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Abstract 
This paper presents an efficient technique to 
design dynamic feedback control scheme for 
single-link flexible manipulators.  A linear model 
can be derived for the robotic system using the 
assumed-mode method.  Conventional techniques 
such as pole-placement or LQR require physical 
measurements of all system states, posing a 
stringent requirement for its implementation.  To 
overcome this problem, a low-order state 
functional observer is proposed here for 
reconstruction of the state feedback control 
action.  The observer design involves solving an 
optimisation problem with the objective to 
generate a feedback gain that is as close as 
possible to that of the required feedback 
controller.  A condition for robust stability of the 
closed-loop system under the observer-based 
control scheme is given.  The attractive features 
of the proposed technique are that the resulted 
functional state observer is of a very low order 
and it requires only sensor measurements of only 
the output- the tip position of the arm.  

1 Introduction 
There has been an increasing interest in the design and 
control of lightweight robots over the years thanks to 
many salient advantages over the conventional rigid 
robots.  Lightweight manipulators are however prone to 
deflection and elastic vibration due to their vibratory 
modes and low damping factors.  Accurate position 
control of flexible arms remains therefore an interesting 
problem.  Several control schemes have been proposed for 
vibration suppression and performance enhancement in 
flexible arm control.  These control strategies are based on 
a number of control approaches including optimal control 
[Cannon and Schmitz, 1984; Krishnan and Vidyasagar, 
1988], adaptive control [Nemir et al., 1988; Clarke et al., 
1987], and variable structure systems [Nathan and Singh, 
1989; Qian and Ma, 1992; Thomas and Bandyopadhyay, 
1997] methods.  In flexible arm control, it is known that 
stability gain margin of the closed-loop system can be 

increased by using low-order compensators instead of 
high-order design [Cannon and Schmitz, 1984].  The 
Hankel norm minimisation technique is used to obtain a 
reduced order model for the system [Krishnan and 
Vidyasagar, 1988].  Most of the cases use feedback 
control that requires either the availability of the complete 
state vector or a state-estimation scheme.  In this paper, in 
order to reduce the dimension of the observer-controller 
system, a low-order linear state function observer is 
proposed to reconstruct the required control law [Trinh 
and Ha, 2000], using a parameter optimisation process.  
The optimisation objective is to generate a matrix that is 
maximally close to the given feedback gain of the required 
feedback controller.  A condition is derived to guarantee 
stability of the closed-loop system under the proposed 
observer-based control scheme.  A step-by step design 
algorithm is given.  Simulation results of a single-link 
flexible arm are provided to illustrate the design procedure 
and potential of the proposed technique. 

2 Single-link flexible beam model 
The flexible robot arm is in general an infinite 
dimensional system.  The number of modes to be retained 
depends on the limit of energy and the maximum 
bandwidth of the actuator and sensors.  Dynamic 
modelling of single-link flexible arms has been addressed 
by many researchers (see eg., [Krishnan and Vidyasagar, 
1988], [Qian and Ma, 1992], [Hastings and Books, 1986]).  
The position of a point P on the arm, shown in Figure 1, 
can be represented as: 

 ),()(),( txwtxtxy += θ ,  (1) 

where x  is the position distance from the hub, θ  is the 
hub angle, and ),( txw  is the small elastic deflection from 
the arm neutral axis.   
 As described in [Hastings and Books, 1986], a partial 
differential equation (PDE) can be obtained from the 
system energy equation by applying Hamilton's principle.  
A series of natural vibration modes of the system can then 
be derived from solving the PDE characteristic equation.  
Using the assumed-mode method the deflection may be 
expressed as 
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Figure 1.  The arm deflection at (x,t). 
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where )(tqi  is the generalised coordinate of the system 
and )(xiφ  is the eigen-function of the i-th mode.   
 By using Lagrange equation, a series of decoupled 
ordinary differential equations of the form 

