biggs, J. B. & Collis, K. F. (1982) Evaluating the quality 
of learning: The SOLO taxonomy (Structure of the 
Observed Learning Outcome), New York, Academic 
Press.

Chase, W. C., & Simon, H. A. (1973). Perception in 
chess. In W. G. Chase (Ed.), Cognitive Psychology, 4, 
55-81. 

Chi, M. T. H., Glaser, R. & Farr, M. J. (Eds.) (1988) The 
nature of expertise, Hillsdale, NJ, Lawrence Erlbaum 
Associates. 

Fitzgerald, S., Simon, B., Thomas, L.  (2005) Strategies 
that Students Use to Trace Code: An Analysis Based in 
Grounded Theory.  1st International Workshop on 
Computing Education Research.  Seattle, WA USA, 
2005. 

Lister, R., Adams E.S., Fitzgerald, S., Fone, W., Hamer, 
J., Lindholm, M., McCartney, R., Moström, J.E., 
Sanders, K., Seppällä, O., Simon, B. and Thomas, L. 
(2004): A Multi-National Study of Reading and 
Tracing Skills in Novice Programmers. SIGSCE 
Bulletin, 36(4):119-150. 

Lister, R., Simon, B., Thompson, E., Whalley, J. & 
Prasad, C. (2006) Not seeing the forest for the trees: 
Novice programmers and the SOLO taxonomy. 
Innovation and Technology in Computer Science 
Education (ITiCSE 2006). Bolonga, Italy. 

Marton, F., Runesson, U. & Tsui, A. B. M. (2003) The 
space of learning. In Marton, F. & Tsui, A. B. M. 
(Eds.) Classroom discourse and the space of learning. 
Mahwah, NJ London, Lawrence Erlbaum Associates, 
Publishers. 

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins, 
P., Kumar, A. & Prasard, C. (2006) An Australasian 
study of reading and comprehension skills in novice 
programmers, using the Bloom and SOLO taxonomies. 
In Tolhurst, D. & Mann, S. (Eds.) Eighth Australasian 
Computing Education Conference (ACE2006). Hobart, 
Tasmania, Australia, Australian Computer Society Inc, 
CRIPT, 52, 243-252.

8 Acknowledgements 
The data used in the analysis for this paper was collected 
by a number of dedicated programming educators in a 
number of institutions. Thanks to Gordon Grimsey, 
Christine Prasad, Ajith Kumar and Phil Robbins for their 
contribution to the data collection phase.  
We also wish to acknowledge the contributions of the 
entire BRACElet team in the development of the study 
instrument as well as their open sharing of ideas and 
many helpful discussions. 



298

9 Appendix 1 
This is question 11 in full from the Java version of the 
question set. The layout of the question varied based 
between versions of the question set. In one version, the 
four code segments where presented in two columns. The 
layout here is to fit the journal format. 

Question 11:
Consider the following 4 code segments: 

A
int[] a = {1,5,6,2,3,9}; 
int m = a[0]; 

for(int i = 0; i < a.length; i++) 
{
 if(m < a[i]) 
         m = a[i]; 
}

B
int[] a = {1,5,6,2,3,9};
int m = a[0]; 
int i = 0; 

while(i < a.length){ 
   if(m > a[i]) 
      m = a[i]; 
   i++; 
}

C
int[] a = {1, 5, 6, 2, 3, 9}; 
int m = a[a.length-1]; 

for(int i = a.length-1; i >= 0;  i--) 
{
 if(m < a[i]) 
           m = a[i]; 
}

D
int[] a = {1,5,6,2,3,9}; 
int m = a[a.length-1]; 
int i = a.length-1; 

while(i >= 0) 
{
 if(m <= a[i]) 
          m = a[i]; 
      i--; 
}
There are a number of ways in which these code 
fragments can be classified.  Suggest different criteria 
that could be used as a basis for classification, and for 
each criterion tick the fragments that you believe fall into 
that classification criterion. 

10 Appendix 2 
This is question 10 in full taken from the Java version of 
the question set. 

Problem 10
Look at this section of code then describe in plain English 
what it does. 

x is an array of integers. 

bool bValid = true; 

for (int i=0; i < (x.Length - 1); i++) 
{
 if(x[i] > x[i+1]) 
   bValid = false; 
}


