
to that of the widely spread Tn1548-bearing plasmid pMDR-ZJ06 (Rep3
family), with the gene cassette aac(30)-II being replaced by aacA4 and
catB8 (accession no. CP001938). The K. pneumoniae strain belongs to MLST
sequence type 307 (ST307) and harboured a 20 kb plasmid (IncF) that was
not investigated further.

This study demonstrates that pan-aminoglycoside resistance may be
acquired by P. aeruginosa following the transfer of Tn1548 on
Pseudomonas-specific plasmids such as pOZ176. Whether the Tn1548
module was transmitted in vivo from K. pneumoniae or A. baumannii is
unknown. However, the observation that a patient may be colonized with
several phylogenetically different ArmA-producing bacteria highlights the
diffusion potentials of Tn1548 among Gram-negative species and reinfor-
ces the need to screen for 16S rRNA methylases not only in Acinetobacter
and Enterobacteriaceae species, but also in P. aeruginosa. A high resistance
to arbekacin (MIC . 256 mg/L) may serve as an indicator of methylase pro-
duction prior to the use of molecular biology methods.
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Sir,
Studies of MDR or XDR Pseudomonas aeruginosa often describe an
inability to transfer antimicrobial resistance loci into recipient cells,
suggesting that plasmids do not play a prominent role in dissemin-
ation of MDR loci in this species.1–6 While two recent studies have
highlighted the important role of genomic islands (GIs) in the carriage
and transfer of multiple antimicrobial resistance in P. aeruginosa,7,8

much of the hypothesis was based on earlier studies.4,7,9,10 Here we
present a pilot bioinformatics analysis (strategy detailed in Figure S1,
available as Supplementary data at JAC Online) on 22 complete and
252 draft P. aeruginosa (Taxa ID: 287, resistance profiles unknown)
genome sequences in the NCBI-Microbial-BLAST database (on 11
April 2016) as evidence of the presence of GI1, GI2 and associated
transposons on other globally dispersed clonal lineages.

Excluding our Australian isolates in Table S1, 11% (31/274)
of P. aeruginosa genomes in the database carry GI1 while 14%
(38/274) carry GI2 or variants of them. It is notable that none
of the non-Australian genomes contains both GI1 and GI2. The 31
P. aeruginosa strains that contained GI1 were from the USA, Spain,
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France, Germany, Japan, Mexico, Argentina and Israel and belonged
to different P. aeruginosa STs, including ST235 (19 strains), ST253 (5
strains), ST348 (3 strains), ST179 (2 strains) and ST463 (1 strain). GI2
was identified in 38 P. aeruginosa strains from various European
countries, including Germany, Romania, France, Spain, the
Netherlands, Belgium, Croatia, Italy, Portugal and Greece as well as
the USA, Columbia and India. While most belonged to ST111 (19 iso-
lates), ST175 (10 isolates) or ST235 (7 isolates), one strain of P. aeru-
ginosa typed as ST395 and another as ST823. P. aeruginosa ST235
appears to play a significant role in the carriage of GI1, although
some ST235 strains harbour GI2. GI2 associates mostly with P. aeru-
ginosa ST111 and ST175 (Table S1). We also sequenced four add-
itional ST235 isolates collected between 2007 and 2011
from various sources in Sydney (GenBank accession numbers
LVEC01000000, LVED01000000, LVEF01000000 and
LWGS01000000) and found versions of GI1 and GI2 that were iden-
tical to the islands described in strain RNS_PA1 from 2006.

Given that GI1 or GI2 were identified in 69/274 (25%) of the
P. aeruginosa genome sequences deposited in the database, we
examined the frequency of carriage of transposons Tn6060,
Tn6162, Tn6163 and Tn6249 within the selected cohort (Table S1,
part C). Nineteen of the 274 (7%) genomes carried a Tn6060-fam-
ily transposon, and in 74% (14/19) of the genomes it was inserted
at an identical location in GI1. Of these 14 strains, 6 belonged to
ST235, 5 were ST253 and the remaining 3 strains were ST179,
ST463 and an unknown ST, from different countries. Irrespective of
ST, 11 of the 14 strains carrying GI1 also contained the cassette
array (aadA6-gcuD) found in Tn6162. Strains NCGM1900 and
NCGM1984 from Japan had an extra cassette (aacA7) inserted in
the array, while the cassette array in strain U2504 was different.

Of 274 genomes in the database 30 (11%) harboured a Tn6163
backbone. Fourteen of these (47%), with ST111, ST175 and ST235,
were in GI2 (Table S1, part C). In the remaining 16 strains, Tn6163
was not integrated into GI2 and was found in strains with various
STs. None of the P. aeruginosa strains with GI2 carried the Ambler
class A carbapenemase gene blaGES-5 that is seen in XDR strains
from Sydney.7 ST111 strains from different European countries, all
of which carried a Tn6163-like transposon in GI2, contained an
aacA4-blaP1b-aadA2 cassette array encoding resistance to genta-
micin/tobramycin (aacA4), carbenicillin (blaP1b) and streptomycin/
spectinomycin (aadA2). Thus, it is evident that while GI1 and GI2
are hotspots for the insertion of Tn6060-family transposons and
Tn6163, respectively, these transposons can also integrate at al-
ternative sites in the P. aeruginosa genome.

While these data are consistent with ST235 being a globally dis-
persed clone, the acquisition (or loss) of the GIs and the transposons
the GIs harbour are likely to influence their resistome. Since all of the
P. aeruginosa strains in our study carry one or more class 1 integrons
in their genomes, opportunities exist to gain or lose resistance gene
cassettes or evolve complex antibiotic resistance loci via homolo-
gous recombination, as seen in Tn6060 and Tn6249.

