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Abstract

We consider the calculation of the band structure and Bloch mode basis of two-
dimensional photonic crystals, modelled as stacks of one-dimensional diffraction
gratings. The scattering properties of each grating are calculated using an efficient
finite element method (FEM) and allow the complete mode structure to be derived
from a transfer matrix method. A range of numerical examples showing the accuracy,
flexibility and utility of the method is presented.
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1 Introduction

Over the past decade, photonic crystals (PC) have emerged as one of the most
active areas of contemporary optics research, due largely to their unique in-
trinsic properties which allow for substantial control over the flow of light and
which, in turn, open up the potential for miniaturised devices embedded in
compact, integrated optical circuits. In such “photonic chips”, different com-
ponents may be connected using complicated “wiring” networks comprising
waveguides with bends [41], Y - [4] and T -junctions [20], channel drop filters
[21], couplers [5,42], superprisms [28], Mach-Zehnder interferometers [32]) and
so on. The modelling of such structures is theoretically and computationally
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challenging because of their geometrical complexity, the strong scattering en-
vironment associated with both the wavelength scale of the structure and the
(often) high index contrast of the constituent materials. Accordingly, the de-
velopment of efficient, accurate and robust numerical tools is an important
aspect of photonic crystal research.

In this paper, we consider two-dimensional rod-type and hole-type photonic
crystals, with the analysis that is presented being easily extended to handle
2.5D systems (in which fields are three-dimensional in nature, but the geome-
try is two dimensional, as in an optical fibre). The mathematical formulation
is based on the theory of Bloch modes and the solution of eigenvalue problems.
For problems modelled in the frequency domain, there are two basic solution
approaches depending on how the unknown eigenvalue parameter is chosen.
Either the Bloch wave vector k0 can be fixed, in which case the frequency ω is
the eigenvalue, or alternatively, ω and one (or two, in the case of 3D photonic
crystals) components of k0 can be chosen, with the other remaining Bloch vec-
tor component becoming the unknown eigenvalue. The analysis of the Bloch
modes when the Bloch wave vector k0 is given and the frequency ω is unknown
leads to Hermitian eigenproblems which can be efficiently solved using vari-
ous existing computational methods, such as plane wave expansion techniques
[26,27] and finite element methods [2,15]. Such an approach, however, becomes
difficult to use for dispersive media, in which the dielectric constant depends
on the frequency (which is the eigenvalue). In contrast, methods which first
fix the frequency (e.g., [34]) can easily handle dispersive medium problems
and can also be used to efficiently analyse many other physically relevant
applications where the frequency is given.

In this paper we concern ourselves with the spectral problem where the val-
ues of the frequency ω and one of the two components of k0 = (α0, β0), α0

for instance, are fixed. However, the resulting eigenvalue problem is nonlinear
and even for lossless media and real values of α0, complex valued eigenvalues
β0 can occur, corresponding to the evanescent modes. Because of the non-
linearity, the direct application of standard numerical solution techniques for
eigenproblems is difficult and computationally expensive. These problems can
be circumvented, however, by using the transfer matrix formalism [34,7] to
revert the computational solution to one of a standard algebraic eigenvalue
problem. In this approach, an infinite two-dimensional photonic crystal is mod-
elled as a periodic stack of grating layers. The transfer matrix relates the fields
above and below the grating, and by applying the Bloch condition, the eigen-
values of the transfer matrix appear in the form of exponentials involving the
components of the Bloch vector.

The transfer matrix is typically a dense matrix of low dimension and the
numerical calculation of its eigenvalues is computationally inexpensive, al-
though the construction of the transfer matrix itself may be computationally
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expensive. In order to benefit from the numerous techniques available in the
literature on scattering by diffraction gratings [35], it is useful to formulate
the transfer matrix eigenproblem using grating scattering matrices [7,23,39]
which relate the output (reflected and transmitted) plane wave amplitudes to
the incident field amplitudes.

Scattering matrices may be generated using a variety of techniques and, in-
deed, our group has extensive experience in the use of the multipole method
[8]. While the multipole method has proven to be an effective tool for modelling
PC structures composed of cylinder gratings, it has a number of limitations,
the most obvious of which is the restriction on the range of geometries that can
be accommodated. This method also has limitations when dealing with cylin-
der gratings that overlap or interpenetrate to any significant extent. While a
hybrid multipole-plane wave method [8] can handle modest interpenetration
of cylinder layers, the method breaks down when the interpenetration exceeds
some threshold, a phenomenon which is directly related to the Rayleigh con-
troversy (see, for example, Ref [35, chapter 1]) concerning the validity of plane
wave expansions for representing outgoing fields within the grooves of diffrac-
tion gratings. The combination of these issues has thus led us to develop a
general technique based on the finite element method—one that is able to
accommodate a wide class of geometries and which overcomes the shortcom-
ings of the multipole method. Accordingly, this paper outlines a finite element
approach to generating scattering matrices and goes on to explore the use of
this in the context of the transfer matrix method and applications that are of
interest in the study of photonic crystal devices.

Since construction of the scattering matrices involves the solution of a grat-
ing diffraction problem (through the solution of Maxwell’s equations) for each
diffraction order used in the plane wave (Rayleigh) expansion, their calculation
dominates the computational effort involved in calculating the Bloch modes of
the structure. As we will see, however, the process is made efficient by observ-
ing that the solution of each of these diffraction problems (which generates a
particular column of the scattering matrix) involves the calculation and LU
factorisation of only one finite element matrix. By taking into account the
particular structure of the discretised system, we also significantly reduce the
computational cost of building the right hand side of the final matrix system.
Thus, the scattering matrices can be calculated reasonably quickly.

In what follows, we contextualise the scattering matrices by outlining the
transfer matrix method for generating the Bloch modes of the photonic crystal.
We then proceed to develop the weak formulation of the problem in Sec. 3 and
describe the FEM discretisation of the variational problem in Sec. 4. In Sec. 5,
we apply these tools, considering the convergence properties of the FEM, the
symmetry properties of the eigenvalue distribution, and the photonic crystal
band diagrams. We also propose an approach to treat a photonic crystal with
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a perfectly conducting metallic inclusions when the grating layer interfaces
intersect the inclusions. Finally to illustrate how our approach can be applied
to a finite size photonic crystal, we analyse the optimisation of taper shapes
for efficient coupling of light from a photonic crystal waveguide to free space
(with details of the algorithm given in Appendix A).

2 The eigenvalue problem

We assume that the dielectric constant ε is invariant with respect to the vari-
able z (the axis of the grating inclusions) and is periodic in the (x, y)-plane
with respect to a lattice [1,37]

L = {m e1 + n e2, m, n ∈ Z} (1)

where e1 ∈ R2 and e2 ∈ R2 are the basis vectors of the lattice. The reciprocal
lattice corresponding to L is defined by

R = {mu1 + nu2, m, n ∈ Z} (2)

where the basis vectors u1,u2 ∈ R2 are defined such that ui · ej = 2πδi j,
∀i, j ∈ {1, 2} (δi j is the Kronecker symbol, i.e., δi j = 1 if i = j and δi j = 0
otherwise).

The analysis of waves propagating along the (x, y)-plane can be carried out
by decomposing the electromagnetic field into two polarisations: Transverse
Magnetic (TM) (E = (0, 0, Ez), H = (Hx, Hy, 0)) and Transverse Electric
(TE) (E = (Ex, Ey, 0), H = (0, 0, Hz)). The field components v = Ez and v =
Hz are chosen as the unknowns for respectively the TM and TE polarisations.

From Maxwell’s equations in the frequency domain, the field v must satisfy
the Helmholtz equation

∇ · (p∇v(r)) + k2 q v(r) = 0, in R2, (3)

where r = (x, y) denotes the position vector, k is the free space wavenumber,
p = 1, q = ε and v = Ez in the case of TM polarisation, and p = 1/ε, q = 1
and v = Hz for TE polarisation.

If d1 and d2 denote respectively the lengths of the vectors e1 and e2, we assume
that the coordinate system is chosen such that

e1 = d1(1, 0) and e2 = d2(cos ψ, sin ψ). (4)
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with ψ, the angle between the lattice vectors defined in Fig. 1.

Accordingly, for a square lattice, we have d1 = d2 = d and ψ = π/2, while for
a hexagonal lattice d1 = d2 = d and ψ = π/3, where d is the lattice constant,
i.e., the smallest distance between the lattice points.

The Bloch mode [1,18,37,38] v(r) associated with the Bloch wave vector k0 ∈
R2 is a nonzero solution of Eq. (3) which, according to the Bloch Theorem,
is the product of the exponential function eik0·r and a function u(r) which is
periodic on the lattice L.

In the case of the TM formulation (v = Ez), the substitution v(r) = eik0·r u(r)
into (3) gives the following partial differential equation spectral problem:

−∇ · (∇u)− 2 ik0 · ∇u + (k0 · k0) u = k2 q u. (5)

When, in Eq. (5), we fix the wave vector k0 and solve for the light frequency,
we are led to a linear Hermitian eigenproblem having k2 as the unknown [2,27].
However, when the wavenumber k and one of the two components of

k0 = (α0, β0), (6)

α0 for instance, are fixed, the resulting eigenproblem is nonlinear since it
involves both β0 and β2

0 . Corresponding observations also apply to the TE
problem with v = Hz.

