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ABSTRACT

A robust controller design method for vehicle roll control 
with variable speed and actuator delay is presented. 
Based on a three-degree-of-freedom (3DOF) yaw-roll 
model, the H  performance from the steering input to the 
vehicle body roll angle is considered. The design 
approach is formulated in terms of the feasibility of 
delay-dependent matrix inequalities. By combining the 
random search of genetic algorithms (GAs) and the 
efficient solution of linear matrix inequalities (LMIs), the 
state feedback controllers can be obtained. The 
approach is validated by simulations showing that the 
designed controllers can achieve good performance in 
roll control.  

INTRODUCTION

Rollover crashes of vehicles, especially heavy goods 
vehicles, sport utility vehicles (SUV), etc., are worldwide 
public safety issues. Preventing rollover crashes is 
becoming crucial for safe highway operation. Rollover 
prevention can be achieved by employing rollover 
warning and anti-rollover systems [1]. Since most 
existing rollover warning systems are based on signal 
threshold techniques and the warning actions are turned 
on only when the vehicle roll angle or the lateral 
acceleration exceeds a pre-selected value, they are 
usually conservative and do not predict impending 
rollover danger in the future. Hence, active roll control 
(ARC) is necessary to assist drivers in rollover 
prevention. Rollover normally occurs when the vehicle is 
unable to provide a stabilizing net restoring moment in 
response to an overturning moment. The objective of 
active rollover prevention is to provide the vehicle with 
an ability to resist overturning moments generated 
during cornering. To date, several schemes of active 
control strategies have been proposed in the literature 
for vehicle rollover reduction, e.g., active steering, active 

suspension, active stabilizer, and differential braking, 
etc. In [2,3,4], special emphasis has been placed on the 
use of active roll control systems in heavy road vehicles 
to improve roll stability and reduce the likelihood of 
rollover accidents. 

Many vehicles, such as commercial vehicles, regularly 
operate in highly variable environments. Parameter 
variations resulting from loading patterns and driving 
conditions will influence the vehicle dynamics. 
Therefore, it is required that the designed ARC system 
should be robust stable to the variations of the vehicle 
parameters within reasonable bounds. For a heavy 
vehicle model with time-variable vehicle forward velocity, 
a customary linear interpolation method is used in [3] to 
obtain the interpolated control law between the fixed 
speed controllers. A gain-scheduled controller and a 
linear parameter-varying (LPV) controller are developed 
in [5] and [6], respectively, to deal with the variations of 
vehicle dynamics assuming real-time measurement of 
varying forward speed is available. Regarding the load 
variation, it was verified in [2] that the designed linear 
quadratic regulator (LQR) controller could guarantee the 
stability of the controlled vehicle in the presence of 
model uncertainties within some indicated bounds. 
Furthermore, the parameter variations are considered in 
[5] as model uncertainties, and robust H  control theory 
is applied there to design the robust controller.  

For an engineering system, unavoidable time delays 
always appear in the controlled channel. The sum of 
time delays is due to on-line data acquisition, filtering, 
processing of data, calculating control forces and 
transmitting the control force signals from the computer 
to the actuator, particularly in the digital controllers as 
they carry out the calculations associated with complex 
sophisticated control laws, and in the actuator hardware, 
such as large hydraulic actuators where delays are 
taken by the actuators to build up required control force. 
For an ARC system, hydraulic actuators are used to 



provide the active control forces, where the time delay 
effect when the control forces are applied to the vehicle 
is becoming an important issue. Though the delay time 
may be short, it can nevertheless limit the control 
performance or even cause instability of the system 
when the delay appears in the feedback loop. However, 
in most research works on ARC systems, time delay of 
the actuator has not yet been considered. 

