Automated Classification of Female Facial Beauty Using Learning Algorithms
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Abstract

Among artists and psychologists, there exists a widespread belief
that facial attractiveness can be measured by using mathematical
ratios of facial features. Accordingly, in this paper we present an
automated feature-based measuring system attempting to measure
female facial beauty in a quantitative and repeatable way. The
system is based on feature measurements made with image
analysis algorithms and automated classification based on
supervised learning. The system proves able to achieve good
accuracy, substantially confirming the objective measurability of
female facial beauty.
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1. Introduction

It has long been believed that the concept of facial beauty is
subjective and varies by race, culture or era. However,
mathematics and medical science state that there is a timeless
aesthetic ideal for facial beauty and our perception of physical
beauty is based mostly on our physical proportions’ closeness to
phi (the Golden Ratio, namely 1.61803 39887 49894 84820 [1,2]).
Human beauty has been studied for years in practices of oral and
maxillo-facial surgery [3]. Recent scientific studies revealed that
the concept of a beautiful face is formed at an age of 2 months.
They state that the concepts of a "beautiful face" are not learned
but are "hard-wired" into our brain from the very beginning [1,2].
Moreover, the cross-cultural surveys on facial beauty show that
all groups have similar perception of facial beauty, and the
concept of beauty can be defined for all races, cultures and eras
with right facial proportions [3].

The concept of beauty is obvious to the observer but is
difficult to quantify. However, the science of measuring beauty
existed for centurics. Through history and across different
cultures, investigators in psychology, arts and image analysis have
extensively studied quantifying the facial beauty. There is much
evidence of studies for measuring facial beauty [4-15], the most
famous of these being the Golden Proportions (based on the
Golden Ratio) [14] and the Facial Thirds [15].

Measuring female facial beauty from a still image is not a
trivial task since there doesn’t exist a generally agreed
measurement approach. The group from Marquardt Acsthetic
Imaging Inc. has developed a method that measures facial beauty
using the Golden Ratio [3]. Major limitations of this method are

the lack of objective confirmation and the fact that it requires
many manual measurements. Instead, a fully automated procedure
could be much faster and provide more objective and repeatable
results. Aarabi and Hughes in [16] were able to propose an
automated procedure. However, their beauty grading system was
not explicit and this might limit the consensus about the proposed
approach. In a previous paper from one of the authors of this
paper, an automated procedure was proposed based on image
analysis and a rule-based classification system [17]. The
classification rules were elicited by hand and classification
compared with that from a pool of human referees.

In this paper, we propose instead a classification system based
on supervised learning able to automatically learn the
classification rules. Experiments were performed with data sets
from different ethnicity to explore the dependence of the
classification rules on ecthnical characters. The experimental
results prove that the automated classification of facial beauty is
possible and is in good accordance with human classification.
Moreover, the ancient intuition on Golden Proportions seems
substantially confirmed.

The rest of the paper is organized as follows: Section 2
describes the general rules for measuring facial beauty and
presents the proposed approach. Section 3 describes the face
detection process and the feature extraction operators. Section 4
describes the classification process. Section 5 presents and
discusses the experimental results, and, finally, Section 6 presents
the conclusions and addresses future work.

2. Methods Used for Measuring Beauty

In this section we provide information on the general rules
applied and give an overview of the method.

2.1. General Rules Applied

The Golden Proportions and Facial Thirds are ratios derived
from specific facial features [3,15,18].

The Golden Ratio or Proportion is approximately the ratio of
1 to 0.618 or the ratio of 1.618 to 1 as shown in Figure 1. For a
perfect, vertically aligned face, all the proportions stated in Table
1 must fit the Golden Proportion 1.618.
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Figure 1. Golden proportion.



Table 1: Ratios used for golden proportion comparison.

