
133

The Neglected Middle Novice Programmer:
Reading and Writing without Abstracting

Raymond Lister
Faculty of Information Technology
University of Technology, Sydney

Australia
raymond@it.uts.edu.au

Abstract
Many teachers of novice programmers have lamented that
students either seem to have a natural gift for
programming, or have no gift for it at all. In this paper,
we discuss a third group of students, the middle novice
programmer. At the completion of their first semester of
programming, these students can manifest a strong
concrete grasp of the semantics of basic programming
language constructs, by hand executing code, but they
cannot reason about code at a higher goal/plan level. The
research evidence presented in this paper for the existence
of these middle novice programmers is from the analysis
of twelve multiple choice questions, which students
attempted as part of an end-of-first-semester exam.

Keywords: novice programmers, CS1, schema, plans.

1 Introduction
For academics who compartmentalize their teaching and
research, an exam paper is an instrument for assigning
grades to students. For a scholar of teaching, however, an
exam paper is also an opportunity to study the learning of
the students. Whilst the scholar of teaching does so with
the aim of improving his/her’s own teaching, just as
important to the scholar is the aim of communicating the
findings to other scholars within the discipline, in the
hope of improving teaching across the discipline. In this
paper, the author reports his research findings from an
analysis of one of his exam papers.

The exam was sat by over 300 students, who had just
completed their first semester of programming. In the
original exam paper, there were 26 multiple choice
questions, all focused upon aspects of programming in
Java. Approximately half of those questions examined
object-oriented concepts, and questions of that type have
been analyzed in an earlier publication (Lister, 2005).

This paper analyses the student performance on 12
multiple choice questions, which focus on the classic
imperative programming concepts of selection, iteration,
and arrays. These 12 questions in turn break into two
categories of questions: “Type A” and “Type B”.

2 The Four “Type A” Questions
Of the twelve multiple choice questions examined in this
paper, four were Type A questions. These questions
specified a short piece of code, and students were asked
to determine the value in a particular variable, after the
code had finished executing.

While it is not strictly necessary, these short pieces of
code in the author’s exams tend to be “nonsense” code.
That is, the code does not usually perform a function that
an experienced programmer would recognise. Nonsense
code is the most expedient code to use for Type A
questions (particularly after several semesters of setting
these exams) as it is essential that students have not seen
these pieces of code before – otherwise there is a danger
that a student might happen to remember the answer
(from a tutorial) without being able to compute the
answer.

These questions test the students in two ways:

• The Type A questions test whether students understand
basic programming constructs, particularly selection,
iteration and arrays.

• The Type A questions test whether a student has the
determination and focus required to manually execute
code (i.e. “trace”, or “desk check” code). The author of
this paper explicitly teaches his students a methodical
approach to walking through code, using tables like
those shown in the subsections below. The tables
shown below were provided in the exam paper given to
the students.

The following four subsections provide a complete
description of each of the four Type A questions. These
four subsections contain nothing but the actual exam
questions (except that the tables shown have been
abbreviated, to save space).

2.1 Type A Question 1
Consider the following code:

int[] x = {1, 2, 3, 4, 5};
int a = 3;
int b = 0;
int c = 0;

This quality assured paper appeared at the 20th Annual
Conference of the National Advisory Committee on
Computing Qualifications (NACCQ 2007), Nelson, New
Zealand. Samuel Mann and Noel Bridgeman (Eds).
Reproduction for academic, not-for profit purposes
permitted provided this text is included. www.naccq.ac.nz

134

while ((c<a) && (b<x.length))
{
 ++b;
 c += x[b];
}

System.out.println(b);

What value will be outputted by this code? You may use
the table below to help you calculate the answer to the
question.
a) 0
b) 1
c) 2
d) 3

Code Comment b c

 0 0

… approx. 30 rows provided in the full table …

2.2 Type A Question 2
Consider the following code fragment:

int[] x1 = {1, 2, 4, 7};
int[] x2 = {1, 2, 5, 7};
int i1 = x1.length-1;
int i2 = x2.length-1;
int count = 0;

while ((i1 > 0) && (i2 > 0))
{
 if (x1[i1] == x2[i2])
 {
 --i1;
 --i2;
 }
 else if (x1[i1] < x2[i2])
 {
 ++count;
 --i2;
 }
 else
 { // x1[i1] > x2[i2]
 --i1;
 }
}

After the above while loop finishes, “count” contains
what value? You may use the table below to help you
calculate the answer to the question.