Following the above discussion, this paper is concerned 
with the robust controller design for a three-degree-of-
freedom (3DOF) yaw-roll vehicle model with time delay 
in the control input. The focal point of the paper is on 
developing an algorithm to design the state feedback 
control law such that the closed-loop system is 
asymptotically stable with a prescribed level of 
disturbance attenuation subject to a variation of vehicle 
forward speed and input delay within allowable bounds. 
Sufficient conditions for designing such a controller are 
given in terms of a matrix inequalities based on the 
recent result in [7]. Combined with the random search of 
genetic algorithms (GAs), the feasible solution is 
obtained by solving a finite number of linear matrix 
inequalities (LMIs). Simulation results show that despite 
the time delay in control input and the variation of 
vehicle forward speed, the designed state feedback 
controller can achieve good roll control performance. 
The approach can be applied to design the partial-state 
feedback controller without further modification. 

VEHICLE DYNAMICS MODEL 

In order to develop the active controller, it is not 
desirable to use a nonlinear complex vehicle model due 
to sampling time and implementation of the control 
system. In this paper, a three degree-of-freedom (3DOF) 
yaw-roll model is used for the design of the controller. 

Vehicle parameters of a 1997 Jeep Cherokee published 
in [1] were used to construct the 3DOF model based on 
Lagrangian dynamics. The 3DOF yaw-roll model is 
shown in Figure 1. 

Including the direct roll moment control as one of the 
control inputs, the equation of motion in matrix form for 
the 3DOF yaw-roll model is written as 

)()()()( 000 twBtuBtxAtxE w ,                               (1) 

where Tttptrtvtx )()()()()( ; )(tv , )(tr , )(tp ,
and )(t  are lateral velocity, yaw rate, roll rate and roll 
angle of sprung mass, respectively;  )(tu  is an active 
roll moment; )()( ttw tire  is steering disturbance;  
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Figure 1.  3 DOF yaw-roll model 
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Detailed descriptions of other entries in the above 
equation are referred to in [1] and are given in the 
Appendix. 

CONTROLLER DESIGN 

The time delay of the actuator, especially the hydraulic 
actuator, can not be avoided in engineering. With 
consideration of the actuator time delay, the 3DOF yaw-
roll model is expressed with a state space equation as 

)()()()( twBtButAxtx w ,                                 (2) 

where 0
1AEA , 0

1BEB , 0
1
ww BEB , and  is 

the time delay of the control input, which is realized by 
hydraulic actuators, satisfying 0 , where  is the 
maximum time delay allowed. For an actual vehicle, it is 
expected that the vehicle can operate in a highly 
variable environment. Hence, parameter variations 
resulting from loading patterns and driving conditions will 



be unavoidable and these variations will considerably 
influence vehicle dynamics. When the varied parameter, 
vehicle forward velocity 0u , is considered in the model, 
the vehicle model becomes an uncertain system which 
is dependent on the time-varying parameter 0u .
Actually, it is noticed from (2) that only the A  matrix is 
related to 0u  and 0/1 u  which can be defined as two 

parameters 1 and 2 , respectively. And the 

vertices )4,...,1(ii are defined as ][ min2min11 ,
][ min2max12 , ][ max2min13 , and 
][ max2max14 . If we define xy1 ,

yx)1(2 , )1(3 yx , and )1)(1(4 yx ,

where 
min1max1

1max1x , and 
min2max2

2max2y , then 

matrix A  can be expressed as 

4

1i
ii AA , where iA

is the value of A  at the vertex i . Therefore, the 
uncertain system (2) belongs to a polytopic set 
described by four vertices.  

In this paper, we are interested in designing a parameter 
independent controller )()( tKxtu  for system (2) such 
that the closed-loop system is stable with performance 
zwT achieved for any 0  and 0 , where 

zwT  is the closed-loop transfer function from the 
disturbance )(tw  to the control output )(tz .

MATRIX INEQUALITIES EXPRESSION 

Combining the controller )()( tKxtu  with equation (2) 
gives  

]0,[),()(
)()(

)()()()(

tttx
tCxtz

twBtBKxtAxtx w

                               (3) 

where ]1000[C  to define the control output as 
the roll angle, and )(t  is the initial condition. The 
following theorem gives the sufficient condition for 
system (3) to be asymptotically stable for any time delay 
satisfying 0   with performance zwT .

Theorem 1: Consider system (3), if there exist constant 
matrices 0P , 0Q , 0Z , 0H , and a matrix  V
satisfying  
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                                                                 (4) 

where QVVHPAPA TT
ii , then the 

closed-loop system is robustly stable with disturbance 
attenuation   for any time delay 0 .

