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Abstract 
This paper presents a dynamic output feedback 
control approach to active control of civil 
engineering structures.  The design is based on 
sliding mode control, pole placement of the 
closed-loop eigenvalues, and linear functional 
observers for regeneration of the equivalent 
control and the sliding function from output 
measurements.  A five-storey model used for 
testing the proposed control scheme is described.  
Simulation results demonstrate its validity.  
Future work on structural control issues using the 
approach is outlined. 

1 Introduction 
The protection of civil structures, including their material 
contents and human occupants, from dynamic loadings 
such as hostile earthquakes, strong wind, extreme waves, 
heavy traffic, highway loadings is an issue of highest 
priority.  Rapid developments in the field of feedback 
control and automation have successfully helped to 
mitigate these effects.  A review of the recently developed 
control schemes and technologies can be found in 
[Spencer and Sain, 1997].  In active control of civil 
structures, the objective is to generate a proper control 
signal to drive the Active Mass Damper (AMD) actuator 
to react against the auxiliary mass and apply the inertial 
forces to reduce structural vibration responses in the 
desired manner.  Various advanced control algorithms 
have been proposed for structural control, including the 
LQG or 2H  method [Spencer et al., 1994], neural 
network control [Wan et al., 1995], fuzzy control [Battaini 
et al. 1998], the ∞H  technique [Kose et al., 1996], 
polynomial control [Agrawal and Yang, 1997], singular 
value ( µ ) synthesis [Balas, 1998], sliding mode control 
[Wu et al., 1998], etc.  A benchmark problem for active 
control of seismically-excited test models was presented 
in [Spencer et al., 1998]. 
 Among efficient control techniques applied to wind and 
seismic response control, the variable structure system 
(VSS) with a sliding mode has demonstrated its strong 
robustness against disturbances and uncertainties [Yang et 

al., 1997].  As known in structural control, it is impractical 
to install sensors on every degree of freedom (or floor) to 
measure the full-state vector.  The design of output 
feedback controllers remains therefore an important issue 
in implementation of any control scheme.  Furthermore, it 
is required to control only a few critical or dominant 
modes.  For this, modal space sliding mode control has 
been recently proposed [Adhikari et al., 1998].  In this 
context, the problem of finding an explicit solution 
parameterizing the sliding surface such that the system 
closed-loop modes are placed as desirable is obviously of 
special interest [Edwards and Spurgeon, 1998].  For single 
input systems, an explicit form using Ackermann’s 
formula for the sliding surface is derived in [Ackermann 
and Utkin, 1998]. 
 This paper applies a dynamic output feedback sliding 
mode approach to the active control problem for a five-
storey benchmark model, developed at UTS [Samali et al., 
2000] using pole placement and linear functional 
observers.  The control design is rather straightforward 
and easy to implement.  Simulation results using the 
proposed control scheme are presented in this paper.  
Work is in progress towards its real-time implementation. 

2 The benchmark model 
The experimental structure, shown in Figure 1, is a five-
storey benchmark model, designed and manufactured at 
UTS, and approved by the International Association for 
Structural Control (IASC) for encouraging international 
collaborative research in the area of motion control of 
building structures [Samali et al., 2000].  The model, of 
1700 kg in total mass, is 3.6m tall with a footprint of 1.5m 
x 1.0m, and consists of two bays in one direction and a 
single bay in the other.  The entire structure is tested on a 
3x3 m, 6 tonne hydraulically-driven shake table.  A simple 
AMD, shown in Figure 2, is placed on the 5th floor of the 
model, consisting of a single-ended hydraulic cylinder 
with steel masses attached to the clevis ends of the piston 
rod.   
 The actuator is controlled by an electrohydraulic 
directional proportional valve, sized accordingly for a 
maximum velocity of 1.65 m/s.  The sensors used include 
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a load cell mounted at the actuator end cap to measure the 
control force, accelerometers positioned on the ground, 
each storey of the structure, and the AMD, and LVDTs 
placed between each floor and a fixed frame.  The 
principal diagram for the experimental set-up is depicted 
in Figure 3. 
 

