
Models for guidance in kagome-structured 
hollow-core photonic crystal fibres 

G. J. Pearce1, G. S. Wiederhecker1, 2, C. G. Poulton1, S. Burger3, and P. St. J. Russell1* 

1Max Planck Research Group (IOIP), Günther-Scharowsky-Str. 1 / Bau 24, 91052 Erlangen, Germany 
2CePOF, Instituto de Fisica, Universidade Estadual de Campinas, 13.083-970 Campinas SP, Brazil 

3Zuse Institute Berlin (ZIB), Takustr. 7, 14195 Berlin, Germany 
*Corresponding author: russell@optik.uni-erlangen.de 

http://www.pcfibre.com 

Abstract: We demonstrate by numerical simulation that the general features 
of the loss spectrum of photonic crystal fibres (PCF) with a kagome 
structure can be explained by simple models consisting of thin concentric 
hexagons or rings of glass in air. These easily analysed models provide 
increased understanding of the mechanism of guidance in kagome PCF, and 
suggest ways in which the high-loss resonances in the loss spectrum may be 
shifted. 
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1. Introduction  

A photonic crystal fibre is a form of optical fibre, usually invariant along its length but 
possessing two-dimensional microstructure in the plane perpendicular to its axis [1]. This 
microstructure can lead to the existence of two-dimensional photonic bandgaps which, if they 
are sufficiently deep to cross the air-line (defined by β=k0 for axial wavevector component 
(propagation constant) β and normalised frequency k0=2π/Λ), can allow the guidance of light 
in hollow cores [2, 3]. 

Most hollow-core bandgap-guiding fibres are fabricated from silica glass, and comprise a 
honeycomb lattice with a large air-filling fraction (typically >80%), which surrounds and 
confines light within an air core. In such fibres, losses as low as 1.7 dB/km have been 
achieved [4]. However, recent results have demonstrated the favourable properties of a 
different structure of hollow-core PCF: the kagome fibre. Kagome fibres show broad optical 
transmission bands with relatively low loss, and have been reported to show no evidence of 
surface-mode crossings [5]. They have also been proposed as an ideal structure to reduce the 
large material losses in polymer PCFs [6]. However, although there are various suggestions as 
to the guidance mechanism in these fibres (such as low cladding density of states [1,7], low 
overlap between core and cladding mode fields [6] and high-order bandgaps [5]), the nature of 
guidance in these fibres is not fully understood. 

In this paper, we demonstrate by numerical simulation that air-silica kagome fibres of the 
type described in Ref. [5] do not show photonic bandgaps in the frequency ranges measured 
experimentally. The low loss in kagome fibres therefore cannot be a result of bandgaps, 
making kagome fibres intrinsically different from bandgap-guiding hollow-core fibres. To 
understand the different behaviour of kagome fibres, we develop two models that can be 
understood more easily than the full kagome structure while retaining its key characteristics. 
One model is that of concentric hexagonal annuli, created by selectively omitting struts from a 
kagome lattice; and the other model is a related but simpler structure consisting of circular 
rings. We show that the variation of loss with wavelength of these models shares many 
characteristics with kagome fibres. Although such models cannot provide a complete 
explanation for the guidance of kagome fibres, they nevertheless provide a useful basis for 
understanding many features of their behaviour. 

2. Density of states 

The photonic density of states (DOS) is a convenient tool for presenting and examining the 
optical properties of a PCF cladding, including the existence and/or absence of photonic 
bandgaps over a relevant frequency range, and the identification of resonant features which 
can play an important role in determining guidance properties [8,9]. In this section we present 
and analyse the calculated density of states of a typical air-silica kagome cladding. 

As an example structure, we consider an infinitely-periodic kagome array with glass 
refractive index n=1.45, strut width d=0.67 μm and pitch Λ=11.8 μm. These parameters 
approximately reproduce the cladding of the ‘1 cell’ fibre fabricated by Couny et al. [5] and 
are also similar to those reported by Argyros [6]. Figure 1(a) shows the kagome lattice. In 
order to calculate the density of states of this lattice, we use the finite-element method (FEM) 
with vector basis functions [10] in a fixed frequency formulation (i.e. obtaining β values as 
eigenvalues at a chosen k0), and apply Bloch boundary conditions to the unit cell [11]. The 
resulting density of states is shown in Fig. 1(b).  