 ∞=′=++ ,...,2,0  ;)0(1)2( i
I

qqq qi
T

iiiii τφωζ DDD , (3) 

where iω  is the i-th vibration mode natural frequency, iζ  
is the damping factor, TI  is the total of inertia of the hub 
and the arm, and qτ  is the actuation torque applied at the 
hub.   
 Practically, the series (3) can be truncated at some finite 
number N according to the actuator/sensor bandwidth 
[Cannon and Schmitz, 1984].  Thus, including the rigid 
body mode ( 00 =ω ) the system dimension becomes 

)1(2 += Nn .  The system can then be described by 
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00
XCy

uBXAX

TP =
+=D

 (5) 

where nT
NNNN RqqqqqqqqX ∈= −− ]     ...    [ 111100 DDDD  is 

the state vector, Ru q ∈=τ  is the control signal, and TPy  
is the tip position measurement that can obtained by using 
a light-emitting diode fixed at the arm tip and a position 
sensor mounted at the hub,  
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and L is the arm length.  The coordinates )(tqi  
( Ni ,...,2,1,0= ) can be obtained from the measurement 
equation [Qian and Ma, 1992]: 
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(7) 
where δ  is the arm thickness, θy  is joint angle 
measurement obtained from an encoder and 

iSGy  
( 1,...,2,1 −= Ni ) are measurements from the strain gauges 
SGi located at distances iL  from the hub [Qian and Ma, 
1992], or from a linear CCD array mounted inside the 
camera with the position of the pixels in the CCD array 
indicating the arm deflection [Krishnan and Vidyasagar, 
1988].  This, however, leads to a high implementation cost 
if the number of vibration modes retained, N, is 
sufficiently large.  Unlike the approaches, in this paper the 
control action is reconstructed using only information of 
the tip position measurement, TPy .  Let us first transform 
system (5) into a canonical form by introducing zTX c=  
with the transformation defined by 

 ])ker([ 00 CCT T
c = , (8) 

where )ker( 0C  is any ortho-normal basis for the null 
space of 0C , obtained from the singular value 
decomposition.  The state-space model (5) is now 
rewritten in the form 

 
,Czy
BuAzz
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+=�

 (9) 

where n
c RXTz ∈= −1  is the new state vector, and  
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Let us assume that a linear state feedback control law 
 XFu 0=  (11) 

is obtained to assign desired closed-loop eigenvalues or to 
satisfy a specified performance objective for the system 
(5).  This can be done using the well-documented pole-
placement or optimal control method.  The required 
control law then takes the form 

 FzzTFu c == 0 . (12) 

The problem is to design a low-order functional observer 
to estimate the feedback control law (12) using 
information of the tip position TPy . 

3 Observer Design 
Towards the generation of the control signal (12), let us 
first decompose the feedback gain matrix F as follows 
 WCKTF += , (13) 

where ,1 pRK ×∈  ,npRT ×∈  and RW ∈  are constant 
matrices to be determined, and p  is the observer order 
lying in the interval )1- ,1[ n .  The feedback control signal 
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can then be expressed as 
 )( + )()() + ()()( tWytKvtzWCKTtFztu TP=== , (14) 

where 

 pRtTztv ∈= )()(  (15) 

is the observer state.  Let us now consider the following p-
th order observer dynamics 

 )()()()( tGytTButEvtv TP++=D , (16) 

where ppRE ×∈  is a stable matrix to be selected and 
1×∈ pRG  is a constant matrix to be determined.  Let )(te  

be defined as the error between the observer state and its 
estimate, ),(tTz  i.e. as 

 )()()( tTztvte −= . (17) 

Taking derivative of (17) and using (9) yield 

 
.)())()((       

)()()(
zETTAGCtTztvE

TBuTAzGyTBuEvtzTtvte TP
+−+−=

−−++=−= DDD

(18) 

Given a stable matrix E , if matrices G  and T  are 
determined such that 

 0=+− ETTAGC , (19) 
the observer error dynamics then become 

 )()( tEete =D . (20) 