 
Figure 1.  Benchmark model 

 

 
Figure 2.  Active Mass Driver 

3 Problem formulation 
Consider an n degree-of-freedom building subject to either 
along-wind turbulence or one-dimensional earthquake.  
Assuming that the building is symmetric and there is no 
coupled lateral-torsional motion, the system dynamics can 
be represented by 

 )()()()()( twHtuHtxKtxCtxM wusss +=++ DDD , (1) 

where nRtx ∈)(  is the vector of the displacement 

corresponding to each degree of freedom, mRtu ∈)(  is the 

vector of control forces, qRtw ∈)(  is the vector of wind 
or quake-induced forces applied to the structure, 

sss KCM  ,, are respectively ( nn × ) mass, damping and 

stiffness matrices, and mn
u RH ×∈  and qn

w RH ×∈  are 
the matrices denoting the location of the controllers, and 
the wind or quake influence.  In the state space form, (1) 
becomes 

Figure 3.  Experimental set-up diagram 
 

 )()()()( tDwtBUtAXtX ++=� , (2) 

where nT RtxtxtX 2)](),([)( ∈= � , and matrices A, B, D 
are assumed to be known and given by 
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The r-dimensional output vector, obtained from 
measurements, is expressed as  

 )()( tCXty = , (3) 

where nrRC 2×∈  [Yang et al., 1997].  The objective is to 
design a sliding mode controller such that the closed-loop 
system has desired modes and is insensitive to desired 
using only information from the system output. 

4 Control design  
The design of sliding mode control (SMC) for (2) includes 
the selection of a sliding function so that the sliding 
motion when restricted to the sliding surface is stable, and 
then the derivation of a control law to enforce sliding 
mode in the sliding surface.  The sliding function  

 T
m tXtXtXtSXtX )],(  ...  ),(  ),([)(),( 21 σσσσ == ,(4) 

where nmRS 2×∈ , may be determined such that the 
sliding mode dynamics in the sliding surface 

 }0)(|{ 2 ==∈= tSXRX n σS , (5) 

have (2n-m) desired eigenvalues mn−221  ..., , , λλλ .  The 
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following control law is employed [Ha et al., 1999]: 

 )()()( tututu RE += ,  (6) 

where )(tuE  is the equivalent control that may be 
obtained from a conventional method of the linear system 
theory applied to the nominal system, and )(tuR  is the 
robust control, which is switching in nature, developed to 
guarantee the reaching condition  

 0<σσ �
T . (7) 

4.1 Pole placement-based SMC 
In the following a sliding mode controller will be designed 
with the sliding matrix nmRS 2×∈  chosen by eigenvalue 
placement.  If the sliding mode is enforced in the surface 
(5) then the system dynamic properties are determined by 
(2n-m) desired sliding eigenvalues mn−221  ..., , , λλλ .  As 
noted in [Ackermann and Utkin, 1998], the design of the 
sliding surface does not generally imply assigning the rest 
m eigenvalues, which can take any arbitrary value.  In this 
paper we make use of this design freedom to place them at 

*λλ = , where *λ  is some stable eigenvalue called the 
sliding margin.  Using any pole placement algorithm, a 
state feedback control law of the form  

 )()( tFXtuE =  (8) 

can be found for the equivalent control to assign the 
desired eigenstructure } ..., ,, ..., , ,{ **221 λλλλλ mn−  such 
that: 

m
mnAI ))()...()(()det( *221

* λλλλλλλλλ −−−−=− − ,(9) 

where nmRF 2×∈  is the state feedback control matrix, and 
BFAA +=*  is the closed-loop matrix.  Matrix S in (5) 

will be chosen such that  

 SBFAS *)( λ=+ , (10) 

or 0=Ω TS , where T
n AI )( *

2* −=Ω λ .  A solution can 
be found in the form 

 TNS
Ω

= , (11) 

where ΩN  is any basis of the null space of Ω , 

})ker{()ker( *
2*

T
n AI −=Ω λ .   