Instead, we consider an alternative method, fixing k and α0, and derive a
transfer matrix formulation which results in a simple, algebraic eigenproblem
for the eigenfunction v(r) which satisfies the Bloch condition

v(r + rmn) = v(r) eik0·rmn , ∀r ∈ R2 (7)

where rmn = m e1 + n e2, for m,n ∈ Z, is a general lattice vector.

Let Ω denote, for example, the following layer of the two dimensional photonic
crystal:

Ω = {t1 e1 + t2 e2 | t1 ∈ R, t2 ∈ [−1
2
, 1

2
]} (8)

and, let Π and Π′ represent respectively the top and bottom interfaces of Ω
(see Fig. 1), i.e.,

Π = {t1 e1 + 1
2
e2 | t1 ∈ R} and Π′ = {t1 e1 − 1

2
e2 | t1 ∈ R}. (9)
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Fig. 1. (a) Geometry of the photonic crystal unit cell, defined by the lattice basis
vectors e1 and e2. The phase origins P and P ′ of the fields respectively above (f−,
f+) and below (f ′−, f ′+) the grating are shown. (b) The geometry of a supercell
model of a photonic crystal with line defects. The horizontal lines bound a single
grating layer of the bulk crystal.

The symbols Ω0 and Ω′
0 will represent respectively the semi-infinite spaces

above and below Ω. From Eqs. (4) and (7), v(x, y) is quasiperiodic with respect
to the variable x:

v(x + d1, y) = v(x, y) ei α0 d1 , ∀x, y ∈ R. (10)

We now conceptualise the photonic crystal layer Ω as a diffraction grating
surrounded by a homogeneous medium. The quasiperiodicity imposed by the
grating and the incident field leads us to the basis of plane waves

{ei(αm x±χm y)} (11)

where ∀m ∈ Z

αm = α0 +
2πm

d1

,

χm =





√
(n0 k)2 − α2

m, if (n0 k)2 − α2
m ≥ 0,

i
√

α2
m − (n0 k)2, if (n0 k)2 − α2

m < 0,

(12)
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with n0 denoting the refractive index of the homogeneous medium surrounding
Ω. We assume that the homogeneous medium is a lossless dielectric material
so that n0 is a real and positive number. The fields at the upper interface Π
and lower interface Π′ of Ω may be represented respectively by plane wave
expansions v̂ and v̂′ as follows [35]:

v̂ =
+∞∑

m=−∞
χ
− 1

2
m

[
f−m e−i χm (y−y0) + f+

m ei χm (y−y0)
]
ei αm (x−x0),

v̂′ =
+∞∑

m=−∞
χ
− 1

2
m

[
f ′−m e−i χm (y−y′0) + f ′+m ei χm (y−y′0)

]
ei αm (x−x′0),

(13)

where (x0, y0) ∈ Π and (x′0, y
′
0) ∈ Π′ are the chosen phase origins, i.e., the

points P and P ′ of Fig. 1. For example, when the photonic crystal comprises
periodic cylindrical inclusions in an otherwise uniform background medium,
we may take n0 as the refractive index of the background medium. We also
assume that the wavelength does not coincide with a Rayleigh anomaly (also
commonly referred as Wood anomaly in the diffraction grating literature)
and which occurs at a wavelength for which χm 6= 0 for some integer m,
corresponding to the transition of order m from a propagating wave to one
that is evanescent.

In Eq. (13), the factor χ−1/2
m is chosen to normalise the plane wave amplitudes

f±m and f ′±m so that energy fluxes may be computed from the square magnitude
of the relevant complex amplitudes [8,9]. Note that although the variable y in
the plane wave expansion (13) does not play any role in the representation of
the field v at the interfaces Π and Π′ of Ω, the y dependence will be required
to enforce the continuity of the tangential field components through derivative
conditions across these interfaces.

Although our approach is carried out within the framework of diffraction the-
ory, it is important to point out that in the actual photonic crystal the plane
wave expansion (13) is, by construction, valid at the interfaces Π and Π′ but
its validity beyond these interfaces requires a uniform layer and this require-
ment had lead to serious limitations on the multipole method. However, since
our method needs only the expansion at the interfaces, it can be applied to a
general and arbitrary photonic crystal geometry.

If we denote by f−, f+, f ′− and f ′+ column vectors whose elements are the
plane wave expansion coefficients f−m, f+

m, f ′−m and f ′+m respectively, and if we
assume that the phase origins (x0, y0) ∈ Π and (x′0, y

′
0) ∈ Π′ are such that

(x′0, y
′
0) = (x0, y0)− e2 (14)
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then the Bloch condition (7) gives

f ′− = µf−, f ′+ = µf+ (15)

where the phase factor µ is given by

µ = e−ik0·e2 . (16)

The set of eigenvalues and eigenvectors of Eq. (15) can be partitioned into
two blocks, respectively the downward and upward propagating modes [7].
The propagating modes have eigenvalues of unit magnitude |µ| = 1 and the
partitioning is done according to the direction of field energy flow, while the
evanescent modes are characterised by |µ| 6= 1 and are classified according to
the direction of decay of the field, i.e., the downward and upward directions
are associated respectively with |µ| < 1 and |µ| > 1.

The transfer matrix T relates the fields above and below the grating as follows



f ′−

f ′+


 = T



f−

f+


 . (17)

Thus the Bloch factors µ = e−ik0·e2 can be obtained as eigenvalues of the
transfer matrix T .

In order to benefit from the numerous techniques available in the literature
on scattering by diffraction gratings [35], we need to formulate the eigenvalue
problem using grating scattering matrices [7,23,39]. Thus we introduce the
plane wave reflection and transmission scattering matrices of the grating as
R, T and R′, T′, with the two pairs corresponding to incidence from above
and below, respectively. For example, Rmn denotes the reflected amplitude in
the plane wave order m due to the incidence on the top interface of the grating
by a unit amplitude plane wave in order n (associated with a direction angle
θn derived from the grating equation sin θn = αn/(n0 k)). Note that these
scattering matrices, the form of which are derived in Sec. 3 are of infinite
dimension and must be truncated in order to apply the numerical procedures.

The grating scattering matrices can be computed using a variety of numerical
techniques for diffraction grating problems such as integral and differential
methods [35], and multipole methods [6,8,9] which are appropriate to cylin-
der gratings. Here, however, we use the finite element method [13,14,17] to
derive an efficient and accurate tool that provides the flexibility needed to
model arbitrary geometries. As we will see, although the calculation of these
matrices involves the solution of multiple grating scattering problems (over
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the set of incident plane wave orders), we may arrange the FEM algorithm in
such a way that the most computationally expensive step, associated with the
factorisation of FEM matrices, never needs to be repeated.

The grating scattering matrices relate the incoming fields f−, f ′+ to the out-
going fields f+, f ′− as follows



f ′−

f+


 =




T R′

R T′







f−

f ′+


 (18)

Rearranging the equation defined in Eq. (18) we have




I −R′

0 T′






f ′−

f ′+


 =




T 0

−R I






f−

f+


 , (19)

where I is the identity matrix. Thus the transfer matrix T is given by

T =




I −R′

0 T′




−1 


T 0

−R I


 =



T−R′T′−1R R′T′−1

−T′−1R T′−1


 . (20)

The matrices T and T′ are typically ill-conditioned because of the exponential
increase or decrease of the evanescent wave components, and so the inversion of
the transmission matrices T′ in Eq. (20) is quite problematic. It has therefore
been necessary to reformulate the eigenproblem in a way that circumvents
these instabilities. To do so, we use Eq. (20) to recast the eigenproblem T f =
µf as




T 0

−R I






f−

f+


 = µ




I −R′

0 T′






f−

f+


 (21)

and then apply a shift-and-invert technique to derive the standard linear eigen-
value problem



T− s I sR′

−R I− sT′




−1 


I −R′

0 T′






f−

f+


 =

1

µ− s



f−

f+


 . (22)

In our numerical simulations, for example, we set the value of the shift to s = 1
or s = 2 and solve the equation (22) using standard numerical codes such as
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the LAPACK library [30] or Mathematica [43]. In passing, we observe that the
numerical stability of the generalised eigenvalue problem (21) has also been
considered by various authors [11,31]; other numerically stable approaches
have also been published, see for instance, [25].

The diagonalised form of the transfer matrix then follows from the eigensys-
tem:

T = FLF−1, where F =



F− F̃−

F+ F̃+


 and L =



Λ 0

0 Λ̃


 . (23)

In Eq. (23), the columns of the matrix F comprise the eigenvectors which con-
stitute the Bloch modes. Its left partition contains the downward propagating
modes, with the columns of the constituent matrices F− and F+ respectively
contain the downward and upward plane wave components f− and f+ of the
modes of Eq. (15). Correspondingly, the right partition (with quantities distin-
guished by a tilde symbol )̃ contains the upward propagating modes. In turn,
the diagonal matrix L comprises the eigenvalues µ, partitioned into downward
(Λ) and upward propagating (Λ̃) modes. As is detailed in Ref. [10], we choose
to normalise the Bloch mode matrix F so that propagating modes carry unit
energy, thus reducing the subsequent calculation of energy fluxes to the com-
putation of the square magnitude of the relevant coefficient in the Bloch mode
expansion.