a) 3
b) 2
c) 1
d) 0

Code Comment i1 i2 count

 0

 … approx. 30 rows provided in the full table …

2.3 Type A Question 3
Consider the following code fragment.
int[] x = {0, 1, 2, 3};
int temp;
int i = 1;
int j = x.length-1;

while (i < j)
{
 temp = 2*x[i];
 x[i] = x[j];
 x[j] = temp;
 i++;
 j--;
}

After this code is executed , array x contains what values?
You may use the table below to help you calculate the
answer to the question.
a) {3, 2, 1, 0}
b) {0, 3, 2, 2}
c) {0, 4, 2, 2}
d) {0, 6, 2, 1}

Code Comment i j temp

 1

 … approx. 30 rows provided in the full table …

2.4 Type A Question 4
Consider the following code fragment.

int[] x = {1, 2, 2, 2, 1, 1};
int count = 0;
int i = 0;
int j = x.length/2;

while (j < x.length)
{
 if (x[i] == x[j]) ++count;
 else
 if (x[i] < x[j]) --i;
 else
 if (x[i] > x[j]) --j;

 ++i;
 ++j;
}

After this code is executed, the variable “count” contains
what value? You may use the table below to help you
calculate the answer to the question.
a) 4
b) 3
c) 2
d) 1

135

Code Comment i j count

 0 0

 … approx. 30 rows were provided in the full table …

2.5 Discussion of Type A Questions
For these Type A questions, 208 students (62%) scored a
perfect 4. Hand executing code is tedious and error prone
at the best of times, so the 208 students who did so
perfectly, under exam conditions, demonstrated not just
their knowledge of the programming concepts, but also
their considerable commitment and capacity to attend to
detail – excellent qualities in an aspiring programmer.

The correct answers to the four Type A questions are
options c, c, b and c respectively. While option c is over
represented in these four questions, across the full 26
questions in the entire exam, the correct answers were
distributed almost evenly among the options.
Furthermore, student responses were distributed almost
evenly among the options across all 26 questions.
Therefore, it is unlikely that the percentage of students
who answered these four questions correctly is distorted
by students using common multiple choice guessing
heuristics, such as “when in doubt, choose option C”.

3 “Type B” Questions; three in detail
The eight multiple choice Type B questions are intended
to test students on their capacity to reason at a higher
level than merely hand executing code. These Type B
questions differ from Type A questions in three ways:

• Students are not required to specify the value in a
variable, as they are in Type A questions. Instead,
students are required to correctly identify lines of code
that have been omitted from the complete code.

• The code in Type B questions perform functions that an
experienced programmer would recognise. Algorithms
represented in the Type B questions include basic
sorting and searching algorithms, such as bubble sort,
some other quadratic sorts, linear search, and binary
search.

• The code in these questions has been seen by the
students prior to the exam. All these algorithms were
taught in class. Furthermore, the eight Type B
questions in the exam were drawn from a pool of 30
questions, which were used in tutorial exercises as part
of the learning process. Students were told that eight
questions from this pool would appear – unaltered – in
the exam.

Note that students were not required to rote-learn the
algorithms taught. In fact, to discourage rote-learning, the
students were provided in the exam with all the diagrams
from lecture notes that explained the algorithms (and
students were aware of this prior to the exam). A sample
of these diagrams is given in the appendix. In total, there
were 101 such diagrams provided in the exam. Any non-
novice programmer who had never encountered these

algorithms before would have been able to deduce the
answers to the multiple-choice questions from these
detailed diagrams.

Space limitations do not allow for a full exposition of all
eight Type B questions. Instead, the following
subsections describe three of the questions.

3.1 Adding an Element to a Set
A number of algorithms studied during semester related
to storing the elements of a set in an array. The elements,
all positive integers, are stored in ascending order in an
array, with the end of the set indicated by the “sentinel”
value of minus one (declared as a constant). For example,
an array declared and initialized as:

 int s[] = {2, 4, 6, -1, 1, 7};

contains the set {2, 4, 6}, with the last two positions in
the array not forming part of the set.

The following “skeleton code” was studied during
semester, and was supplied in the exam. The skeleton
code of the method “AddElementToSet” code
partially describes the addition of an element “e” to the
set “s”, returning false if there is not room for the new
element. Before studying the three Type B multiple
choice questions that follow, readers might attempt to
deduce the missing lines for themselves, using the slides
in the appendix.

class Sets {

/* This is a skeleton program for
 various set operations, where sets
 are implemented as a sorted array
 (ascending order) terminated by a
 sentinel value.
 */

// The “sentinel” terminates the
// sorted values in a set.
static final int sentinel = -1;

 ...

public static boolean AddElementToSet(
 int e, // to be added
 int s[]) { // to this set

/* Like the name says, this function
 * adds "e" to set "s". Element "e" is
 * added in its correct position, so
 * that the sorted order of the array
 * is maintained. This implies those
 * elements larger than "e" are pushed
 * up one place to make room for "e".
 * If "e" is not already in the set
 * "s", and "s" is full, then the
 * function returns false; otherwise
 * it returns true. Remember that all
 * elements in the array are unique.
 */

// Can’t have the sentinel in the set
if (e == sentinel) return false;

// First try to find "e" in the set,

136

// or find where it belongs
int pos = 0;
while ((xxx1xxx) && (xxx1xxx))
 xxx2xxx;

if (xxx3xxx) // if “e” is in set
 return true; // success by default.