 In order to induce a sliding mode with the control law 
(6) where the equivalent control (8) is obtained from 
placing the closed-loop desired eigenstructure 

} ..., ,, ..., , ,{ **221 λλλλλ mn−  for the nominal system, the 
robust control is given by  

 w
SB

SDSB
SB
SBtu

TT

TT

TT

R 2)( −−=
σ
ση , (12) 

where 0>η  is a coefficient denoting the convergence 
rate. 
Remark 1:  The first term of the robust control (12) is the 

switching component that helps the system cope with 
actuator uncertainties )(t

iuδ  [Alt et al., 2000]: 

 )()](1[)(, tuttu iuactuali i
δ+= , (13) 

where mit
iu ,...,2,1  ,)( =<ηδ . 

Remark 2:  The second term of the robust control (12) 
offers a feedforward compensation for the influence of 
wind or quake-induced forces applied to the structure, 
which can be measured or estimated.  
Remark 3:  It can be shown that under the control laws 
(6), (8) and (12) the state vector )(tX  asymptotically 
converges to zero and mn−221  ..., , , λλλ  are the sliding 
eigenvalues. 

4.2 Linear functional observers 
Examining the above control laws reveals that it could be 
implemented by using estimates of the equivalent control 
and the sliding function.  Without loss of generality, let us 
assume that matrix C  has full row rank, i.e. ,)( rCrank =  
and takes the following canonical form 

 [ ]0rIC = , (14) 

using, for example, the following transformation matrix 

 T = [ C
TT NCCC 1)( − ], (15) 

where )2(2 rnn
C RN −×∈  is any basis of )ker(C .  Let the 

feedback control matrix nmRF 2×∈  be partitioned as 

 WCKLF  + = , (16) 

where ,pmRK ×∈  ,2npRL ×∈  and rmRW ×∈  are real 
matrices to be determined.  Consider now a dynamical 
output feedback described by  

 
),()()()(

),( + )()() + ()(
tGytLButEztz

tWytKztXWCKLtFX
++=

==
D

 (17) 

where pRtLXtz ∈= )()(  is the state vector of the 

observer of order p, rpRG ×∈  is a real constant matrix to 
be determined, and ppRE ×∈  is a stable matrix to be 
selected according to the observer desired dynamics.  
Equation (17) can act as a dynamic output feedback 
controller to reconstruct )()( tFXtX f =  provided that 
matrix E  is chosen to be stable, and matrices G  and L  
fulfil the following constraints [Trinh and Ha, 2000]: 
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WCKLF
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ELLAGC
 (18) 

As matrix E  can be selected according to the desired 
dynamics of the observer, there are four unknown 
matrices ( ,G  ,L  K  and W ) in system (18) to be solved 
for.  Using (14) and the partition 
 ]   ...   |   ...[ 22121 nrrr ffffffF ++= , (19) 
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where [ ] mT
jmjjj Rffff ∈= ,,2,1  ...   )2,...,2,1( nj =  is the 

j-th column of F , it is shown that (18) is equivalent to 
[Trinh and Ha, 2000]: 

 ϕ   =Π l , (20) 

where [ ] pnTT
n

TT Rllll 2
221 ... ∈= with p

j Rl ∈  being 
the j-th column of L, and  
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where   ])(0[ )}2({)}2({)()}2({ rnprnmprrnm Kdiag −×−×−=Φ , 

matrix pnrnpR 2)2( ×−∈Ψ  is given by 
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with kja ,  denoting the ),( kj -element of matrix A,   
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with kjd ,  denoting the ),( kj -element of matrix D, and  

[ ] )2(
221 ... rnmTT

n
T
r

T
r Rffff −

++ ∈= . 

System (17) can be constructed to generate asymptotically 
the feedback law )()( tFXtX f = , even when the 
influence of wind or quake-induced forces applied to the 

structure are unknown, provided that (i) 
qr

rnmp
−

−≥ )2( , 

and (ii) matrix Π  defined in (21) has full row rank. 
Remark 4: The development in this section can also be 
employed for reconstruction of a full state feedback 
designed by using optimal control. 