Data presented in the current study provide a snapshot of a glo-
bal scenario that implicates GI1 and GI2 in the mobilization of MDR
loci not only within ST235 but in other globally dominant clones of
P. aeruginosa, including ST111 and ST175. All ST235 strains from
Sydney that carried both GI1 and GI2 clustered within ST235
strains that contain either GI1 or GI2 (Figure S2), suggesting the
ST235 clonal lineage dominant in Sydney is distinct and may have
arisen either by transfer of GI1 into a strain of P. aeruginosa that

carried GI2 or by the phage-mediated transfer of GI2 into a strain
that carried GI1, followed by clonal expansion.
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Sir,
Antibiotic research has focused on discovering agents with activity
against MDR pathogens (e.g. ESKAPE pathogens1), including VRE,
which along with Staphylococcus aureus are commonly isolated
from healthcare-associated infections.2 Several new agents have
been approved for the treatment of skin and skin structure infec-
tions caused by MRSA and enterococci, including oxazolidinones
(linezolid and tedizolid), lipoglycopeptides (oritavancin, dalbavan-
cin and telavancin), a cyclic lipopeptide (daptomycin), a glycylcy-
cline (tigecycline) and an anti-MRSA cephalosporin (ceftaroline).
Lipoglycopeptides, though active against vancomycin-susceptible
enterococci (VSE), have variable activity against VRE, with oritavan-
cin being the sole agent maintaining potent activity against
VanA-type VRE.3

We report here a direct comparison of the in vitro activity of lipo-
glycopeptides and other skin agents against vancomycin-
susceptible and -resistant Enterococcus faecalis (VSEfa and VREfa)
and Enterococcus faecium (VSEfm and VREfm). Comparative
evaluations included MIC and MBC determinations and time–kill
kinetics. Since variation in inoculum density has been shown to im-
pact the activity of several of these agents against S. aureus,4,5

time–kill kinetics were assessed at both standard and high inocu-
lum densities.

The evaluated isolates consisted of 74 random non-duplicate
clinical isolates of VSEfa, VREfa, VSEfm and VREfm from the
Micromyx repository (Kalamazoo, MI, USA) and The Medicines
Company (Ville Saint Laurent, Quebec, Canada). VanA-phenotype
(vancomycin and teicoplanin resistant) and VanB-phenotype (vanco-
mycin resistant and teicoplanin susceptible) VRE were selected based
on prior glycopeptide susceptibility test history. Agents were handled
per CLSI (formerly NCCLS) guidelines and had results within CLSI
quality control ranges during testing.6 Evaluations of lipoglycopepti-
des incorporated polysorbate 80 at a final concentration of 0.002%
(v/v). MIC and MBC values were determined in accordance with
standard CLSI methods.6–8 The time–kill kinetics of select isolates
(one per phenotype evaluated) at standard inoculum (�5%105 cfu/
mL) and high inoculum (�5%107 cfu/mL) were determined as
described by Arhin et al.9 using a method derived from the CLSI8 for
agents at their fCmax (calculated from the respective prescribing in-
formation as 16 mg/L for oritavancin, dalbavancin, linezolid, vanco-
mycin and ceftaroline, 8 mg/L for telavancin, 4 mg/L for daptomycin
and 1 mg/L for tedizolid).

The activity of the tested agents against enterococci is sum-
marized by species and phenotype in Table 1. Among E. faecalis,
VSEfa were susceptible to all agents with the lipoglycopeptides
having the most potent activity by MIC90. Ceftaroline and oritavan-
cin were the only consistently bactericidal agents against VSEfa
based on the proportion of isolates with MBC:MIC ratios of�4.
Based on MIC90, oritavancin, daptomycin, linezolid, tedizolid and
ceftaroline maintained potent activity against VanA VREfa.
Ceftaroline maintained bactericidal activity against VanA VREfa,
while the other agents typically had MBC:MIC ratios .4.

Against VSEfm and VREfm (VanA and VanB phenotypes), orita-
vancin was the most potent agent evaluated based on MIC90. All
agents, excluding ceftaroline, which was largely inactive against
E. faecium, had potent activity against VSEfm by MIC90.
Oritavancin, daptomycin, linezolid and tedizolid maintained potent
activity against VREfm. Oritavancin was �16-fold more potent by
MIC90 than the comparator lipoglycopeptides against VREfm.
Against VSEfm, oritavancin and daptomycin were the only consist-
ently bactericidal agents based on the proportion of isolates with
MBC:MIC ratios of�4. Daptomycin maintained bactericidal activity
by MBC:MIC ratio against VanA and VanB VREfm.

Consistent trends in bactericidal activity were apparent for each
agent by time–kill at fCmax across the evaluated E. faecalis (one iso-
late each of VSEfa and VanA VREfa) and E. faecium (one isolate
each of VSEfm, VanA VREfm and VanB VREfm) isolates. At the
standard inoculum density, oritavancin and daptomycin were rap-
idly bactericidal with 3 log killing typically achieved within 0.25 and
4 h, respectively, with singular exceptions (4 h for oritavancin and
1 h for daptomycin against the VanA VREfa isolate). Telavancin
was typically bactericidal, with 3 log killing observed at 24 h at the
standard inoculum density with the exception of the VanB VREfm
isolate, as was ceftaroline for E. faecalis but not E. faecium.
Vancomycin, dalbavancin, tedizolid and linezolid did not achieve
3 log killing at the standard inoculum density for any of the
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