To conclude this section, we focus briefly on some properties of transfer ma-
trices and the concomitant, interesting properties that manifest themselves in
the distribution of the eigenvalues µ which are taken up in Sec. 5.2. Before
doing so, however, it is important to differentiate between the transfer matrix
method which is adopted here, and the more familiar treatment adopted by
plane wave expansion methods that solve an operator eigenvalue problem [26]
of the form

ΘH(r) = ∇×
(

1

ε(r)
∇×H(r)

)
= k2H(r). (24)

In computing the Bloch modes from Eq. (24), the eigenvalues (k2) of which
determine the permissible frequencies, we select a Bloch vector k0 and then
determine a basis of modes (of different frequencies), the orthogonality of
which follows from the Hermitian nature of the operator Θ. In contrast, in
the treatment of this paper, we select a frequency (or wavelength) and a
component of the Bloch vector and proceed to solve the eigenvalue problem

T f = µf (25)
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to determine the remaining Bloch factor(s) (via µ) and an eigenvector f which
characterises the mode. This set of modes is complete and forms a basis in
which we can expand electromagnetic fields for the particular frequency. How-
ever, the orthogonality properties of the modes are completely different to
those derived from the conventional operator eigenvalue treatment [26] and
must be deduced from the properties of the transfer matrix T .

There are two key results. The first of these is that, for α0 = 0, the transfer
matrix is symplectic [10], i.e.,

T T QpwT = Qpw where Qpw =




0 Q

−Q 0


 (26)

where Q is the reversing permutation, derived by inverting the rows of the
identity matrix. The derivation of Eq. (26) for an arbitrary non-symmetric
crystal follows from the reciprocity theorem, with the origin of the skew-
Hermitian form of Qpw lying in the curl operators of Maxwell’s equations.
Since its derivation is entirely geometrical in nature, relying only on the reci-
procity theorem, it holds for arbitrary materials and thus is applicable to
both dielectric and metallic (lossy) structures. It may further be shown that
the modes, represented by the columns of the matrix F (23), satisfy

FHQpwF =




0 I

−I 0


 , (27)

when appropriately normalised.

The second key relation constitutes a generalisation [10] of unitarity, with
the generalisation taking into account the need for evanescent plane waves in
addition to propagating plane waves. That is,

T HIpwT = Ipw where Ipw =




Ip −iIp̄

iIp̄ −Ip


 , (28)

in which Ip denotes a diagonal matrix whose rows and columns designate the
plane wave orders and whose diagonal elements are 1 for propagating plane
waves and 0 otherwise. The matrix Ip̄ = I − Ip is its complement, containing
unit diagonal elements only for the evanescent plane waves. From this, one
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may derive a modal orthogonality relation

FHIpwF = Ibm where




Im −iIm̄

iIm̄ −Im


 , (29)

in which Im and Im̄ denote the Bloch mode analogues of the corresponding
plane wave forms Ip and Ip̄, and have unit diagonal entries denoting the place
of propagating and evanescent Bloch modes. The derivation of Eq. (28) follows
from an energy argument and thus Eqs (28) and (29) hold only for lossless
systems but are valid for arbitrary values of α0 ∈ R.

3 Variational formulation of the grating scattering problem

3.1 Overview and nomenclature

Although in the case of a photonic crystal layer Ω we take the semi-infinite
homogeneous media above and below to be identical, we will derive the finite
element scattering matrix algorithm for the general case in which the refrac-
tive indices of the media above and below differ (with a superscripted prime
(’) referring to quantities associated with the homogeneous medium below the
grating). Also, to simplify the presentation of the FEM, we will solve the grat-
ing scattering problem using unscaled plane wave coefficients, i.e., without the
scaling factors χ−1/2

m that appears in Eq. (13), and then rescale the coefficients
to introduce the energy normalisation at the conclusion of the derivation.

For a given value of α0 ∈ R and for an arbitrary order m ∈ Z, the plane wave
parameters αm, χm and χ′m are defined by Eq. (11); for χ′m, the refractive
index value n0 is replaced by n′0 in Eq. (11). The reflection and transmission
scattering matrices that characterise the diffraction properties of the grat-
ing, will be filled column-wise, with each column corresponding to a partic-
ular incidence order. The scattering matrices can be determined by comput-
ing, for each incident order n (including evanescent orders) from both above
(exp[i αn (x−x0)− i χn (y− y0)]) and below (exp[i αn (x−x′0)+ i χ′n (y− y′0)]),
the reflected and transmitted amplitudes of the outgoing plane wave fields.

For example, if the downward propagating plane wave

vinc
n = ei αn (x−x0)−i χn (y−y0) (30)

is incident from above the grating, the total field propagating over the semi-
infinite domains Ω0 and Ω′

0 can be represented respectively by the following
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plane wave expansions





v+
n (x, y) =

+∞∑

m=−∞

[
δm ne−i χm (y−y0) + rm n ei χm (y−y0)

]
ei αm (x−x0)

v−n (x, y) =
+∞∑

m=−∞
tm n ei(αm (x−x′0)−χ′m (y−y′0)),

(31)

where rm n and tm n are respectively the coefficients of the outgoing reflected
and transmitted plane wave coefficients, and δm n denotes the Kronecker sym-
bol.

Similarly, for incidence from below the grating, we have

v′inc
n = ei αn (x−x′0)+i χ′n (y−y′0) (32)

and also the plane wave expansions denoting the field above and below:





v′+n (x, y) =
+∞∑

m=−∞
t′m n ei(αm (x−x0)+χm (y−y0))

v′−n (x, y) =
+∞∑

m=−∞

[
δm ne

i χ′m (y−y′0) + r′m n e−i χ′m (y−y′0)
]
ei αm (x−x′0).

(33)

3.2 Plane wave incidence from above the grating: variational formulation

From the periodicity of the structure and from the quasi-periodicity of the
incident plane wave, the solution vn has to be quasi-periodic :

vn(x + d1, y) = ei α0 d1 vn(x, y), ∀(x, y) ∈ Ω. (34)

Inside the grating area Ω, the field must satisfy the Helmholtz equation

∇ · (p∇vn) + k2 q vn = 0. (35)

The continuity of the tangential components of the electric and magnetic
fields across the interfaces Π and Π′ implies that vn and p (∂vn/∂ν) must
be continuous. Accordingly, from Eq. (31), the field and derivative boundary
conditions are:





vn(x, y0) = ψn(x) +
+∞∑

m=−∞
rm n ψm(x), on Π,

vn(x, y′0) =
+∞∑

m=−∞
tm n ψ(′)

m (x), on Π′,
(36)
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and





p
∂vn(x, y0)

∂ν
= −i p0χn ψn(x) + i p0

+∞∑

m=−∞
χm rm n ψm(x), on Π,

p
∂vn(x, y′0)

∂ν
= i p′0

+∞∑

m=−∞
χ′m tm n ψ(′)

m (x), on Π′,
(37)

where

ψm(x) = eiαm (x−x0) and ψ(′)
m (x) = ei αm (x−x′0),∀x ∈ R, (38)

and where p0 and p′0 are the constant values of the function p over Ω0 and Ω′
0

respectively, with the operator ∂/∂ν denoting the outward normal derivative.

To obtain the variational formulation of the problem (35)-(37), we must first
introduce the Sobolev space of quasi-periodic functions H1

(α0)(Ω), defined as
the closure of the set of smooth functions

C∞
(α0)(Ω̄) =

{
v ∈ C∞(Ω̄) | v(x + d1, y) = ei α0 d1 v(x, y), ∀(x, y) ∈ Ω

}
(39)

with respect to the norm ‖ ·‖1,Q of the Sobolev space H1(Q) where Q is a unit
cell of the x-periodic domain Ω. For example, Q can be chosen as in Fig. 1.
For the remainder of the paper, we shall regard the domain Ω as the unit cell
Q with quasi-periodic boundary conditions.

The variational formulation is obtained in two steps. First we multiply Eq. (35)
by the conjugate of test functions w ∈ H1

(α0)(Ω) and integrate by parts, taking
into account the boundary conditions (37) and the quasi-periodicity. Then we
multiply Eq. (36) by plane wave exponential functions ψ∗m(x) or ψ(′)

m

∗
(x), and

apply their orthogonality. This leads to the following weak formulation :
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Given n ∈ Z, find the field vn ∈ H1
(α0)(Ω), and plane wave coefficients rm n

and tm n, for m ∈ Z, such that





∫

Ω

(
−p(∇vn) · (∇w∗) + k2 q vn w∗) dx dy

+i p0

+∞∑

m=−∞
χm rm n

x0+d1/2∫

x0−d1/2

ψm(x) w∗(x, y0) dx

−i p′0
+∞∑

m=−∞
χ′m tm n

x′0+d1/2∫

x′0−d1/2

ψ(′)
m (x) w∗(x, y′0) dx

= i p0 χn

x0+d1/2∫

x0−d1/2

ψn(x) w∗(x, y0) dx, ∀w ∈ H1
(α0)(Ω)

d1 rm n −
x0+d1/2∫

x0−d1/2

vn(x, y0) ψ∗m(x) dx = −d1 δm,n, ∀m ∈ Z,

d1 tm n −
x′0+d1/2∫

x′0−d1/2

vn(x, y′0) ψ(′)
m

∗
(x) dx = 0, ∀m ∈ Z,

(40)

where ∗ denotes the complex-conjugate operator.