Accordingly, (16) can act as a linear functional observer 
for the system (9) under the control law (12), provided 
that matrix E  is stable and equations (13) and (19) are 
satisfied.  Exact solutions to (13) and (19) can be found in 
[Trinh and Ha, 2000] under the satisfaction of some 
condition on the lower bound of the observer order.  This 
paper seeks to overcome this limitation by proposing an 
alternative procedure based on a parameter optimisation 
process.  Let us first partition matrices A, T and vector F 
as follow: 

 







=

2221

1211
AA
AA

A , [ ]21 TTT = , [ ]21 FFF = ,(21) 

where 

RA ∈11 , )1(1
12

−×∈ nRA , 1)1(
21

×−∈ nRA , )1()1(
22

−×−∈ nnRA , 
)1(

2
1

1   , −×× ∈∈ npp RTRT , RF ∈1 , and )1(1
2

−×∈ nRF . (22) 

By incorporating (10) and (21) into equations (13) and 
(19), after some rearranging, the following equations can 
be obtained: 

 111 WCKTF += , (23) 

 22 KTF = , (24) 

 0)( 12121111 =++− ETATATGC , (25) 

 02221212 =−− ATATET . (26) 

As matrix E  is selected according to the desired 
dynamics for the observer to be constructed, there are five 
unknown matrices (namely ,K  ,W  ,G  1T  and )2T  in 

equations (23)-(26) to be solved for.  As 1C  in (10) is 
invertible, matrices W  and G  can be derived from ,K  

1T  and 2T  as: 

 1
111 )( −−= CKTFW , (27) 

 1
11212111 )( −−+= CETATATG . (28) 

Given E , let us now attempt to solve for ,K  1T  and 2T  
from equations (24) and (26).   
 
Remark 1: Matrix E is selected such that the observer 
response at least 3-5 times faster than the system response 
determined by )( BFAeig + .  Furthermore, given 1T  the 
Lyapunov equation (26) has a unique solution for 2T  if 
matrices E  and A22  do not have common eigenvalues 
[Luenberger, 1971]. 
 Instead of trying to find an exact solution for matrices 

,K  1T  and 2T , our proposed approach here is to find a 
solution such that the resulting control feedback signal is 
as close as possible to the given control law (12) by 
minimising the following matrix norm: 

 ||||  22 KTF −=ρ . (29) 

Remark 2: For the above minimisation, matrix K  may be 
chosen as 

 += 22TFK , (30) 

where +
2T  is the Moore-Penrose pseudo-inverse of .2T  

 Examination of equations (24) and (26) reveals that this 
minimisation problem may be solved by given E  and 
searching for matrix 1T  such that the solution to the 
Lyapunov equation (26), i.e. 2T , will minimise (29).  In 
order to find 1T  such that 2KT  is as lose as possible 
respectively to 2F , a parameter optimisation technique 
will be used.  All of the elements of 1T  are now 
considered as optimisation parameters of the following 
optimisation problem: 

 






=−−
−= +

  .0           subject to
||||  )(           Minimise

2221212

22221
ATATET

TTFFTρ  (31) 

Consequently, matrices ,K  1T  and 2T  can be obtained 
and hence, matrices W and G can be computed from 
equations (27) and (28), respectively.   

4 Stability analysis 
In the following, a stability condition will be derived for 
the closed-loop system using the proposed observer-based 
feedback. 
Lemma 1 
Consider a linear system  

 )()()( tJXtJXtX ∆+=D , (32) 

where X(t) is the state vector, matrices J and ∆J are 
respectively known and constant but unknown.  Let the 
nominal system (i.e. 0=∆J ) be stable, then the perturbed 
system (32) is asymptotically stable if the following 
condition is satisfied: 
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∞