The proof of Theorem 1, which is omitted here for 
brevity, is fully based on the Theorem 1 presented in [7]. 
Notice that Theorem 1 provides a delay-dependent 
condition for stability and H performance analysis, 
respectively.  

COMPUTATIONAL ALGORITHM 

Genetic algorithm is a stochastic search algorithm based 
on simulation of the human trial-and-error procedure 
using the Darwinian principle of “survival of the fittest”. 
One important property of GAs is that they optimize an 
objective function globally through stochastic transitions 
of points from one generation to another, thus 
preventing being trapped at local solutions. 

The matrix inequality conditions in Theorem 1 are not 
LMIs in terms of the decision matrix variables. In the 
following, an algorithm which combines the random 
search capability of GAs with the solvability of LMIs will 
be proposed. Specifically, we will find a desirable 
controller K  by solving the following maximization 
problem: 

)4(max LMItosubject
iK R

                    (5) 

In this problem, the GA is used to randomly generate an 
initial matrix iK  which changes thereafter within the 
evolution procedure according to objective (5). If (5) is 
feasible for an evolved iK  which has the maximum ,

then this iK  satisfies the specifications and thus 
constitutes a solution to the design problem. Note that 
the matrix inequalities (4) are LMIs once the control gain 
matrix iK is known, and the LMIs can be solved 
efficiently by using the efficient convex optimization 
algorithm. Furthermore, the partial-state (static output) 
feedback controller can be designed as well by defining 
an appropriate control matrix.  

When the search space for the unknown parameters is 
known a priori, the search efficiency of the GA for the 



optimal parameters can be high. However, when the 
search space cannot be determined in a relatively small 
region before the searching process begins, the 
searching for the optimal parameters will be time-
consuming and sometimes there is no guarantee to 
obtain the optimal parameters. On the other hand, if the 
initial parameter search region is fixed throughout the 
searching process, it may prevent the searching of the 
global optimum point(s). Therefore, it is necessary to 
choose a small initial search space, and to expand the 
search space dynamically in the GA algorithm. 

One parameter search space expansion scheme, in 
which the upper and lower bound for each parameter is 
expanded during a checking phase introduced 
periodically over generations of iterations, is adopted 
here. For instance, in this scheme,  if the l -th parameter 

lk is positive and lll kkk 2/ is satisfied within the 

checking phase, where lk is the upper bound of lk , the 

lk value will be set to lk , where 1  is a preset 
expansion factor and the selection of depends on the 
size of the initial search space. The strategy used for 
expanding the lower bound of parameter lk  is similar. 
When any parameter search interval has been 
expanded, a new population will be generated for the 
expanded search space and the costs of its members 
are evaluated. A new initial population is then formed by 
selecting those better members among the evolved 
population and the newly generated population, which 
will be used for the expanded space subsequently. 

Combining the above mentioned strategies with the 
standard GA, the final algorithm for the controller design 
using a binary-coded GA can be realized. Since the 
standard genetic algorithms can be found in most 
related textbooks, and our algorithm used in this work is 
similar to that described in reference [8], the details of 
the algorithm are omitted here for brevity. Only an 
outline is given as follows: 

Step 1: Randomly generate an initial population of pN
individuals containing controller candidates using binary 
number chromosomes. The chromosome for the 
controller gain can be generated in the form of 

|00101|11011
21 kk

, where each controller gain 

coefficient lk  is coded as a binary string. 

Step 2: Evaluate the fitness of each individual according 
to the objective in (5). Firstly, use the randomly 
generated parameter set to construct every controller 
gain matrix pi NiK ,...,2,1, . For every iK , use the 

bisection method to search for the maximum delay i

such that with a delay i  and iK , LMIs in (4) are 

feasible. Take every delay i  as the objective value 

corresponding to iK  and associate every iK  with a 
suitable fitness value according to a rank-based fitness 
assignment approach, and then go to Step 4. If for a iK
there is no feasible delay which can be found such that 
LMIs in (4) are feasible, the objective value 
corresponding to iK  will be assigned a large value in 
order to reduce its opportunity to survive in the next 
generation. 