// Find the "last" position
// i.e. the position of the sentinel
int last = pos;
while (xxx4xxx) xxx5xxx;

// At this point in the code, the
// array element pointed by "last"
// contains the sentinel.

// Now check if there is room for the
// new element
if (xxx6xxx) return false;

// The remaining code adds "e"

// First, push up one place all
// elements bigger than "e"
for (int i=last ; xxx7xxx ; xxx7xxx)
 xxx7xxx;

// Finally, put the new element into
// its correct place in the array
xxx8xxx;
return true;

} /* AddElementToSet */

The final three questions in the exam required students to
identify some of the above missing code. These questions
are described in each of the next three subsections.

3.2 Type B Question 10
Skeleton code is provided for a method
"AddElementToSet" in the “Sets” class. The skeleton
code contains:
 while (xxx4xxx) xxx5xxx;

The correct completion of this line is:

(a) while (s[last] != s[pos]) ++last;
(b) while (last != sentinel) ++last;
(c) while (last != pos) ++last;
(d) while (s[last] != sentinel) ++last;

3.3 Type B Question 11
This questions follows on from the previous question, on
"AddElementToSet". The skeleton code contains:

 if (xxx6xxx) return false;

The correct completion of this line is:

(a) if (s[last] == s[s.length-1])
(b) if (last == s.length-1)
(c) if (last == s.length)
(d) if (s[last] == s[s.length])

3.4 Type B Question 12
This question follows on from the previous two
questions, on "AddElementToSet". The skeleton
code contains:

 for (int i=last; xxx7xxx; xxx7xxx)
 xxx7xxx;

The correct completion of this line is:

 (a) for (int i=last; i<=pos; ++i)
 s[i+1] = s[i];

(b) for (int i=last; i>=pos; --i)
 s[i] = s[i+1];

(c) for (int i=last; i<=pos; ++i)
 s[i] = s[i-1];

(d) for (int i=last; i>=pos; --i)
 s[i+1] = s[i];

4 Results: The Middle Students
Some students did very well on the exam. In fact, 29% of
the class achieved a perfect score on both Type A and
Type B questions. There was also a group of students
who did poorly on the exam, in both Type A and Type B
questions.

The data, however, shows that there is also a middle
group of students. These students are among the 208
students who scored a perfect 4 on Type A questions, but
were not particularly successful at answering the Type B
questions. On each of the three Type B questions
describe above, between 10-20% of those 208 students
answered incorrectly. Figure 1 shows the performance on
each Type B question for those 208 students. Table 1
provides a breakdown, for the three Type B questions
described above, of the incorrect options chosen by this
10-20% of the 208 students.

Table 2 shows the cumulative percentage of Type B
questions correct among the students who scored a
perfect 4 on Type A questions. That table shows that
approximately half of these students scored 7 or less out
of 8 on the Type B questions. Of course, we all make
simple mistakes, especially under exam conditions
(although recall that these these students did not make
any mistakes in answering the Type A questions) so we
may regard 7 questions correct out of 8 as a good score;
perhaps even 6 out of 8 is a good score. However, the
19% of these 208 students (i.e. 40 students) who score 5
or less on these Type B questions are manifesting an
unambiguous weakness at answering these types of
questions, despite (as discussed earlier) the benefit of
having:

• Seen these 8 questions in a pool of 30 prior to the
 exam.

• Access in the exam to diagrams illustrating the
 algorithms.

137

Figure 1: The percentage of Type B questions correct
among the students who scored a perfect 4 on Type A
questions. (N=208). The questions to the left of the
vertical bar are the four Type A questions. The
questions to the right of the vertical bar are the eight
Type B questions.

Table 1: The number of incorrect responses to the
three Type B questions among the 208 students who
scored a perfect 4 on Type A questions. Asterisks
indicate the correct responses for those questions.

Option Q10 Q11 Q12

a 8 21 16

b 15 *** 12

c 4 15 5

d *** 2 ***

Total 27 38 33

Table 2: The cumulative percentage of Type B
questions correct among the students who scored a
perfect 4 on Type A questions (N=208).