−−
≡<∆

|| )( ||
1     |||| 

1JsI
J α , (32) 

where I is the unity matrix and  ||.|| ∞  denotes the ∞H  
norm. 
Theorem 1 
Consider the linear system (5) that is asymptotically stable 
under the feedback control law (11).  Let matrix E  of 
dimension p ( )1(1 −<≤ np ) be selected to have desired 
eigenvalues that are different from those of 22A  defined 
in (10) and (22).  If there exists matrix T  such that the 
following condition is satisfied 

 
∞

−
−

−
≡<=∆=

|| )( ||
1      |||| 1

1
0

JsI
FTB

n
c αµ , (33) 

where  

 ]0[ 22 FKTF −=∆ , 000 FBAJ += . (34) 

and matrices cT  and K are given respectively in (8) and 
(30), then systems (16) can be used as low-order linear 
functional observers to generate the control law (14), that 
is as close as possible the control law (11), and the closed-
loop system remains asymptotically stable.  
Proof 
The development of the linear functional observer (16) 
has been presented above.  Matrix E  of dimension p is 
selected according to Remark 1, with p taking the value 
from the lowest in the interval )(1 rnp −<≤ .  If there 
exists matrix T , derived from the parameter optimisation 
problem (31), then K , W, and G are determined from 1T  
and 2T  in accordance with (30), (27) and (28), 
respectively.  As equation (24) is not exactly solved, 
stability of the closed-loop system may not be guaranteed.  
In fact, by using the proposed functional observer (16), 
with relevant matrices obtained from the optimisation 
process (31), and the feedback control law (14), the 
system state equation becomes 

 ))()(()()( 00 tWytKvBtXAtX TP++=� . 

As E  is selected such that the observer desired dynamics 
are fast enough in comparison with the system dynamics, 

0)( →te  according to (20), and hence )()( tTztv → .  
Thus, the closed-loop system dynamics are given by 

 )()()()( 00 tzWCKTBtXAtX ++=D . 

Due to the inexact solution to (24),  

 FFKTFWCKT ∆+==+ ]  [ 21 , 

where ]0[]0[ 222222 FTTFFKTF −=−=∆ +  is the 
difference between the new feedback gain ( [ ]21 KTF ) 
and the original feedback gain ( [ ]21 FFF = ), which has 
been minimised in the optimisation process.  We obtain 
therefore 
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)()()()(
1

0000

1
00

tXJJtXFTBFBA
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As the nominal part ( )()( tJXtX =D ) is stable, and 

1
0

−∆=∆ cFTBJ , Lemma 1 is now applied to derive the 
stability condition (33) for the closed-loop system.  This 
concludes the proof. 
 In summary, instead of using the law (11), the control 
signal  

 )( + )()( tWytKvtu TP=  (35) 

can be constructed for the system (5), where )(tv  is the 
state of the p-th order state functional observer: 

 )()()()( 0
1 tGytuBTTtEvtv TPc ++= −

� . (36) 

5 Design Algorithm 
Based on the above development, a design algorithm for 
the proposed control scheme is given in the following 
steps: 
Step1: Determine a suitable state feedback gain matrix 0F  
by using any existing control technique.   
Step 2: Obtain matrices  CB,, A,Tc 1  and F following (8), 
(10), and (12). Partition matrices A  and F according to 
(21). 

Step 3: Compute
∞

−−
≡

|| )( ||
1    

1JsI
α .  A method given in 

[Francis, 1987] can be used for this step. 
Set .0=j  
Step 4: Set the order of the observer (16) as .1 jp +=   
Step 5: Select E  in accordance with Remark 1, solve the 
optimisation problem (31) for T , and then derive K  
according to (30). 
Step 6: Check condition (33), if satisfied, go to step 6; else 
set 1+= jj  and go to Step 4. 
Step 7: Compute matrices W  and G  respectively from 
equations (27) and (28).  
 