The theoretical analysis of variational problem (40) has been the subject of
many papers, e.g., Refs. [3,19]. For all but possibly a discrete set of frequencies,
the existence and uniqueness of a solution of Eq. (40) has been proved and the
convergence of the finite element solution has been established [3,19]. In most
of the analytical studies, which use a nonlocal boundary operator (Dirichlet-
to-Neumann map), Eq. (40) is further transformed into a more compact form
where the theory of elliptic boundary value problems may be applied. However
in order to avoid a significant loss of sparsity in the FEM matrices, it is
appropriate to discretise directly Eq. (40).

We also consider the case of incidence from below, with the details differing
from Eq (40) only by the fact the incident source terms and the reflection
matrix coefficients r′m n are attached the lower interface while the transmission
matrix coefficients t′m n appear on the upper interface.

4 Finite element computation of the grating scattering matrices

We use a standard quadratic finite element method to construct an approx-
imating finite dimensional subspace Vh of the space H1

(α0)(Ω). More details
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concerning the finite element procedures can be found in Ref. [12]. The pa-
rameter h refers to the maximum diameter of the triangles in the finite element
mesh associated with Vh. The grating unit cell is represented by an x-periodic
triangular FEM mesh. Here Nh refers to the dimension of the FEM space Vh

and {φm}Nh
m=1 is the nodal basis of the subspace Vh. The quasi-periodicity con-

dition must be enforced on the basis functions associated with nodes lying on
the left and the right periodic boundaries of the FEM mesh; the other func-
tions are zero on these boundaries thus are not affected by the quasi-periodic
boundary condition. The approximate solution vnh is expanded in terms of
the basis functions as

vnh =
Nh∑

m=1

vnmφm. (41)

To obtain a numerical solution, we truncate the plane wave expansion to a
finite number of plane wave orders m ∈ [−N,N ], where the integer truncation
parameter N is chosen to be sufficient to ensure the accuracy of the computed
solution. N is usually chosen such that the truncated Rayleigh expansion
includes all the propagating orders and a number of evanescent diffraction
orders, sufficient to ensure that the high frequency components of the field
are suitably accommodated. In our calculations, we include those evanescent
waves that do not increase or decrease by more than a factor of ε > 0 across
the grating thickness, i.e.,

exp(−|χn| (y0 − y′0)) > ε or exp(−|χ′n| (y0 − y′0)) > ε. (42)

For the examples we consider in this paper, we choose ε = 10−2 and, for the
normalised frequency range 0 < d/λ . 0.7 in our examples, we observe no
significant improvement of the numerical solution by increasing the number
of plane wave orders further.

We first consider the case of plane wave incidence from above and apply the
Galerkin procedure to the variational problem by substituting the trial func-
tion vnh of Eq. (41) into Eq. (40) to derive the following linear system




Mvv Mvr Mvt

Mrv d1 I 0

Mtv 0 d1 I







vn

rn

tn




=




fv n

fr n

0




, (43)

where the unknown vectors vn, rn and tn contain respectively the FEM basis
coefficients, the plane wave coefficients rm n and tm n; I is the identity matrix
of order (2N + 1), 0 is the null matrix or the null vector of order (2N + 1)
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and the other submatrices of the system (43) are defined as

(Mvv)ms =
∫

Ω

(
−p(∇φs) · (∇φ∗m) + k2 q φs φ∗m

)
dx dy,

m, s = 1, . . . , Nh,

(Mvr)ms = i p0 χs−N−1

x0+d1/2∫

x0−d1/2

ψαs−N−1
(x) φ∗m(x, y0) dx,

m = 1, . . . , Nh, s = 1, . . . , (2N + 1),

(Mvt)ms = −i p′0 χ′s−N−1

x′0+d1/2∫

x′0−d1/2

ψ(′)
αs−N−1

(x) φ∗m(x, y′0) dx,

m = 1, . . . , Nh, s = 1, . . . , (2N + 1),

(Mrv)ms = −
x0+d1/2∫

x0−d1/2

φs(x, y0) ψ∗αm−N−1
(x) dx,

m = 1, . . . , (2N + 1), s = 1, . . . , Nh,

(Mtv)ms = −
x′0+d1/2∫

x′0−d1/2

φs(x, y′0) ψ(′) ∗
αm−N−1

(x) dx,

m = 1, . . . , (2N + 1), s = 1, . . . , Nh;

(44)

The coefficients of the source terms are

(fv n)m = i p0 χn

x0+d1/2∫

x0−d1/2

ψn(x) φ∗m(x, y0) dx, m = 1, . . . , Nh,

(fr n)m = −d1 δ(m−N−1),(n−N−1), m = 1, . . . , (2N + 1).

(45)

For plane wave incidence on the lower grating interface, the right hand side
of Eq. (43) becomes [f ′v n,0, f ′r n]T with

(f ′v n)m = i p′0 χn

x′0+d1/2∫

x′0−d1/2

exp(i αn (x− x′0)) φ∗m(x, y′0) dx, m = 1, . . . , Nh,

(f ′r n)m = −d1 δ(m−N−1),(n−N−1), m = 1, . . . , (2N + 1).

(46)
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4.1 Solution of the finite element system

The submatrix Mvv is a classic finite element matrix and has a sparse band
matrix profile. However, since the exponential functions ψm(x) and ψ(′)

m (x) vary
along the boundaries Π and Π′, the columns of Mvr and Mvt, and the rows
of Mrv and Mtv, have a relatively large number of nonzero elements because
coefficients for the degrees of freedom corresponding to FEM nodes located
on Π or Π′, in general, are nonzero. The coefficient matrix of the system (43)
is usually referred to as a bordered matrix because of the shape of its nonzero
elements; its bandwidth can be quite large. This is an unfavourable situation
since most existing finite element tools are optimised for sparse and relatively
small bandwidth matrices. Accordingly, it was necessary to derive a method
that would allow us to efficiently solve Eq. (43) using algorithms for standard
finite element sparse matrices or for low dimension dense matrices.

Expressing vn in term of rn and tn, we have

vn = M−1
vv fv n −M−1

vv Mvrrn −M−1
vv Mvttn, (47)

and substituting this into Eq. (43) leads to the following low dimension and
dense matrix system



M̂rr M̂rt

M̂tr M̂tt






rn

tn


 =



f̂r n

f̂t n


 (48)

in which the submatrices and the vectors of Eq. (48) are given by

M̂rr = d1 I−MrvM
−1
vv Mvr,

M̂rt = −MrvM
−1
vv Mvt,

M̂tt = d1 I−MtvM
−1
vv Mvt,

M̂tr = −MtvM
−1
vv Mvr,

(49)

and

f̂r n = fr n −MrvM
−1
vv fv n,

f̂t n = −MtvM
−1
vv fv n.

(50)

Similarly, for the case of incidence from below by an upward propagating wave
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we have



M̂rr M̂rt

M̂tr M̂tt






t′n

r′n


 =




f̂ ′t n

f̂ ′r n


 (51)

where

f̂ ′t n = f ′t n −MrvM
−1
vv f ′v n,

f̂ ′r n = −MtvM
−1
vv f ′v n.

(52)

In Refs. [13,17] we developed a computationally efficient approach for con-
structing the solution of Eqs. (48) and (51) in order to determine the unknowns
rn and tn from which the field vn can be subsequently reconstructed using
Eq. (47). In particular, for Eqs. (47), (49), (50) and (52), the matrix products
involving M−1

vv are computed using an LU factorisation of the FEM matrix
Mvv. During the LU decomposition, coefficients which are zero in the original
coefficient matrix of Eq. (43) may become nonzero (fill-in). The amount of
fill-in can be reduced by using an appropriate numbering of the FEM mesh
nodes.

Finally, we observe that, for a lossless material, the coefficients of the finite
element matrix Mvv, as given by Eq. (44)1, are real numbers when the Bloch
factor ei α0 d1 in Eq. (34) is equal to 1 (periodic boundary condition) or -1 (anti-
periodic boundary condition) and, accordingly, we can avoid complex number
computation by solving separately for the real part and imaginary part. Even
for the general case, a coefficient (Mvv)ms can have non zero imaginary part
only if either the basis functions φs or φm is associated with a node on the
left or right boundaries because, as we have seen in the first paragraph of
this section, only nodal functions based on these boundaries are subjected to
the quasi-periodic condition; typically most of the elements of Mvv will be
real numbers and computation performance can be significant improved by
taking advantage of that fact to reduce complex number operations; this can
be achieved by reordering the basis functions so that we can assume that the
last rows and columns Mvv correspond to the complex valued basis functions;
we will then have a situation similar to the one in Eq (43): a large central
submatrix has a structure (real coefficients) that we wish to use but it is
bordered by submatrices which do not enjoy the same structure. To solve this
new bordered system, we can easily adapt the approach we develop for the
system (43).
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4.2 Computation of the scattering matrices

Let R̃, T̃, R̃′ and T̃′ denote the matrices whose columns are respectively the
vectors rn, tn, r′n, t′n, for n = −N, . . . , N .