Several features are evident in the DOS of the kagome structure. The near-vertical modes, 
extending both above and below the air-line [one example picked out with a dashed yellow 
line in Fig. 1(b)], are modes of the glass struts. Below the air-line these are leaky, but they 
retain their character over the range of β shown. Resonances of the air holes of the structure 
occur at particular values of the transverse wavevector in air (given by kt

2=k0
2–β2), and these 

appear as horizontal lines on Fig. 2(b) which, as expected, exist only below the air-line. The 
first-order resonance of the hexagonal holes is picked out with a dotted yellow horizontal line 
in Fig. 2(b). Another feature of note in the DOS is the existence of a thick crossing region 
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surrounding the resonances at 0.7 and 1.4 μm, indicating that between each transmission band 
there is also a relatively broad region in which strong coupling between the core-guided mode 
and the glass strut modes might occur. Such behaviour is in agreement with previously 
published transmission spectra for kagome fibres [5, 6] and with the analysis of Argyros [6]. 

 
Fig. 1. (a). Periodic kagome lattice as described in Sec. 1, where black areas represent silica 
and white areas represent air. b) Density of states (DOS) for the periodic kagome structure 
corresponding to normalized frequencies in the range k0Λ=44–148. White regions show high 
DOS and darker areas show lower DOS, but the density of states is non-zero throughout. The 
solid horizontal line is the air line, the dashed near-vertical line is an example strut mode, and 
the dotted horizontal line is a mode associated with the large hexagonal air holes of the 
structure. 

Although the density of states demonstrates that the kagome fibre does not achieve low-loss 
broad-band guidance through the existence of photonic bandgaps, and its features can be 
understood relatively simply, it is necessary to consider the full structure of a fibre in order to 
understand guidance completely. In the following section, two simplified models are 
considered as approximations to a real kagome fibre.  

3. Concentric hexagon and ring models 

To investigate the guidance in kagome fibres, we consider two approximations to the kagome 
structure. The first of these, most closely related to the kagome structure, is a set of concentric 
hexagonal annuli, which can be obtained by selectively omitting struts in the kagome structure 
as shown by Figs. 2(a) and 2(b). The second model, shown in Fig. 2(c), is a simple 
approximation to the first, in which the hexagons are replaced by concentric circles. We 
choose to use the same perimeter around each ring in the two models, the same thickness of 
glass and the same refractive indices. This has the effect of conserving the total amount of 
glass and leaving the positions of radial resonances (see below) unchanged.  

To determine the modes of the concentric hexagon model, we use the FEM incorporating 
perfectly matched layers [12]. Although this method could also be used to calculate the modes 
of the concentric ring model, we instead choose to calculate these modes semi-analytically 
using transfer matrices in cylindrical coordinates [13]. The transfer matrix approach is not 
only orders of magnitude faster than the FEM, but also provides a useful check on the 
convergence and accuracy of the other models. Figure 3 shows the results of these 
calculations. In the case of both models, we select the fundamental mode guided in the air 
core and plot the loss of this mode as a function of wavelength. It is evident that there is a 
close similarity between the losses of the concentric rings and hexagons. The only major 
difference in the losses is an increase in ‘noise’ in the hexagonal model, which can be ascribed 
to the increased number of weak anti-crossings which were forbidden by symmetry in the 
circular case. This is a consequence of the sharp corners inherent in the hexagonal model 
which couple together several strut modes, allowing them to interact with the core-guided 
mode. 
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Fig. 2. (a). A ‘full’ kagome structure, with single cell core. The hexagons shown in (b) are 
highlighted in black. (b) The hexagonal approximation to the full kagome structure, obtained 
by retaining struts that contribute to concentric hexagons around the core but omitting all 
others. (c) The circular approximation to the hexagonal structure, formed of concentric circles 
that conserve the perimeter of each hexagon (thereby conserving the amount of glass). In (b) 
and (c) only the core and first four cladding rings are shown. 

The features common to the ring and hexagon spectra regardless of the number of 
rings/hexagons are the high-loss resonant regions at approximately λ=0.7 μm and λ=1.4 μm. 
The origin of these features is easily explained in terms of radial resonances of the glass 
comprising the rings/hexagons. Such resonances are expected for values of the transverse 
wavevector kt such that ktt, the phase change across a thickness t, is a multiple of π. Assuming 
the mode is on the air line, and hence β=k0, this leads to a condition for resonance of 
λ=2t(n2-1)1/2/m for integer m. Using n=1.45 and t=0.67 μm correctly reproduces λ=1.4, 
0.7,… μm. 

 

 
Fig. 3. Losses in dB/m for the fundamental mode of the ring (lines) and hexagon (points) 
models, with structures as shown in Fig. 2. Note the close agreement between the losses of the 
ring and hexagon models. 