Remark 3: In the above design algorithm, a lowest order 
( 1=p ) is first assigned for the observer (16).  The search 
for a control law that is as close as possible to the desired 
feedback law is obtained upon the satisfaction of the 
stability condition for the overall observer-based system.  
Otherwise, the observer order can be gradually increased 
until this condition is met.  The procedure is therefore 
expected to result in a linear functional observer of a low 
order. 

6 Simulation results 
This section shows simulation results of the single-link 
flexible beam, reported in [Krishnan and Vidyasagar, 
1988].  The beam length is L=1.0m, the total moment of 
inertia is TI =8.29.10-2kgm2.  Table 1 gives the system 
parameters for the first five flexible modes with damping 
factors 5,...,2,1  ;0015.0 == iiζ .  Let us first assume that 
the number of retaining modes is N=2 (n=6) [Thomas and 
Bandyopadhyay, 1997].  The above design algorithm is 
applied as follows. 
Step 1:  Using the LQR design  
 F0=-lqr2(A0+ 1.*eye(n), B0, eye(n) , 100) , (37) 
we obtain F0=[-0.4735  -0.3933  -0.7719  -0.1655  2.1878  

DCR
10



0.1711]. The closed-loop system poles can be found as 
eig(A0+ B0F0)= 1.0e+002 *{  -0.0263 ±  1.3174i, -0.0297 
±  0.5586i, -0.0236 ±  0.0035i}. 
 

Table 1.  Model parameters for the first five modes 

Mode Natural frequency, iω  )(Liφ  )0(iφ′  
1 
2 
3 
4 
5 

55.89 rad/sec 
131.75 rad/sec 
313.81 rad/sec 
603.67 rad/sec 
993.9 rad/sec 

-0.931 
-1.027 
1.169 
-11.187 
1.190 

2.886 
-2.345 
-0.910 
-0.454 
-0.272 

 
Step 2:  Calculating  CB,, A,Tc 1  and F in accordance with 
(8), (10), and (12): 

cT =[ 1.0000   -0.8110         0         0         0         0 
0         0    0.6716         0    0.7409         0 
-0.9310   -0.3929    0.5489         0   -0.4976         0 
0         0         0    1.0000         0         0 
-1.0270   -0.4335   -0.4976         0    0.4511         0 
0         0         0         0         0    1.0000], 
A =1.0e+4*[  0         0    0.0000   -0.0000    0.0000   -

0.0000 
         0         0   -0.0001   -0.0000   -0.0001   -0.0000 
         0         0   -0.0000    0.0001   -0.0000   -0.0000 
0.2908    0.1227   -0.1715   -0.0000    0.1554         0 
         0         0    0.0000   -0.0000    0.0000    0.0000 
1.7827    0.7524    0.8637       0   -0.7830   -0.0000], 

TB =[ -0.0000  -0.0000  8.1017  34.8130  8.9371  -
28.2871], 1C =2.9215, and F=[ -2.0017   -0.2610   -
1.7765   -0.1655    1.0796    0.1711]. 
Step 3: The spectrum of |sI-(A+BF)| is shown in Figure 2. 
The value of α  is found to be α =0.0399. 
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Figure 2. Spectrum of |sI-(A+BF)| for N=2. 

 
Step 4-5:  Set p=1. Choose E=-2.  Solving the optimisation 
process (31) gives 1T =1.0500, 2T =[ -0.8500   -0.3527    
0.0006   -0.3880    0.0001], and K =0.4306. 
Step 6:  Since µ =0.00096 < α , condition (33) is 
satisfied.  The eigenvalues of the closed-loop system 
under the observer-based feedback control can be found as 
eig(A0+ B0[F1  KT2]Tc

-1)= 1.0e+02*{ -0.0020 ±  1.3184i, -
0.0137 ±  0.0168i,  -0.0007 ±  0.5565i}. 