4.3 Dynamic output feedback SMC 
Let us now apply the results developed above for 
estimation of the equivalent control and the sliding 
function to implement sliding mode control for system (2).  
Assume that the following dynamic output feedbacks  

 




+=
++=

),()()(ˆ
)()()()(

tWytKztu
tGytLButEztz

E

�

 (22) 

  




+=
++=

 ),()()(ˆ
 )()()()(

tyWtzKt
tyGtBuLtzEtz

SSS

SSSSS

σ
D

 (23) 

have been designed to obtain the estimates )(ˆ tuE  and 
)(ˆ tσ  respectively of the equivalent control (8) and the 

sliding function (4).  It can be shown that dynamical errors 

associated with these estimates: 

 )()()(ˆ tKetutu EE += , (24) 

)()()(ˆ teKtt SS+= σσ ,  (25) 

where )()()( tLxtzte −=  and )()()( txLtzte SSS −= , will 
be forced to zero asymptotically under the proposed 
dynamic output feedback sliding mode control determined 
by (6), (8), and (12) if the equivalent control (8) is 
replaced by estimate )(ˆ tuE  given in (22) and the robust 
control by estimate )(ˆ tuR  defined by 

 w
SB

SDSB
SB
SBtKetu

TT

TT

TT

R 2ˆ
ˆ

])([)(ˆ −+−=
σ
ση , (26) 

where σ̂  is obtained from (25) with 
SpS IE *λ= . 

Remark 5: As the eigenvalue *λ  should be chosen at least 
about (3-5) times the dominant roots of the sliding 
eigenvalues such that 0)( →teS  quickly enough with 
respect to the sliding mode dynamics. 
Design Algorithm:  
Step 1. Choose eigenvalues mn−221  ..., , , λλλ  according to 
the desired sliding dynamics and the sliding margin *λ .  
Step 2. Design a suitable state feedback controller F  for 
the equivalent control (8). 
Step 3. Select the sliding function (4) with matrix S 
satisfying condition (10) by using (11). 
Step 4. Design the dynamic output feedback (22) for the 
equivalent control. 
Step 5. Choose 

SpS IE *λ= , design the dynamic output 
feedback (23) for the sliding function. 
Step 6. Formulate the robust control (26). 

5 Simulation results 
Consider the benchmark model and the AMD shown 
respectively in Figure 1 and Figure 2.  The displacement 
vector is T

mxxxxxxtx ],,,,,[)( 54321= , where 
)5,..,1( =ixi  are the ith level absolute displacement, and 

mx  is that of the AMD, the control input is the driving 
force of the hydraulic cylinder, and the output vector 
obtained from two sensors is T

mm xxxxty ],,,[)( 55 ��= .  In 
our case, 2n=12, m=1, q=1, and r=4.  The matrices A, B, D 
and C respectively in eqs. (2) and (3) can be obtained as  
A= [ 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 1 

-1.1e4 8.5e3 -1.4e3 367 -81 0 -1 0 0 0 0 0 
8.7e3 -1.6e4 0.9e4 -1.4e3 212 0 0 -1 0 0 0 0 

-1.4e3 8957 -1.6e4 0.9e4 -857 0 0 0 -1 0 0 0 
375 -1.4e3 8595 -1.4e4 6900 0 0 0 0 -1 0 0 
-74 189 -764 6.2e3 -5545 28 0 0 0 0 -1 0 

0 0 0 0 309 -309 0 0 0 0 4 -4 ],
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B=[0  0  0  0  0  0  0  0  0  0  2.7  -29.4]T,  

D=[0  0  0  0  0  0  -1  -1  -1  -1  -1  -1]T, and 

C=[0  0  0  0  1  0  0  0  0  0  0  0;   0  0  0  0  0  1  0  0  0  0  0  0; 
0  0  0  0  0  0  0  0  0  0  1  0;   0  0  0  0  0  0  0  0  0  0  0  1]. 