2:4 Ratio of vertical distance between Eyes and Chin
to vertical distance between Forehead and Eyes

3:5 Ratio of vertical distance between Forehead and Nose
to vertical distance between Nose and Chin

6:7 Ratio of vertical distance between Eyes and Lips
to vertical distance between Lips and Chin

5:8 Ratio of vertical distance between Nose and Chin
to vertical distance between Eyes and Nose

8:9 Ratio of vertical distance between Eyes and Nose
to vertical distance between Nose and Lips

7:9 Ratio of vertical distance between Lips and Chin
to vertical distance between Nose and Lips

Facial Thirds state that a well-proportioned face may be
divided into roughly equal thirds by drawing horizontal lines
through the forchead hairline, the brow, the base of the nose, and
the edge of the chin [3,15,18].
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Figure 2. a) Facial thirds; b) Template image with golden
proportions.

Table 2: Ratios used for facial thirds measurements.

Measurement
Type

“Facial Thirds” state
that all of the three

Distance between eyebrows segmlents should  be
and nose equa

Segment

Distance between forehead
and eyebrows

Distance between nose and
chin

The distance
between lips and chin
- should be the double
Distance betweennose and | than  the  distance

lips between nose and lips

Distance between lips and chin

According to these rules, a face is more attractive as it
approaches the proportions shown in Table 1 and Table 2. Facial
plastic surgeons have long been using these ratios as a guide for
their work [3, 13].

2.2. Overview of the Applied Method

In our research, the first step in measuring facial beauty is to
extract the features of a female face. This face feature extraction
task is accomplished in six phases: face localization by skin
region detection, eye localization, pupil localization, eyebrow
localization, lip localization by color segmentation, nose
localization and finally, chin localization. The last phase of our
method involves estimating the proportions of the face from the
features extracted and measuring the beauty of the face. This

estimation is based on the two facial beauty estimation methods
described in the previous sub-section.

3. Feature Extraction and Analysis

Accurate feature extraction is fundamental for reliable and
precise measuring of facial beauty. A vast literature covers
techniques for facial feature extraction ([19-22] are just a few
cxamples of very recent proposals). In this work, we chose to use
simple algorithms able to be adequately accurate and
computationally efficient.

Detection of Facial Region

It is important to locate the facial region in order to remove
irrelevant picture information. In order to obtain the exact location
of the face, a non-skin region filter is applied [17,23].

Eye Localization

After defining the location of the facial region, detecting the
eye region is fast and simple. First, the vertical histogram of the
skin-colored regions is computed [23]. Then, the rows containing
the eyes are located in correspondence of a histogram local
minimum in the high histogram part. Finally, the horizontal
histogram for these rows is computed, and eyes located as the two
local minimums.

Eyebrow Localization

After detecting the pair of possible eyes which satisfies the
geometrical constraints imposed by the face, it is easier to localize
the eyebrows. Eyebrows are expected to be located in the upper
part of the face and are the first non-skin components on the facial
region down the forchead.

Lip Localization

We choose to locate the lips after having located the eyes
because their horizontal position is in-between those of the eyes;
lips can be easily discriminated from skin based on color.

Nose Localization

Nose anatomically is located between the eyes and the mouth.
Searching for the nose is relatively easy due to the well-confined
search space limited by lips and pupils.

Chin Localization

The chin detection process takes place after lip detection, as
the chin anatomically is located between the lips and the neck.
The search space is arranged according to the lip line and the
horizontal lower limit of the facial region.

4. Facial Beauty Classification

Our main assumption so far is that the features extracted from
images will be able to support accurate classification of facial
beauty. In the following, we describe the approach for generating
automatic classification rules.

In our previous work [17], we manually generated rules based
on the Golden Proportions, Facial Thirds and other measurements,
according to a scoring scheme used by humans. Since this process
was too laborious and demanding in terms of human effort, in
this work we approached classification with automatic
classification rules generation.



The automatic classification rules provided by a classifier
generator should meet the following requirements:
- the rules must provide accurate classification;
- the classification rules should be possibly interpretable and
shareable by human experts;
- the rule system must be simple enough to avoid
unnecessary large computations.

To cope with these requirements, we experimented the
supervised classifier C4.5 [24,25]. C4.5 generates decision trees
or rule sets based on the notion of entropy. Supervised
classification requires the user to pre-classify a set of samples and
train the classifier based on these samples. The training set must
be significant, representing a complete set of possible cases.