Step 7: Calculating W= -0.8399 and G = 2.0975. 
 Thus, the feedback control law for the flexible arm 
model with two retaining vibration modes can be 
reconstructed using a first order observer and information 
of the tip position only.  Figure 3 shows the step response 
of the tip position and the control torque, using the 
proposed observer-based control scheme and the full-state 
feedback control (37).  Note that increasing the observer 
order, eg. p=2, will result in a better reconstruction of the 
feedback control.  

Let us now apply the technique for the case N=5 
(n=12) [Krishnan and Vidyasagar, 1988].  In Step 1 the 
full-state feedback control law (37) by the LQR technique 
gives F0=[ -0.4735  -0.3933  -0.7568  -0.1655  2.0865  
0.1712  4.0660  0.2351  2.8259  0.1402  0.3341  0.0163].  
The system desired closed-loop eigenstructure is eig(A0+ 
B0F0)=1.0e+002*{  -0.0152 ±  9.9390i,  -0.0129 ±  
6.0367i,  -0.0176 ±  3.1381i,  -0.0263 ±  1.3174i,  -
0.0297 ±  0.5586i,  -0.0236 ±  0.0035i}.  Matrices 

 CB,, A,Tc 1  and F are calculated in Step 2 according to 
(8), (10), and (12).  The spectrum of |sI-(A+BF)| is shown 
in Figure 4 where value of α  is found to be α =0.0031 
(Step 3).  After unsuccessful trials with p=1, we repeat 
Steps 4-7 with p=2.  
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Figure 3. Tip position and control torque responses (N=2). 
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Figure 4. Spectrum of |sI-(A+BF)| for N=5. 
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Selecting E=[-5  0; 0  -8], the optimisation (31) is solved 
to give 1T =[ 1.0750;  0.9750], 2T , and K =[4.1877  -
4.5303]. 
 Condition (33) is satisfied with µ =0.0023 < α .  The 
poles of the closed-loop system under the observer-based 
feedback control are obtained as eig(A0 + B0[F1 KT2]Tc

-1) = 
1.0e+02*{ -0.0149 ±  9.9390i,  -0.0090 ±  6.0368i,  -
0.0047 ±  3.1381i,  -0.0019 ±  1.3177i,  -0.0170 ±  
0.0158i,  -0.0015 ±  0.5581i}.  Finally, W and G are 
calculated as W= -0.2175 and G = [ 4.9347;  7.7014]. 
 In summary, the feedback control law (37) for the 
flexible arm model with five retaining vibration modes 
can be reconstructed using a second-order observer and 
information of the tip position only.  Figure 5 depicts the 
step response of the tip position and the control torque, 
using the proposed observer-based control scheme and the 
full-state feedback control (37). 
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Figure 5. Tip position and control torque responses (N=5). 
 
 The results obtained above demonstrate the efficacy 
and feasibility of the proposed observer-based control 
technique for the control of flexible manipulators.  The 
main contributions of the control scheme is that it does not 
require information of the mode coordinates and their time 
derivatives in order to dampen these vibrations in the 
control of the tip position, and that the resulting functional 
observer is of a very low order. 

7 Conclusion 
We have presented an efficient technique for the control 
of a single-link flexible manipulator using a low-order 
linear functional observer.  Based on the assumed mode 
method, a linear model for the system is obtained with a 
finite number of vibration modes.  A feedback controller 
is first designed to place the closed-loop system poles or 
to achieve an optimal performance index.  A low-order 
state functional observer is then constructed to estimate 
the state feedback control action.  The observer design 
involves solving an optimisation problem with the 
objective to generate a feedback gain that is as close as 
possible to that of the required feedback controller.  A 
condition for robust stability of the closed-loop system 
under the observer-based control scheme is developed.  A 
step-by-step design procedure is presented.  The attractive 

features of the proposed technique are that the resulting 
functional state observer is of a very low order and it 
requires only the tip position measurement.  The proposed 
control scheme is illustrated through the control of a 
flexible beam with five retaining vibration modes.  
Simulation results demonstrate the validity of the 
proposed technique. 
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