The model has six modes listed as below 
 

Mode Damping Freq. (Hz) 
-0.5 ±  176i 0.00285 28.01 
-0.5 ±  137i 0.00365 21.80 
-0.5 ±  96.3i 0.00521 15.33 

-0.507 ±  55.4i 0.00915 8.82 
-1.16 ±  16.2i 0.0713 2.58 
-1.33 ±  18.9i 0.0702 3.01 

 
The control design is as follows. 
Step 1 and 2: As forcing the closed-loop modes having 
desired damping factors may result in unacceptably large 
gains, the LQR technique is used to obtain the feedback 
F=lqr(A,B,diag([1e5,1e4,1e3,1e2,1e2,1e1,1,1,1,1,1,1]),.4)
=[   -23.2015   -30.7185   -38.0197   -34.6135   281.1515   
-1.0327   -0.4727   -0.5999   -0.5769   -0.2838    4.5661    -
1.5454],  which is equivalent to place the desired poles at 
{-0.61 ±  175.54i,  -1.14 ±  137.24i,  -2.14 ±  96.36i,  -
3.47 ±  55.46i, -2.48 ±  17.27i, -9.02, -38.07}.  The 
sliding margin is chosen as *λ =-38.07. 
Step 3.  The sliding function is calculated from (11) as S = 
[-0.9873    0.0526    0.0046    0.0063   -0.0821   -0.0778    
0.0000   0.0002    0.0007    0.0019    0.0213    0.0962]. 
Step 4:  The observer order is chosen such that 

3
8)2(

=
−

−
≥

qr
rnmp , hence p=3.  The dynamic output 

feedback control (22) can be designed with a selection of 
3*2 IE λ=  and K=[50  0  0] to obtain matrices L, G and W 

using the algorithm given in [Trinh and Ha, 2000].   
Step 5:  Choose 

SpS IE *λ= , SK =[5  0  5], again matrices 

SL , SG , and SW  can be obtained to reconstruct the 
dynamic output feedback for the sliding function (23) can 
be reconstructed. 
Step 6:  Assuming an uncertainty of 500 N in the actuator 
force, the coefficient η  is chosen equal to 500.  The 
robust control (26) is now ready to be reconstructed. 
 We firstly test robustness of the proposed control 
scheme by assuming a random actuator uncertainty of 
maximally 400 N, )1(*400)( randtu =δ .  The responses 
of the fifth storey displacement and velocity are shown in 
Figure 4.  The maximal values of displacement and 
velocity are observed to be less than 0.5mm and 200mm/s, 
respectively.  The uncertainty and control force responses 
are shown in Figure 5.  The resulted control force has a 
maximal magnitude less than 1kN.  Note that chattering 
can be reduced by using a boundary layer or replacing the 
signum in (26) by a smoother function [Ha, 1997].   
 We now test the developed controller under the north-
south component of the El-Centro quake signal recorded 
at Imperial Valley Irrigation District substation in El 
Centro, California, during the Imperial Valley, California 
earthquake of May 18th, 1940.  The displacement and 

velocity responses of the top (fifth) storey are shown in 
Figure 6 with the peak values being respectively less than 
30mm and 500mm/s.   
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Figure 4. Displacement and velocity- storey 5. 
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Figure 5.  Actuator uncertainty and control force. 
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Figure 6. Top storey displacement and velocity: El-Ce 

quake 
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The acceleration and control force responses are shown in 
Figure 7, where a fuzzy technique has been used to cancel 
out the high frequency dynamics associated with the 
control output in the sliding mode. 
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Figure 7. Acceleration and control force: El-Ce quake. 

6 Conclusion 
We have presented a dynamic output feedback sliding 
mode control approach to the active control problem of 
civil engineering structures.  The control signal consists of 
an equivalent control, designed based on pole-placement, 
and a robust control, comprising a switching component 
and a feedforward component.  In comparison with the 
benchmark controller [Spencer et al., 1998], the proposed 
control scheme requires only information from the 
measured outputs using linear functional observers and 
can tolerate uncertainty of the actuator.  Robustness and 
damping capability of the controller is verified through 
simulation results for a five-storey model developed at 
UTS.  Work is in progress towards its real-time 
implementation on the model and further evaluation based 
on performance criteria adopted by the structural control 
community.  
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