0 1 2 3 4 5 6 7 8

0 1 4 9 13 19 30 53 100

5 Discussion: The Middle Students
Given that students had been warned that eight Type B
questions from the pool of 30 would appear in the exam,
and students were provided in the exam with the
diagrams like those shown in the appendix, one might
expect that students would do very well on the eight Type
B questions – especially the 208 students who scored a
perfect 4 on Type A questions. How do we explain why
they did not answer these questions correctly?

First, we can discard some of the common “staff room”
explanations of student behaviour, at least for the 208
students who answered Type A questions correctly.
Those students cannot be described as lazy, sloppy, or
lacking in commitment.

5.1 An Explanation from the Literature
There have been studies across many disciplines into the
differences between novices and experts (Chi, Glaser &
Farr, 1988; Ericsson & Smith, 1991). That research
indicates experts organize their knowledge into more
abstract forms than novices. This is apparent in the classic
studies of chess players (Chase & Simon, 1973). When
asked to memorize board positions of several chess
pieces, novices tended to remember the position of each
piece in isolation, whereas experts organized the
information at a more abstract level, the attacking and
defensive combinations.

In a study of programming that reflected the earlier chess
studies, Adelson (1984) showed that, when given typical
tasks on well-written code, experts outperformed novices,
but when faced with unnatural tasks, novices sometimes
outperformed the experts – the explanation being that
when code is well-written and the tasks are natural,
experts are able to reason about code at a more abstract
level than novices.

During the 1980s, Elliot Soloway led a movement to
focus programming pedagogy upon “plans” or “schema”
(Soloway, 1986; Rist, 2004), and not on programming
language constructs. Soloway wrote:

…language constructs do not pose major stumbling
blocks for novices... rather, the real problems
novices have lie in “putting the pieces together,”
composing and coordinating components of a
program. (Soloway, 1986, p. 850)

Results from the BRACElet project, which has analyzed
data collected in exams sat by New Zealand students, is
consistent with the above literature. In one BRACElet
study, students were asked to “explain in plain English”
what a short piece of code did. Most students provided
relatively concrete explanations (Whalley et al., 2006;
Lister et al., 2006). In another BRACElet study, students
were asked to identify similarities in four code segments,
which all found either the minimum or maximum in an
array of numbers. Many students identified syntactic
similarities, but failed to identify the more abstract
functional similarities (Thompson, et al., 2006).

5.2 Bizarre Moments in Teaching Explained
In the light of the above literature, it appears then that the
middle students identified in this study of an exam paper
are accomplished concrete reasoners about code (as
evidenced by the perfect performance on the Type A
problems) but have not (at least at this stage) developed a
capacity to reason about code at any higher level of
abstraction.

The identification of these students explains some of the
more seemingly bizarre moments in the teaching of
programming to novices. Every teacher of novice
programmers, including the author of this paper, has
stories from the pedagogic “twilight zone”, such as:

• Students who attempt to debug code, sometimes for
hours on end, by “random mutation”.

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12

Question

Pe
rc

en
ta

ge
 o

f s
tu

de
nt

s
co

rr
ec

t

138

• Students who introduce new bugs as they attempt a
superficial and incorrect fix to an existing bug.

• Students who come to the teacher for help with a bug,
saying that they have worked for hours to find it, when
the bug is glaringly obvious to the teacher.

• Students who cannot explain their own code (in cases
where the teacher discounts the possibility of cheating).

6 Conclusion
Most computing academics took to programming “like
ducks to water”. They happened to have the mental
orientation that allowed them to reason about programs at
an abstract level without having to be explicitly taught to
do so. Academics barely notice the minutia of code, but
instead read and understand code at a more abstract level.
We see the intent of the code, the plan, or “schema”.

Academics who took to programming “like ducks to
water” fail to appreciate the high cognitive load in
reading and understanding code for many novice
programmers. Such academics routinely despair at the
many students who cannot even reproduce, in an exam,
short pieces of code that were taught during semester.
Teachers often dismiss such students as either lacking the
“knack” for programming, or lacking commitment.
Undoubtedly, there are students who lack these attributes,
but the results in this paper suggest that we should not
dismiss all struggling students in these ways. A majority
of students who sat this exam scored perfectly on the
Type A questions. While those Type A questions only
require a concrete understanding of code, consistently
answering those questions correctly requires commitment
and attention to detail, especially when we consider that
the questions were being answered under exam
conditions. However, among the students who
consistently answered Type A questions correctly,
approximately 20% demonstrated a weakness on the
Type B questions. These Type B questions require the
student to reason about code at a higher level of
abstraction. It is this 20% of students who are strong at
concrete reasoning but weak at abstract reasoning that we
refer to as the middle novice programmer. These novices
do not see intent, plans, or schema they just see code.