Step 3: Based on the fitness obtained in Step 2, the 
offspring is chosen for the next crossover and mutation 
steps by using the tournament selection approach. The 
tournament selection is one of many methods of 
selection in GAs which runs a "tournament" among a 
few individuals chosen at random from the population 
and selects the winner (the one with the best fitness). 

Step 4: Perform recombination (crossover) with 
probability cp  and mutation operation with a small 

mutation probability mp  to the current population to 
generate new individuals in the search space. The 
crossover operation generates new points in the search 
space by exchanging genetic materials between “good” 
chromosomes. In the uniform crossover scheme, which 
is used in this paper, the newly selected chromosomes 
in the new population are randomly paired together. In 
each pair of chromosomes, the bits are probabilistically 
and independently swapped at each bit position with 
crossover probability to produce the new pair of 
chromosomes. The bit mutation operation that simply 
flips each bit (changing a 1 to a 0 and vice versa) in the 
population of chromosomes with the mutation probability 
is used in this paper.  

Step 5: An elitist reinsertion strategy is used to 
guarantee that the best chromosome in the population 
always survives and is retained in the next generation. 
The elitist reinsertion strategy is realized by replacing 
the worst parents (those with the lowest fitness rating) 
with the new children.   

Step 6: Execute the search space expansion scheme 
mentioned above when the generation number is a 
multiple of the checking period. 

Steps 3 to 6 correspond to one generation. The 
evolution process will repeat for gN  generations or will 
be ended when the search process converges with a 
given accuracy. 

SIMULATION RESULTS 

In this section, we will apply the proposed approach to 
design the robust controller based on the 3DOF yaw-roll 
model described in Section 2. The parameters of the 
3DOF 1997 Jeep Cherokee yaw-roll model selected for 
this study are listed in the Appendix. The basic GA 
parameters used in this paper are as follows:  



pN =80, cp =0.8, mp =0.01, and gN =300. 

Assuming that all the state variables defined in equation 
(4) are measurements available for feedback, we can 
design a full-state feedback controller in this case. We 
assume that the forward velocity can vary from 36 km/h 
to 180 km/h (10 m/s to 50 m/s). Using the present 
algorithm, we obtain the full-state feedback controller 
gain matrix as: 

1505.11969.10.72171.1967-103K .

Actually, using the presented approach, this controller is 
feasible for the maximum time-delay of =25 ms. This 
means that the controller can stabilize the system (2) 
with the H performance index =10 for any time-delay 
satisfying  0< <25 ms. 

To evaluate the performance of the designed controller, 
the theoretical steady state performance of the full-state 
feedback controller is compared to a passive suspension 
in Figure 2, where the roll angle vs lateral acceleration is 
plotted under the operation condition of constant vehicle 
forward speed 90 km/h, and input delay =0. It can be 
seen from Figure 2 that the active controller can reduce 
the roll angle significantly compared to the passive 
suspension under the same lateral acceleration.  
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Figure 2: Steady state performance at 90 km/h 

Now the steady state performance  is checked when the 
vehicle forward speed is varied. Figure 3 shows the plot 
of roll angle vs forward speed under the same steer 
input angle. It can be seen from Figure 3 that in spite of 
the variation of the vehicle forward speed, the designed 
controller can always stabilize the system and keep the 
roll angle at lower values compared to the passive 
system. It can be seen from Figure 3 that the designed 
controller is robust despite the uncertainties in forward 
speed.  