Features extracted from each face were stored as tuples of
attributes characterizing the face, and used for defining the
classification rules. The actual feature set contains feature
measurements, inter-feature distances, ratios from golden
proportion and facial thirds, and two measurements empirically
assessing the overall deviation from golden proportions and facial
thirds  (GP_Total_Difference =~ and  FT_Total Difference,
respectively). The full feature set is shown in Fig. 3.

Face Length 13 Ratio PL. LC
Face Width 14 Ratio NC PN
Pupil to Chin 15 Ratio PN NL
Forehead to Nose 16 Ratio LC NL
Forehead to_Pupils 17 Mean Ratio
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Nose to_Chin 18 GP_Total Difference
Pupils to Lips 19 Forehead to Eyebrow
Lips to Chin 20 Eyebrow to Nose
Pupils to Nose 21 Ratio_FrhEyebrow M
10 Nose to Lips 22 Ratio Eyebrow Nose M
11 Ratio PC_FP 23 Ratio Nose Chin M
12 Ratio FN NC 24 FT Total Difference

Figure 3. The feature set for beauty classification.

The feature set in Fig. 3 gives rise to a 24-dimension
classification space which must be partitioned into classes by
C4.5. C4.5's decision trees split this classification space into
hyperrectangles, in the sense that each tree node states a
comparison between the value of one of the features at a time
against a threshold. A leaf is a terminal node corresponding with a
hyper rectangle of minimal size. A class is defined by its set of
leaves [26].

5. Results and Analysis

For our experiments, we pre-classified a set of 71 mixed-race
faces [26] into 3 classes, namely “beautiful” (“b”, or Type 1),
“average” (“a”, or Type 2), and unattractive (“u”, or Type 3};
each example was pre-classified by voting of 5 individuals. Later,
we restricted the set to 45 Turkish female faces, in order to
explore potential differences in the classification due to ethnicity.
For tree generation, we used 10-fold cross validation [25].

Preliminary experiments performed with the complete feature
set led to very complex classification trees of difficult
interpretation and convinced us to use a sub-set of the initial
feature set containing only the Golden Proportion features
(features 1, 3-18). Fig. 4 shows the classification tree for the
mixed-race data set. Tests have been numbered in order to ease
reference. The root node (referred with (1) and (1°) in Fig. 4) tests
feature GP_Total_Difference, which is the sum of the total
difference between each ratio’s actual value and the Golden
Proportion; in the ideal case, this feature should be 0. Test (1/1°)
actually splits the tree into two sub-trees: in that with

GP_Total_Difference <= 1.16, there are instances from the
“beautiful” and “average” classes; in the other, instances from
“average” and “unattractive”. This confirms that this test is in
accordance with the Golden Proportion rule.

The tree contains other four tests, one based on
GP_Total Difference (2/2°) and the other three on single ratios;
each single ratio should.be as close as possible to 1.618. Actually,
tests (3/3’) and (5/5°) are in accordance with the Golden
Proportion, while (2/2”) and (4/4°) are not. This means that the
Golden Proportion proves a maximal rule, only partially
confirmed by this experiment. However, the perfectly beautiful
instance according to Golden Proportions (GP_Total_Difference
= 0 and all single ratios = 1.618) will be correctly classified as
“beautiful” under leaf (3).

J48 pruned tree

(1) GP_Total Difference <= 1.16

(2) | GP_Total_Difference <= 0.7228
(3) | | Ratio_FE NC <= 1.757: b
3y | | PRatio_FE_NC > 1.757: a
(2') | GP_Total Difference > 0.7228
(4) | 1 Ratio_PC FP <= 1.407: b
(a'y | | Ratio_PC_FP > 1.407: a

t11yv GP_Total Difference > 1.16
(5) | Ratio_PL_LC <= 1.294: u

(5 |  Ratio_PL_LC > 1.294: a
Number of Leaves : 6
Size of the tree : 11

Figure 4. Decision tree for the mixed-race data set.