Although these middle novice programmers may not
automatically learn to reason about programs, perhaps
they can learn from explicit instruction. For example, de
Raadt, Toleman & Watson (2004) have described their
approach to explicitly teaching schemas. Another
approach is to explicitly teach students the roles of
variables (Kuittinen & Sajaniemi, 2004).

While we do advocate a greater emphasis on explicitly
teaching students to see the “ghost in the program”, we
also advocate that students be taught and rigorously
assessed on the low-level skill of tracing through code.
Very recent experimental results indicate that students
cannot learn to reason about code abstractly unless they
also acquire “complete mastery of the code tracing task”
(Philpott, Robbins and Whalley, 2007).

Computing academics have been teaching programming,
in ways largely unchanged, for decades. Teaching
techniques are unlikely to change when our teaching lives
are compartmentalized from our research lives. This
paper demonstrates how the scholarly approach to
analysing something as mundane as an exam paper can
lead to fresh perspectives into teaching.

7 References
Adelson, B. (1984) When novices surpass experts: The

difficulty of a task may increase with expertise.
Journal of Experimental Psychology: Learning,
Memory, and Cognition, 10(3): 483-495.

Chase, W. C., & Simon, H. A. (1973) Perception in chess.
Cognitive Psychology, 4: 55-81.

Chi, M. T. H., Glaser, R. & Farr, M. J. (Eds.) The nature
of expertise. Hillsdale, NJ, Lawrence Erlbaum
Associates, 1988.

de Raadt, M., Toleman, M., and Watson, R. (2004):
Training strategic problem solvers (2004): SIGCSE
Bulletin, 36(2, June): 48-51.

Ericsson K, and Smith, J. (Eds) Toward a General Theory
of Expertise : Prospects and Limits. Cambridge
University Press,England, 1991.

Kuittinen, M, and Sajaniemi, J. (2004): Teaching Roles of
Variables in Elementary Programming Courses. Proc.
of the ACM ITiCSE International Conference on
Innovation and Technology in Computer Science
Education, Leeds, UK, 57–61.

Lister, R. (2005) One Small Step Toward a Culture of
Peer Review and Multi-Institutional Sharing of
Educational Resources: A Multiple Choice Exam for
First Semester Programming Students. Seventh
Australasian Computing Education Conference
(ACE2005). Newcastle. Jan 31 – Feb 3. pp. 155-164.
http://crpit.com/confpapers/CRPITV42Lister.pdf
[Accessed June 2007]

Lister, R., Simon, B., Thompson, E., Whalley, J. L., and
Prasad, C. (2006). Not seeing the forest for the trees:
novice programmers and the SOLO taxonomy. In
Proceedings of the 11th Annual SIGCSE Conference
on innovation and Technology in Computer Science
Education. (Bologna, Italy, June 26 - 28, 2006).
ITICSE '06. ACM Press, New York, NY, 118-122.

Philpott, A., Robbins, P., and Whalley, J. (2007)
Assessing the Steps on the Road to Relational
Thinking. . In Proceedings of the 20th Annual
Conference of the National Advisory Committee on
Computing Qualifications, NACCQ, Nelson, New
Zealand, July 8-11.

Rist, R.(2004): Learning to Program: Schema Creation,
Application, and Evaluation. In Computer Science
Education Research. Fincher, S and Petre, M. (eds).
Routledge Falmer.

Soloway, E. (1986): Learning to program = learning to
construct mechanisms and explanations.
Communications of the ACM. 29(9): 850 - 858.

139

Thompson, E., Whalley, J., Lister, R., Simon, B. (2006)
Code Classification as a Learning and Assessment
Exercise for Novice Programmers. In Proceedings of
the 19th Annual Conference of the National Advisory
Committee on Computing Qualifications, NACCQ,
Wellington, New Zealand, July 7-10. pp. 291-298.

Whalley, J, Lister, R, Thompson, E, Clear, T, Robbins, P,
Prasad, C (2006) An Australasian Study of Reading
and Comprehension Skills in Novice Programmers,
using the Bloom and SOLO Taxonomies. Australian
Computer Science Communications 52: 243-252.

8 Acknowledgements
The author thanks his collaborators on the BRACElet
project, including Jacqueline Whalley, Errol Thompson,
Beth Simon, and Tony Clear.

Appendix
The following slides were used during lectures to teach
the algorithms. These slides were also provided to
students in the exam.

140