From (48) and (51), the scattering matrices R̃, T̃, R̃′ and T̃′ satisfy the
following equation



M̂rr M̂rt

M̂tr M̂tt






R̃ T̃′

T̃ R̃′


 =



M̂rr − 2 d1 I M̂rt

M̂tr M̂tt − 2 d1 I


 (53)

In particular, the right hand side matrix can be obtained easily from the
system matrix and thus computation time can be saved by avoiding the direct
calculation of the right hand side vectors. The matrix system (53) can be
solved using, for instance, the LAPACK library [30] which can handle systems
of linear equations with multiple right hand sides.

Now, if we scale the plane wave coefficients of the incident, reflected and
transmitted fields in the same way as in Eq. (13), the corresponding scattering
matrices R, T, R′, T′ are given by the similarity transformation



R T′

T R′


 =




χ1/2 0

0 χ′1/2






R̃ T̃′

T̃ R̃′







χ−1/2 0

0 χ′−1/2


 (54)

where χ and χ′ are the following diagonal matrices:

χ = diag [χm] and χ′ = diag [χ′m]. (55)

This normalisation is used to simplify the calculation of energy quantities. For
example, if n,m ∈ Z correspond to propagating diffracted orders, then the
fraction of energy (diffraction efficiency) reflected into the mth order by an in-
cident downward propagating plane wave of order n, is given by |R̃m n|2χm/χn

in term of the unscaled matrix, or simply |Rm n|2 when using the normalised
matrix.
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Fig. 2. Hexgonal lattice photonic crystals: (a) The first Brillouin zone and two of
its replicates in the reciprocal space. (b) and (c) show a grating layer (area between
the dotted lines) and a unit cell (parallelogram) when the wave vector k0 is parallel
to the Γ–M direction. (d) presents a grating layer and a unit cell when k0 is parallel
to Γ–K. The coordinates of the vectors are given in Table 3.

5 Numerical examples

5.1 Convergence of the method

We turn now to discuss our investigation of the convergence properties of
the numerical method and consider a hexagonal lattice of circular inclusions.
The parameters of the problem are: period of the grating d1 = d (d being the
lattice constant), background refractive index nb = 3, cylinder refractive index
nc = 1, radius of the cylinders a/d = 0.3, free space wavelength λ/d = 2, and
transverse Bloch wave vector α0 = π/(6 d) (see Eq. (6)).

Two possible choices of grating layers, with period d1 = d, are shown in
Fig 2 (b) and (c). We use the layer of Fig 2 (b) for the results presented in
this section. We will give more details about Fig. 2 later in section 5.3.

Let Mh be a finite element triangulation of a unit cell, with the parameter
h referring to the maximum diameter of the triangles in Mh. Let µh denote
an approximation to the eigenvalue µ computed using an FEM of order p on
the mesh Mh. Then, if the eigenfunction associated with the eigenvalue µ is
sufficiently regular and under additional conditions on the quality of the FEM
meshes, standard convergence results for elliptic eigenvalue problems [12] pre-
dict that µh converges to µ with a convergence rate of 2p, i.e., |µh − µ| ≤ Ch2p

where the coefficient C does not depend on h.
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Table 1
Computational timings for various FEM meshes Mhj

: number of triangles (NT ),
number of nodes (NN , vertices and edge midpoints), plane wave truncation param-
eter (N) and computation time (CPU , for isoparametric FEM).

NT NN N CPU (sec.)

Mh0 220 481 6 1

Mh1 966 2021 11 1.5

Mh2 3722 7621 20 7.75

Mh3 14792 29945 20 70.2

Mh4 59948 120625 20 1025

To evaluate the convergence rate of our approximation we use an FEM of order
p = 2 and generate a sequence of 5 successively refined meshes Mh0 , Mh1 ,
Mh2 , Mh3 and Mh4 with hj = h0/2

j, for j = 1, 2, 3, 4, using the commonly
available software “Gmsh” [22]. Some details about the computation with
these meshes are given in Table 1. The initial coarse mesh Mh0 is shown in
Figure 3 (a).

For both TE and TM polarisations, we computed on each mesh Mhj
those

eigenvalues µi
hj

such that 1/5 < |µi
hj
| < 5. The number of these eigenvalues is

6 for either polarisation. Since the exact solution is not known, we choose to
approximate the error by |µi

hj
− µi| ≈ |µi

hj
− µi

hj+1
| for j = 0, 1, 2, 3. In Fig. 3

we plot e(j) = maxi{|µi
hj
−µi

hj+1
|} as a function of j ∈ {0, 1, 2, 3}. In Fig. 3 (b)

we use standard FEM meshes with rectilinear triangles and discover that the
convergence rate is 2, lower than the theoretical convergence order 2p = 4.
This suboptimal convergence can be attributed directly to the approximation
of the circular cylinder interface by a polygon. Indeed, when we use curved
triangles (isoparametric FEM triangles) to approximate the curved interface
by piecewise quadratic polynomials, we obtain the optimal convergence order
2p = 4 shown in Fig. 3 (c). Accordingly we will adopt the isoparametric FEM
for our remaining numerical examples.

Before concluding our discussion of convergence, we consider briefly the effect
of plane wave parameters on our calculations. This is of particular importance
in device applications in which the regular photonic crystal lattice is perturbed
by the introduction of defects to form waveguides, resonant cavities, couplers
and the like. All such applications require the device to be operated in a
band gap and, for example, the removal of a entire line of scatterers to form
a waveguide introduces a band of defect states that enables the channel to
guide the light. This is exemplified in Fig. 4 (b) which displays the dispersion
curve for the defect mode corresponding to a waveguide introduced into a
square symmetric photonic crystal by removing a single row of cylinders. The
numerical computation of the photonic crystal waveguide modes is important
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Fig. 3. Convergence of the quadratic FEM. (a) Initial FEM mesh (rectilinear tri-
angles) of the unit cell. The curves on panels (b) and (c) represent the quantities
e(j) = maxi{|µhj−µhj+1 |} as a function of the FEM mesh subdivision j ∈ {0, 1, 2, 3}.
The continuous and dashed lines indicate respectively the E-parallel (TM) and
H-parallel (TE) modes. The results in (b) are obtained using rectilinear FEM tri-
angles and the rate of convergence is 2. In (c) isoparametric FEM (curved triangles
at the cylinder interface) is used and the optimal convergence rate of 4 is achieved.
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Fig. 4. (a) Band diagram of a perfect photonic crystal obtained using the grating
supercell of length D = d1 = 21d shown in the panel (c). (b) Band diagram of a
photonic crystal with a line defect; the band is obtained using the supercell of length
D = 21d shown in the panel (d). The bands in (a) and (b) are computed along the
wave vector line k0 = (α0, β0) = (0, β0) for the E-parallel polarisation.

in many applications and both two and three-dimensional models have been
proposed [24,29].

The modelling of a device using the Bloch mode transfer matrix method re-
quires that the defect is embedded within a supercell whose size is chosen
to be sufficiently large so that there is negligible crosstalk between adjacent
supercells, a consequence of the fields decaying in the cladding due to opera-
tion of the device in a band gap. For the method to be practically useful, any
calculations should be independent of the Bloch factor α0, with the proviso
that we operate inside a band gap and that there is effectively no crosstalk
between the supercells. This we exemplify with a device referred to as the
folded directional coupler (FDC) that we have studied previously [42]. The
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Table 2
The choice of α0 has a negligible effect on the computed results: (a) transmittance T ;
(b) propagation constant β; (grating supercell of length D = d1 = 21d, wavelength:
λ/d = 3.3).

(a)

T

Dα0
π N = 20 N = 30

0. 0.8207106 0.8208297

0.2 0.8207106 0.8208297

0.4 0.8207107 0.8208297

0.6 0.8207107 0.8208296

0.8 0.8207105 0.8208293

1. 0.82071 0.8208287

(b)

β

Dα0
π N = 20 N = 30

0. 0.8111816 0.8110291

0.2 0.8111817 0.8110291

0.4 0.8111821 0.811029

0.6 0.8111829 0.811029

0.8 0.8111841 0.8110291

1. 0.8111859 0.8110295

FDC (Fig. 5 (a)) is a novel high-Q notch rejection filter that exploits the
mode coupling properties of a directional coupler and the sharp resonances of
a Fabry-Perot (FP) resonator. The structure is made ultra-compact by folding
the light path, needed for mode coupling, using a FP interferometer geometry
with the aid of cavity mirrors composed of photonic crystal.

The structure that we consider is operated in E-polarised light and comprises
a square lattice with cylinders of normalised radius a/d = 0.3 and refractive
index ν = 3. Figure 5 (b) depicts the field pattern for a wavelength of λ/d =
3.3, while Fig. 5 (c) displays a cross-section of the field intensity at y = 10
and illustrates the exponential decay of the field in the crystal, with these
calculations being performed with α0 = 0. Table 2 (a) displays the variation of
the transmittance of the FDC for various values of α0 and we see immediately
that this is almost independent of α0, with the small variation explicable by
the small cross-coupling that occurs at the supercell boundaries. A further
example of the independence of the calculations on α0 is shown in Table 2 (b)
which shows the propagation constant β for a single waveguide (i.e., the entry
or exit guide of the FDC) as a function of α0 for a wavelength λ/d = 3.3.