J48 pruned tree

GP_Total Difference <= 1.097
! Ratio_LC_NL <= 1,789
I | Ratio_LC_NL <= 1.579: a
| | Ratip_LC_NL > 1.579
! | | Ratio FNNC <= 1.5642: h
(py 1 | Ratio_FN HC > 1.642
I 1 I | Ratio LC NL <= 1.737: h
! | | | Ratio_LC_NL > 1.737: &
14y Ratio LCNL > 1.789: a (4.0}
GP_Total Difference > 1.097
| Ratio_PL_LC <= 1.647
I | GP_Total Difference <= 1.5: a
| | GP_Total Difference » 1.5: u
| Ratio PL_LC > 1.647: a

Mumher of Leaves : 8

Size of the tree : 15

Figure 5. Decision tree for the Turkish data set.

Fig. 5 shows the classification tree for the Turkish data set.
Even if this tree is not identical to that for the mixed-race data set,
the tree structure and semantic are very similar. The node test
(1/1°) is again on feature GP_Total_Difference and in accordance



with the Golden Proportion rule. The tree contains other six tests,
in substantial accordance with the Golden Proportion. Once again,
the perfectly beautiful instance according to Golden Proportion is
correctly classified as “beautiful”, under leaf (b).

It is important to note that, while the Golden Proportion states
a rule for assessing perfect beauty, it does not provide any rule for
assessing partial beauty (can the beauty be considered to degrade
linearly as the ratio value moves away from 1.618? Higher values
are worse than lower values, or vice versa?). This problem is
particularly relevant in plastic surgery, where it is evident that
facial features cannot be arbitrarily modified to reach exactly
Golden Proportions. In this context, how can two feasible
modifications, none of them exactly providing Golden
Proportions, be compared in terms of achievable beauty
improvement? The classifier generated in this work, able to
classify any combination of facial feature values, provides
convincing answers to these questions. Fig. 6 shows an example
of faces differently classified by our system.

Figure 6. Example of faces differently classified by the
system,

Table 3: Comparison of human and system classification
(mixed-race data set).

Type 1 Type 2 | Type 3
S.C.
H.C.
Type 1 6 2 1
Type 2 1 30 11
Type 3 1 3 16

H.C: Human Classification->True
S.C: System Classification->Correct/ Incorrect

Table 3 reports a classification matrix comparing system
classification against that of human referces. The accuracy
achieved is high (the major diagonal of Table 3 reports the correct
results), although therc are also numerous mismatches. In
particular, the system under-classified as Type 3 several faces
classified as Type 2 by the human referees. However, it is
important to note that human classification cannot be classified as
“exact” fout-court, since human classification by different
referees is not always identical. This difference in the human
referees’ cvaluation might be cnough to question the initial
hypothesis that beauty can be objectively measured. However, our
experiments gave reasonable cvidence that measurable facial
features and supervised lcarning allow to build a classification
system generally consistent with the average human judgement.

6. Conclusions and Future Work

In this paper, we have proposed an automated system for
female facial beauty classification. The system can be considered

an evolution of a previous system from one of these authors,
where the classification rules were elicited manually [17].

This paper has given substantial evidence to the fact that facial
beauty can be objectively classified based on a set of
measurements from facial features. The classification provided by
the system is in good accordance with the average classification
from a pool of human referees. However, it is likely that other
features influence the classification of facial beauty (color and
shape of features such as eyes, lips, nose, etc; smiling vs. angry
attitude, and others).

The experimental results are in good accordance with the
ancient intuition of Golden Proportions. In addition, experiments
performed on a mixed-race and single ethnicity (Turkish) face sets
did not report relevant differences, therefore confirming the idea
that the concept of beauty might be universal.

In the near future, we aim to extend the experimental results to
larger and more varied databases such as FERET [27]. Our
future work will be aimed at training our system to measure
female facial beauty into more refined classes, in order to improve
the capability of discriminating between different beauty grades.
Moreover, we want to extend the features set to cover other
influencing features such as eyes and lips’ color and shape.

A major aim of the analysis done in this paper is to providing
suggestions on how to improve female facial beauty, such as
surgery, makeup or hairstyle improvements. Eventually,
extending the classification to male facial beauty will be
considered.
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