 

It is important to note from Fig. 3 that the concentric structures both show decreasing losses as 
the number of rings/hexagons is increased. This is a similar effect to the reduction in loss as 
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the number of layers of cladding in a bandgap-guiding PCF is increased [1], and in this case is 
the result of a ‘radial’ stop-band similar to that observed in Bragg fibres [13]. Although the 
resonances do not exactly match the edges of the previously measured loss spectrum, the 
simple expression derived above also indicates how sensitive the resonances (and 
corresponding loss windows) are to variations in strut thickness. 

4. Comparison with kagome structure 

In order to study guidance in realistic kagome structures, we used the FEM to calculate the 
loss of the fundamental air-guided mode in two- and four-layer structures. Figure 4 shows the 
two-layer structure. The loss of the two-layer structure was calculated with the FEM with 
perfectly matched layers. For the calculation of modes in the more computationally 
demanding four-layer structure, we used the commercial FEM package JCMmode with 
fourth-order edge elements, adaptive grid refinement, and adaptive transparent boundary 
conditions. This allows computation of losses to a high precision even for relatively large and 
complicated geometries [14]. In both cases, the relevant mode was selected by evaluating the 
fraction of power in the core of the fibre and choosing the mode that maximises this fraction. 

 

 
Fig. 4. Two-layer kagome structure used for modal calculations. Grey areas represent glass and 
white areas represent air. The dimensions are identical to those described in Sec. 2. In order to 
approximate real kagome fibres as closely as possible, the sharp edges in the structure are 
rounded with a radius of curvature of 0.2 μm. 

A plot of the fibre losses, together with (for comparison) the curves for the one- and two-ring 
models, is given in Fig. 5. It is immediately clear that the resonances at λ=1.4, 0.7,… μm are 
present in the spectra for the kagome fibre as well as that of the rings. This suggests that in 
fabricated structures it should be possible to tune the positions of low-loss regions by 
modifying the thickness of the struts in the kagome cladding. However, it should be noted that 
the resonances will broaden if there is inhomogeneity in the strut thicknesses throughout the 
structure, and this effect is likely to be more pronounced close to the core where the fields are 
more intense. To minimise loss it is therefore important to ensure that the structure comprises 
struts of a uniform width, including those struts surrounding the core. We note that this is a 
different requirement for low loss than that in bandgap-guiding hollow-core fibres [15]. 

The behaviour of the loss of the kagome structure with the spatial extent of the cladding is 
different from that of the rings/hexagons. While adding an additional hexagon or ring reduces 
the loss by approximately two orders of magnitude (as shown in Fig. 3), the two- and four-
layer kagome structures both show remarkably similar losses. This suggests that light in the 
cladding is able to propagate freely away from the core. However, this is not unexpected: 
Fig. 1 demonstrates that the kagome structure does not have photonic bandgaps, and 
consequently propagation is not forbidden in the cladding. 
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Fig. 5. Loss of the fundamental mode of the two- and four-layer kagome structures, together 
with that of the one- and two-ring models for comparison. Note the existence of high-loss 
resonances in the spectra for both the model and the realistic structures. 

 

Because Fig. 3 suggests that concentric hexagons are able to achieve very low loss guidance, 
the much greater minimum losses of the realistic structure shown in Fig. 5 (at 0.55 μm and 
0.9 μm) must be a result of the inclusion of the remaining struts that are neglected by the 
hexagon model. However, the high-loss resonances are common to both structures. It is 
therefore reasonable to suggest that there is a constant loss of approximately 10 dB/m in both 
kagome structures associated with coupling out of the core induced by the neglected struts, 
and this is superimposed on a background of losses associated with the radial confinement. 
Further study of the strut-induced coupling out of the core is likely to be key to further 
reductions of losses in kagome fibres. 

5. Conclusions 

We have demonstrated that models consisting of concentric rings and hexagons explain the 
qualitative features in the loss curves associated with kagome-structured PCF. Although these 
models are not quantitatively accurate, they provide a framework in which to understand and 
therefore control the positions of high-loss spectral features. Additionally they demonstrate 
that radial confinement is an important feature of guidance in kagome fibres, which 
consequently implies that the fabrication of kagome fibres with a uniform strut thickness 
throughout is likely to provide guidance with lower loss. 

Although radial confinement is an important component of the guidance mechanism in 
kagome fibres, the losses observed in realistic fibres (which we have calculated accurately 
using the FEM) are dominated by coupling out of the core, which must be a result of the struts 
that are neglected in our simplified models. To obtain accurate calculations of losses in 
kagome fibres, it is therefore essential to take into account the full structure and use a rigorous 
method such as the FEM. Further consideration of the effect of these struts is likely to be 
beneficial in advancing understanding of guidance in kagome PCF. 
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