5.2 Properties of the Bloch modes: the eigenvalue distribution

We now consider the distribution of eigenvalues in the complex plane for three
PCs, respectively having square symmetry, hexagonal symmetry and no de-
fined lattice symmetry. The results are presented in Fig. 6, for which we show
only those eigenvalues in the range 10−6 < |µ| < 106. In order to suitably rep-
resent eigenvalues over such a large dynamic range, their magnitude is scaled
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Fig. 5. Folded directional coupler: (a) Geometry; (b) two-dimensional plot of |Ez|
at the wavelength λ/d = 3.3; (c) the continuous line represents the cross-section of
|Ez| at the level y = 10 (logarithmic scale); the dashed line represents the function
defined by f(x) = M e−γx if x ≥ 0 and f(x) = M e−γ|x+2d| if x ≤ −2d where
γ = − log |µ| = 0.675973/d is the lowest attenuation constant of the evanescent
modes in the bulk photonic crystal (see Fig. 4 (a), (c)) and M is the maximum
value of |Ez|. The supercell used for the calculations has dimension d1 = 21d.

radially according to r = |µ|0.1, with the eigenvalues corresponding to prop-
agating states lying on the unit circle. The parameters common to the three
problems are as follows: grating period d1 = d, background refractive index
nb = 3, cylinder refractive index nc = 1, cylinder radius a/d = 0.3, free space
wavelength λ/d = 1 (TM polarisation), α0 = π/(4 d).

There are a number of interesting features evident in Fig. 6, one of which is
common to all three cases, namely that if µ is an eigenvalue then 1/µ∗ is also
an eigenvalue. From this it follows that there is an even number of eigenvalues
on the radial lines corresponding to |µ| 6= 1. The proof of this follows from the
similarity transformation T H = IpwT −1I−1

pw (derived from Eq. (28)) which
shows that the eigenvalues µ and 1/µ∗ must be paired.

For the cases (a) and (b) of Fig. 6, the eigenvalue distributions respectively
demonstrate axes of symmetry given by the radial directions θ = 0 and θ =
−α0 d/2. This property can be explained by the fact that the lattices and
their corresponding cylinder inclusions are invariant under the transformation
(x, y) → (x,−y). It is then easy to see that if v(x, y) is a Bloch mode associated
with a wave vector k0 = (kx, ky) = (α0, β0), v̂(x, y) = v(x,−y) is also a Bloch

mode associated with the Bloch vector k̂0 = (α0,−β0).
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Fig. 6. Eigenvalue distribution (E-parallel polarisation) over the complex number
plane. (a) symmetric square lattice PC; (b) symmetric hexagonal lattice PC; (c) non-
symmetric square lattice PC (cylinder with quarter-disk section). The inset shows
the unit cell of each case.

For the square lattice we have e2 = (0, d) and so the phase factors correspond-

ing to k0 and k̂0 are respectively µ = e−ik0·e2 = e−i β0d and µ̂ = e−i k̂0·e2 = ei β0d.
Thus, for the square symmetric photonic crystal the eigenvalues µ and 1/µ
are paired and the line θ = 0 is an axis of symmetry for the eigenvalues in the
complex plane.

For the hexagonal lattice we have e2 = d (1,
√

3)/2 and so the phase factors

corresponding to k0 and k̂0 are respectively µ = e−ik0·e2 = e−i(α0+β0

√
3)d/2 and

µ̂ = e−ik̂0·e2 = e−i(α0−β0

√
3)d/2 = e−iα0d ei(α0+β0

√
3)d/2 =

e−iα0d

µ
. (56)

Thus, for the hexagonal lattice the eigenvalues are paired as µ eiα0d/2 and
1/(µ eiα0d/2) and the line θ = −α0 d/2 is an axis of symmetry for the eigenval-
ues.

We note that for the case of α0 = 0 the pairing of the eigenvalues µ and
1/µ also holds for arbitrary nonsymmetric photonic crystals because of the
symplectic nature of the transfer matrix (26), from which the pairing follows
from the similarity transformation T T = QpwT −1Q−1

pw.

These symmetry properties which are exhibited by the eigenvalue distribution
can be used to check the validity and accuracy of the numerical method. The
results computed by our FEM satisfy these constraints well. For the eigenval-
ues appearing on Fig. 6 the pairing µ and 1/µ∗ is verified with a relative error
less than 10−4% while the deviation from the axial symmetry of Figs. 6 (a)
and (b) is also less than 10−4%.

5.3 Band structure of a hexagonal lattice of dielectric cylinders

We next consider the calculation of a band diagram for a hexagonal lattice
PC, solving for the dispersion relation ω = ω(k0) where the wave vector k0

traverses the boundary Γ–K–M of the irreducible part of the first Brillouin
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Table 3
Band diagram parameter: α0 = k0 · e1 and arg(µ) = k0 · e2.

Path k0
Range
of s

e1/d e2/d d1/d k0 · e1
Range
of k0 · e2

Γ–K s
(

1
2 ,
√

3
2

) [
0, 4π

3d

] (
3
2 ,−

√
3

2

)
(1, 0)

√
3 0

[
0, 2π

3

]

K–M
(
s, 2π

d
√

3

) [
0, 2π

3d

]
(0,
√

3)
(

1
2 ,
√

3
2

) √
3 2π

[
π, 4π

3

]

M–Γ (0, s)
[
0, 2π

d
√

3

]
(1, 0)

(
1
2 ,
√

3
2

)
1 0 [0, π]

K–M ′ s
(

1
2 ,
√

3
2

) [
4π
3d , 2π

d

] (
3
2 ,−

√
3

2

)
(1, 0)

√
3 0

[
2π
3 , π

]

zone shown in Fig. 2 (a). Because of the lattice symmetry, the segment K–M
can be replaced by K–M ′ and thus the number of directions to investigate
can be reduced to two, namely, Γ–M and Γ–K–M ′. Since k0 is not a fully
independent variable in our numerical algorithm, some care must be taken
to ensure that the computed wave vectors belong to a given direction of the
reciprocal space.

To obtain the band diagram we use the fact that for any given values of α0 =
k0x, the wavevectors computed by our method lie on a line perpendicular to the
grating layer [6,7]. Wave vectors k0 parallel to the Γ–M direction correspond
to a normal incidence problem, i.e., α0 = (k0 · e1)/‖e1‖ = 0, on the grating
layers shown in Fig. 2 (b) and Fig. 2 (c). Wave vectors k0 parallel to the Γ–K
direction correspond to a normal incidence problem, i.e., α0 = (k0 ·e1)/‖e1‖ =
0, on the grating layer shown in Fig. 2 (d). In Table 3, we present the lattice
vectors e1 and e2 of Fig. 2 and other parameters used in the computation the
band diagram. More details about the procedure can be found in Ref. [7].

The structure of Fig. 2 (b) is straightforward in that the rows of adjacent
gratings do not interpenetrate. The grating interior has exactly one row of
cylinders and the unit cell has a simple geometry, and so it is relatively easy
to generate its finite element mesh. However, when layers interpenetrate, such
as in the example of Fig. 2 (c), corresponding to a normalised cylinder radius
a/d >

√
3/4 = 0.433013, we generate the finite element mesh using the unit

cell depicted in Fig. 2 (c). This observation also applies to the case of Γ–K
incidence, although interpenetration occurs at a far lower normalised radii,
a/d > 0.25. In passing, we observe that the interpenetration of cylinder rows
can cause severe difficulties for the multipole method, a problem which is
related to the validity of the Rayleigh approximation in diffraction grating
theory, and which is discussed in Ref. [7]. In contrast, the FEM approach
outlined here has no difficulties in handling such situations.

We now consider two numerical examples: the first a comparison with an
FEM based study by Axmann and Kuchment [2], and secondly a comparison
with a plane wave calculation for a PC with a high filling fraction taken from
Joannopoulos, Meade, and Winn [26].
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In the Axmann and Kuchment [2] approach, the Bloch vector is set and the fre-
quency becomes the unknown eigenvalue, with the problem being discretised
using a linear FEM. This process leads to a generalised eigenvalue problem
with a large matrix because it involves directly the values of the unknown fields
over the entire unit cell. However this eigenproblem had been efficiently solved
using a subspace iteration method that computes only a small number of the
physically most relevant (i.e., lowest) eigenvalues. The example considered by
Axmann and Kuchment comprised a hexagonal array of dense cylinders of
dielectric constant ε = 14 and filling fraction 0.431 (i.e., normalised radius
a/d = 0.34469) embedded in a free space background. The band diagrams in
Fig. 7 (a) are very similar to the those of Fig. 2 of Ref. [2].

Table 4 shows the lowest band gaps and there is again good agreement between
our isoparametric quadratic finite element technique and the linear FEM pre-
sented in Ref. [2]. To obtain results that are stable to 5 significant figures, it
is necessary to work with a fine mesh. For the Γ–M calculations, the unit cell
mesh has 9182 triangles and 18645 points with plane wave orders truncated to
lie in the range -22 to 22, while for the Γ–K–M ′ calculations, we used an FEM
mesh with 9028 triangles and 18441 points and plane wave orders ranging from
-26 to 26. Note however that the band diagrams in Fig. 7 (a) do not require
such a high level of refinement and the curves can be properly obtained using
less refined discretisation.