In order to show the time domain performance of the 
closed-loop system and the effect of time delay on the 
performance, one kind of maneuver, i.e. J-turn 
maneuver, is applied. In the J-turn maneuver, the steer 
input angle is given as 
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with h =0 deg, 1h =3.5 deg,  0t =2s,  1t = 0t +0.2s, which 
is shown in Figure 4.  
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Figure 3: Steady state performance at different vehicle speed 
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Figure 4: Steering angle during J-turn maneuver 

When there is a time delay on input, i.e., =20 ms, and 
forward speed is 72 km/h, the roll angle responses of the 
passive system and the active system are compared in 
Figure 5. It can be seen from Figure 5 that better 
response is obtained for the active case which can 



stabilize the closed-loop with no obvious degradation of 
performance even when =20 ms.   
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Figure 5: J-turn maneuver response when =20 ms 

To further validate the effectiveness of the designed 
controller in dealing with the time delay problem, the 
effect of time delay on the response of the roll angle is 
studied by calculating the steady state roll angle ratio 

0/)(  vs the time-delay , where )(  denotes the 
steady state roll angle of the closed-loop system, and 

0  is the steady state roll angle of the open-loop 

system. Figure 6 shows the plot of the ratio 0/)(  as 
a function of the time-delay . It is observed from Figure 
6 that the closed-loop performance is better than the 
open-loop system performance and there is no 
significant degradation in the performance of the control 
system up to the obtained maximal time-delay, i.e., 25 
ms. As the time-delay exceeds about 80 ms, the 
degradation of the control performance increases. On 
the other hand, from Figure 6, we can observe the 
conservativeness of the presented approach. The 
designed maximal time-delay is 25 ms for the controller, 
however, the performance of the closed-loop can be 
maintained until the time-delay is about 80 ms. 

CONCLUSION 

This paper presents a new controller design approach 
for vehicle roll control when the vehicle model is varied 
with forward speed and when the actuator has time 
delay. Based on a 3DOF roll-yaw model, the delay-
dependent controller is designed. It can guarantee 
vehicle roll performance in spite of variation in forward 
speed and the existence of actuator time delay. The 
inclusion of time delay in the control system provides a 
more realistic model for the applied actuator. By 
employing the matrix inequality formulation and genetic 
algorithm, the required state feedback controller can be 
obtained by solving a finite number of linear matrix 
inequalities. A simulation example is used to 
demonstrate that the designed controllers can effectively 

perform the attenuation objective even with actuator time 
delay and parameter uncertainties within reasonable 
magnitudes. 
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APPENDIX 

Detailed descriptions of entries in equation (1): 

0

v
u

, s uM M M , ( )f rY C C ,

0

r f
r

bC aC
Y

u
, r

r f
fY C C ,

fY C , r fN bC aC ,
2 2

0

f r
r

a C b C
N

u

f r
f rN aC bC , fN aC ,

s RL M gh K , p RL c ,
2 2( ) 2 ( ) ( )x xx s s R xz s R zz sI I M h I I ,

( ) ( )xz s xz s R zz sI M hc I I ,
2 2( ) ( )z zz s zz u s uI I I M c M e .

Name Explanation Value 

sM Rolling sprung mass 1663 kg 

uM Non-rolling unsprung mass 325  kg 

R
Inclination angle of the roll 
axis point down 0.0873 rad 

a Distance from the vehicle 
CG to the front axle 1.147 m 

b Distance from the vehicle 
CG to the rear axle 1.431 m 

c
Distance from the CG of 

sM to the vehicle CG 0.421 m 

e
Distance from the CG of 

uM to the vehicle CG 2.157 m 

g Gravity 9.81 m/s2

h
Distance from the CG of 

sM to the roll axis 0.306 m 

fC Front tire cornering stiffness 59496 N/rad 

rC Rear tire cornering stiffness 109400N/rad 

r
Partial derivative of the roll 
induced steer at the rear 
axle

0.07 

f
Partial derivative of the 
camber thrust at the front 
axle

0.8

fC Camber thrust coefficient at 
the front axle 2039 N/rad 

RK Roll stiffness 56957Nm/ra
d

Rc Roll damping coefficient 3496Nms/rad 

( )xx sI
Moment of inertia about the 
x-axis of the rolling sprung 
mass

602.8 kgm2

( )xz sI
Product of inertia about the 
x-z axes of the rolling sprung 
mass

90.0 kgm2

( )zz sI
Moment of inertia about the 
z-axis of the rolling sprung 
mass

2163.7 kgm2

( )zz uI
Moment of inertia about the 
z-axis of the non-rolling 
unsprung mass 

540.0 kgm2

Table 1: Vehicle Parameter for a 1997 Jeep Cherokee 
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