From the results in Fig. 7 (a) and Table 4, it appears that the band gaps for the
TE and TM polarizations do not overlap. However Joannopoulos, Meade, and
Winn [26] show that, for a hexagonal array of cylinder holes in a high index
background, it is possible to achieve a complete band gap for all polarizations
if the cylinder radius is large enough. In particular, they considered the case of
cylinder holes of normalised radius a/d = 0.48 in a background with dielectric
constant ε = 13. Again the band diagram in Fig. 7 (b) shows a good agreement
between our FEM and the plane wave method used for the diagram in Ref. [26,
p. 65]. The plane wave orders used to obtain the dispersion curves in Fig. 7 (b)
range from -19 to 19 and from -23 to 23 respectively for the Γ–M and Γ–K–
M ′ directions. The unit cells are represented by FEM meshes with about 4000
triangles and 8400 points.

5.4 Band structure of a hexagonal lattice of perfectly conducting metallic
cylinders

We continue on the validation of the method by considering the interesting case
of a PC comprising perfectly conducting cylinders which is an excellent ap-
proximation for metals in the low frequency limit (e..g., the microwave regime).
This problem exhibits an important difference from the dielectric cylinder for-

28



Table 4
Comparison of the band gaps (for the normalised frequency d/λ in the range [0, 0.5])
obtained using our method (FEM 1) with the results in Table I of [2] (FEM 2).

TM

Band gap No FEM 1 FEM 2

1 [0.19644, 0.25319] [0.19673, 0.253637]

2 [0.34969, 0.43569] [0.350039, 0.436544]

TE

Band gap No FEM 1 FEM 2

1 [0.28564, 0.33844] [0.286089, 0.339239]
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Fig. 7. Band diagram of a hexagonal lattice of cylinders; the continuous and dashed
lines indicate respectively the E-parallel and H-parallel modes. (a) Lattice of cylin-
der rods of dielectric constant ε = 14 and filling fraction 0.431; the rods are embed-
ded in a free space background. (b) lattice of cylinder holes of normalised radius
a/d = 0.48 in a background with dielectric constant ε = 13

mulation, namely that the interiors of the perfectly conductor cylinders do
not belong to the problem domain. Thus complications occur when the grat-
ing interfaces Π and Π′ intersect these cylinders (as in Figs. 2 (c) and 2 (d)).

In this case, continuity conditions between the plane wave expansion and the
field inside the grating have to be enforced on isolated segments of Π and
Π′. In particular, the second and third equations in (40) are no longer valid
because the line integrals on the top and bottom boundaries of the unit cell
cover segments of length L < d1, and thus the orthogonality of the plane
wave functions {ψm(x)} cannot be applied. This issue can be addressed by
replacing d1 by L in Eqs. (11) and (40). However the corresponding plane
wave representations of the fields are not d1-quasi-periodic. Fortunately the
d1-quasi-periodicity does not have to be directly imposed on the plane wave
expansions of the field over the segments of Π and Π′ intersecting the grating
since these segments are not connected. Accordingly we need only to enforce
the d1-quasi-periodicity on the field inside the grating.
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Fig. 8. Band diagram for the perfect metallic cylinder inclusion of radius a/d = 0.34
in a background medium of refractive index nb = 1. The continuous and dashed lines
indicate respectively the E-parallel and H-parallel modes.

When the cylinder radius is sufficiently small, we may use either of the two
unit cell geometries in Figs. 2 (b) and Fig. 2 (c). Numerical tests show ex-
cellent agreement between the band structures obtained by either method. In
Fig. 8 we show the band diagram for a hexagonal lattice of perfectly conduct-
ing cylindrical inclusions of radius a/d = 0.34 in a background medium of
refractive index nb = 1. A particular feature of the lattice of metallic cylin-
ders is the existence for E-parallel polarisation of a wide band gap from the
zero frequency to d/λ = 1.211. The band diagram we obtained is essentially
identical to that in Fig. 12 of Ref. [33]. For the calculation of the dispersion
curves in Fig. 8, the plane wave orders are truncated to the ranges -14 to 14
and -17 to 17 respectively for the Γ–M and Γ–K–M ′ directions. The unit cells
are represented by FEM meshes with about 2300 triangles and 4900 points.

5.5 Efficient coupling of light from a photonic crystal waveguide into free
space

Our final example concerns the modelling of photonic crystal waveguides, con-
structed by removing a single row of cylinders (referred to as a W1 defect
waveguide) from an otherwise perfect photonic crystal. Here, we concentrate
on the particular question of designing a tapered neck that can be used to
apodise, or efficiently couple, light into and out of the waveguide. The aim
here is to minimise the reflection that may arise if the transition between the
waveguide and free space is not sufficiently smooth.

The determination of an optimal shape for the taper among a set of general, ar-
bitrary shapes can be a very complex problem. Thus to simplify the modelling,
the optimisation is typically performed amongst a limited, but physically real-
istic, set of possible taper profiles. For instance the optimisation of the length
and the width of linear taper profiles have be studied in Refs. [36,40]. Here,
in addition to the length and the width, as illustrated in Fig. 9, we introduce
a third parameter ξ to allow the shape of the taper to be varied continuously
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as

w(y) = Wbase + (W −Wbase)
(

y

L d

)ξ

, for y ∈ [0, L d], (57)

where w(y) stands for the width of the taper at the position y, the integer L
represents the number of grating layers in the taper, Wbase d and Wd denote
respectively the width, defined from the centre of the inclusions, at the lower
and upper ends of the taper. For the waveguide of Fig. 9 that we consider,
Wbase = 2. The positive parameter ξ determines the taper shape: for ξ = 1 the
taper is linear, for ξ > 1 it is concave as in Fig. 9, while for ξ < 1 it is convex.

The square lattice photonic crystal structure illustrated in Fig. 9 comprises
three regions: the waveguide, the taper region (shaded rectangle in Fig. 9) and
free space, a semi-infinite homogeneous medium having the same refractive
index as the photonic crystal background material.

Each constituent layer of the taper or the characteristic layer of the waveguide
is treated as a diffraction grating having a supercell period of length D = 21d
which we operate with a periodic boundary condition (α0 = 0). Inside each of
the grating layers that comprise the taper, the cylinders on the taper wall are
placed so that the centre-to-centre separation is given by Eq. (57). As indicated
in Fig. 9, the distance between the two inclusions closest to the taper opening
is maintained at d, whereas subsequent inclusions are separated by d′, such
that d′ is as close as possible to d, consistent with the supercell period D; d′

generally differs in each of the gratings. Near the taper opening, we choose
to maintain a cylinder separation of d, since it is important to maintain the
integrity of the band gap that is responsible for confining the light in the
vicinity of the taper core. The problem we will consider is to determine the
optimal taper profile for efficient transmission from the fundamental mode of
the photonic crystal waveguide into free space. To perform the analysis we will
need to compute the reflected field in the waveguide and the transmitted field
in free space for a sequence of taper profiles corresponding to incidence of the
fundamental waveguide mode. Within the waveguide, we represent the field
in terms of a Bloch mode basis obtained from the solution of the eigenvalue
problem for the waveguide mode transfer matrix (23). The scattering property
of the taper is then characterised in terms of its reflection and transmission
matrices. Details of the algorithm are given in Appendix A.

We consider a rod-type photonic crystal in E-polarised light (i.e., TM polari-
sation), consisting of cylinders of radius a = 0.25d, and refractive index nc = 3
arranged in a square array, in a background of refractive index nb = 1. Each
layer of the taper is represented by a finite element mesh of around 12000
triangles and 25000 points, with the plane wave expansion truncated to in-
clude orders ranging from -29 to 29. The bulk photonic crystal has a band gap
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Fig. 9. Schematic illustration of the square lattice taper. Light is incident from at
he fundamental mode of a photonic crystal waveguide (large arrow) into free space
via a taper of L layers and width Wd (shaded rectangle). The photonic crystal
is considered to consist of a sequence of gratings (horizontal dotted lines) with
supercell period D. The solid curves correspond to Eq. 57 specifying the positions
of the scatterers.

for normalised frequencies d/λ ∈ [0.287, 0.387], i.e., for wavelengths λ lying
between 2.582d and 3.487d. Within this gap, the W1 waveguide supports a
mode with a cutoff at d/λ = 0.302, i.e., λ = 3.312d, so the relevant wave-
length range for our study of coupling from the waveguide into free space is
λ/d ∈ [2.582, 3.312].

The transmittance of the fundamental mode over this wavelength region is
shown in Fig. 10 for tapers of total width W = 4, with length ranging from
L = 4 to L = 8 and for various taper parameters ξ. The contour plots of Fig. 10
have levels ranging from very high values of 99.5% down to values of 70% re-
flecting poor taper performance. In general, waveguide tapers with 2 ≤ ξ ≤ 3
(horn-shaped tapers) are capable of delivering very high transmittances. This
is also evident in Fig. 10(b) which shows the transmission spectrum for the
optimal taper, and for a waveguide that is terminated abruptly (i.e., with-
out any tapering). For tapers of this optimal shape, the transmittance and
wavelength coverage increase with taper length, with a length of six periods
delivering transmittances not significantly below those of longer tapers. Note
that from Fig. 10 we see that linear tapers (ξ = 1) can deliver good perfor-
mance. However, to achieve this the taper has to be longer than for a taper
of optimal shape.

Also, in Fig. 10(c) we plot the group velocity. In the case of an infinite waveg-
uide, we may calculate this from vg = dω/dβ of from the the ratio of the
energy flux in the guide to the energy density in a layer [7]. For a semi-infinite
structure, such as a terminated waveguide, however, the group velocity can
be computed only with the second method, in which we must estimate the
energy density by averaging over a number of layers deep in the waveguide in
order to avoid any truncation effects which manifest themselves in the form
of evanescent waveguide modes which are prominent near the interface. The
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dashed curve in Fig. 10(c) is the group velocity in the optimal taper, with
the energy density being averaged over layers 11 layers some 10 layers below
the start of the taper. Coinciding perfectly with this (although invisible on
the graph) is the group velocity of the infinite guide, computed according to
vg = dω/dβ, with the perfect agreement of the two associated with the optimal
tapering. The solid curve in Fig. 10(c) is the group velocity for the untapered
termination, and we see that this differs markedly from the group velocity for
the optimal structure. In both cases, however, we see that the transmittance
is qualitatively similar to the group velocity, with both vanishing at the cut-
off wavelength. However, the relationship between transmittance and group
velocity is somewhat indirect, since transmittance is primarily a function of
impedance mismatch at an interface while the group velocity is essentially a
characteristic of the mode dispersion properties.

In many of the examples we have studied [16], involving different waveguide
geometries (square and hexagonal lattices), waveguide length and polarisa-
tion, optimal transmittance tends to be delivered by tapers with 2 ≤ ξ ≤ 3.
In Ref. [16], we have also studied hexagonal lattices, the modelling for which
is significantly more complex since the rows of closely packed cylinders can
interpenetrate. It is here that the accuracy and flexibility of the FEM im-
plementation of the Bloch mode tools in handling challenging structures is
particularly useful.

6 Conclusion

In this paper we have proposed a numerical method, based on a scattering ma-
trix formalism, for the analysis of two-dimensional photonic crystals. A finite
element method for the computation of the scattering matrices has been pre-
sented. Since the most computationally expensive step, associated with the
factorisation of FEM matrices, is not repeated, the construction of scatter-
ing matrices is carried out quite efficiently. The mode structure can then be
obtained from the scattering matrices by solving low dimension and numeri-
cally stable eigenvalue problems. The scattering matrix formalism can also be
used to analyse light propagation through finite size structures. The method
is accurate, computationally robust and can be applied to arbitrary periodic
materials, including lossy media. Extensions of the approach to 3D structure
are possible and will be pursued in the future.
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Fig. 10. (a) Transmittance from a square lattice photonic crystal waveguide into
free space for a taper of width W = 4 and lengths L = 4, 5, . . . , 9 layers. The
contour levels shown correspond to transmittances of 0.995, 0.99, 0.98, 0.95, 0.90,
0.85, 0.80 and 0.70, decreasing from the region centred on ξ = 2 outwards. (b) The
continuous and dashed lines represent respectively the transmittance into free space
for a waveguide without a taper and for a waveguide having a taper with parameter
L = 7, W = 4 and ξ = 3. (c) Group velocity vg/c (c is the free space speed of light)
of the two structures considered in (b).
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Appendix A: efficient coupling from photonic crystal waveguides
into free space

In this appendix we give details of the algorithm used in Sec. 5.5 to compute
the reflectance and transmittance of a tapered PC waveguide (see Fig. 9).

To solve the propagation problem for a waveguide mode incident from below
the taper, we need the Fresnel reflection (R′

taper) and transmission (T′
taper)

matrices of the taper. To obtain these matrices we first compute the scattering
matrices Rl,Tl,R

′
l,T

′
l for the taper layers l = 1, 2, . . . , L, enumerating these

from bottom to top. Note that from the up-down symmetry of the layers,
we have R′

l = Rl and T′
l = Tl, and thus the calculation of the scattering
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matrices can be halved. We will append the subscripted notation l1, l2 to the
scattering matrices variables to denote the reflection or transmission of a stack
of layers ranging from the layer l1 to layer l2; for instance R′

taper = R′
1,L and

T′
taper = T′

1,L. We then form the reflection and transmission matrices for the
taper associated with incidence from below through backward recursion

R′
l−1,L =R′

l−1 + Tl−1R
′
l,L

(
I−Rl−1R

′
l,L

)−1
T′

l−1 (58)

T′
l−1,L =T′

l,L

(
I−Rl−1R

′
l,L

)−1
T′

l−1, (59)

commencing with R′
L,L = R′

L and T′
L,L = T′

L.

In the waveguide region, the fields are expanded in the Bloch mode basis,
obtained from the diagonalisation of the waveguide transfer matrix (23). If
a field of upward propagating modes (designated by a vector of Bloch mode
coefficients c+) is incident on the interface between the waveguide and the
taper, it will generate a reflected field of downward propagating modes (c−).
Thus, at the lower interface of the taper, the field is expressed in terms of a
plane wave expansion (13) with upward and downward components (g±) given
by



g−

g+


 =



F−

F+


 c− +



F′−

F′+


 c+ =



F− F′−

F+ F′+






c−

c+


 . (60)

The interaction of the plane wave fields g± and the field t transmitted into
free space is characterised by the taper reflection and transmission matrices
defined by

g− = R′
taperg+, t = T′

taperg+. (61)

Solving Eqs. (60) and (61), we arrive at expressions for the reflection (Rgf) and
transmission (Tgf) matrices of the “guide-taper-free space” system, defined by

c− = Rgfc+, t = Tgfc+. (62)

We thus derive

Rgf = (F−)−1
(
I−R′

taperRg

)−1 (
R′

taper −R′
g

)
F′+, (63)

Tgf =T′
taper

(
I−RgR

′
taper

)−1 (
I−RgR

′
g

)
F′+. (64)
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The quantities Rg = F+ (F−)−1 and R′
g = F′−

(
F′+

)−1
that appear in each of

Eqs. (63) and (64) are the plane wave reflection matrices of semi-infinite pho-
tonic crystals, respectively corresponding to incidence from above and below
[7,10].

For a specified incident modal field c+, the reflected modal field c− and the
transmitted plane wave field t may then be computed using Eq. (62). If the
plane wave and waveguide basis are normalised so that each mode carries unit
energy, we can express the energy conservation of the system as follows

∑

m∈Ωg

∣∣∣c(−)
m

∣∣∣
2

=
∑

m∈Ωg

∣∣∣c(+)
m

∣∣∣
2
+

∑

p∈Ωf

|tp|2 , (65)

provided that the incident waveguide field contains only propagating modal
terms [10]. In Eq. (65), Ωm and Ωf respectively denote the set of propagating
waveguide modes and the set of propagating plane waves.

References

[1] N. W. Ashcroft and N. D. Mermin. Solid state physics. Holt, Rinehart and
Winston, New York, 1976.

[2] W. Axmann and P. Kuchment. An efficient finite element method for computing
spectra of photonic and acoustic band-gap materials. I. Scalar case. J. Comput.
Phys., 150(2):468–481, 1999.

[3] G. Bao and D. C. Dobson. Variational methods for diffractive optics modeling.
In Mathematical modeling in optical science, volume 22 of Frontiers Appl. Math.,
pages 37–69. SIAM, Philadelphia, PA, 2001.

[4] S. Boscolo, M. Midrio, and T. F. Krauss. Y junctions in photonic crystal
channel waveguides: high transmission and impedance matching. Opt. Lett.,
27(12):1001–1003, 2002.

[5] S. Boscolo, M. Midrio, and C.G. Someda. Coupling and decoupling of
electromagnetic waves in parallel 2D photonic crystal waveguides. IEEE J.
Quantum Electron., 38(1):47–53, 2002.

[6] L. C. Botten, R. C. McPhedran, C. M. de Sterke, N. A. Nicorovici, A. A.
Asatryan, G. H. Smith, T. N. Langtry, T. P. White, D. P. Fussell, and B. T.
Kuhlmey. From multipole methods to photonic crystal device modelling. In
K. Yasumoto, editor, Electromagnetic Theory and Applications for Photonic
Crystals, chapter 2. CRC Press, 2005.

[7] L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. M. de Sterke, and A. A.
Asatryan. Photonic band structure calculations using scattering matrices. Phys.
Rev. E, 64:046603, 2001.

36



[8] L. C. Botten, N.-A. P. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M.
de Sterke, and P. A. Robinson. Formulation for electromagnetic scattering
and propagation through grating stacks of metallic and dielectric cylinders for
photonic crystal calculations. Part I. Method. J. Opt. Soc. Am. A, 17(12):2165–
2176, 2000.

[9] L. C. Botten, N.-A. P. Nicorovici, A. A. Asatryan, R. C. McPhedran, C. M.
de Sterke, and P. A. Robinson. Formulation for electromagnetic scattering
and propagation through grating stacks of metallic and dielectric cylinders for
photonic crystal calculations. Part II. Properties and implementation. J. Opt.
Soc. Am. A, 17(12):2177–2190, 2000.

[10] L. C. Botten, T. P. White, A. A. Asatryan, T. N. Langtry, C. M. de Sterke,
and R. C. McPhedran. Bloch mode scattering matrix methods for modeling
extended photonic crystal structures. I. Theory. Phys. Rev. E, 70:056606, 2004.

[11] Q. Cao, P. Lalanne, and J.-P. Hugonin. Stable and efficient Bloch-mode
computational method for one-dimensional grating waveguides. J. Opt. Soc.
Am. A, 19(2):335–338, 2002.

[12] P. G. Ciarlet. The finite element method for elliptic problems. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, USA, 2002. Reprint
of the 1978 original [North-Holland, Amsterdam].
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