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The adsorption of benzene molecules onto the Cu(110) surface has been studied using

a crystalline linear combination of atomic orbitals approximation (LCAO).

Adsorption energetics have been modeled at both the Hartree-Fock (HF) and density

functional theory (DFT) level, and scanning tunneling microscope (STM) images

generated for the preferred adsorption geometry.  The calculated binding energies are

strongly dependent upon basis set superposition errors (BSSE).  As expected HF

provides a relatively poor description of this loosely bound system, and is found to be

unbound when BSSE is taken into account.  Inclusion of electron correlation through

DFT methods gives an optimized binding energy of 106 kJ mol-1 with the benzene

molecule occupying a bridging site between the rows of surface copper atoms and an

adsorption height of approximately 2 Å.  This figure takes account of relaxation of

benzene upon absorption with the hydrogen atoms tilting away from the surface.  Our

predicted energetics compare favourably with previous theoretical studies using

cluster methods and experimental binding energies determined from temperature

programmed desorption (TPD).  We have also simulated scanning tunneling

microscope (STM) images using the Tersoff and Hamann method and compare our

results with recent experimental measurements.  Our simulation suggests the

experimental image results from a benzene dimer rather than an isolated molecule.
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INTRODUCTION

Experimental STM images provide a powerful method for studying the

adsorption and energetics of molecules on surfaces.  The technique maps the joint

densities of states between the STM tip and surface being studied.  Interpretation of

these images is, however, often far from trivial particularly in the case of adsorption

of complex molecules.  Theoretical simulation of STM images can aid the

interpretation of these images1 as well as providing an efficient method for identifying

the appropriate regimes for undertaking the more time-consuming experiments. In

particular, the prediction of variations in STM images of adsorbed molecules due to

the presence of various functional groups in a molecular framework may prove to be

essential for the successful identification of imaged molecules, including biological

macromolecules. 

Previously, attempts have been made to model surface-adsorbate systems

using cluster models, in which the bulk substrate is approximated through the use of a

relatively small number of atoms arranged to simulate a small section of the surface.

Hidaka and co-workers have modelled benzene adsorbed on a small 4-atom silver

cluster in order to ascertain the effect of the surface-sample interaction on STM

images.2  In this study, the STM tip was simulated through the use of 2 palladium

atoms positioned above the surface.  Orlandi et al. used 6-atom and 11-atom clusters

to model STM images of benzene and naphthalene rhodium and platinum surfaces

respectively.3  A single tungsten and palladium atom was used to model the tip in

each of these calculations.  Edelwirth and co-workers incorporated a much larger

carbon cluster of 30 atoms in a square lattice 3 layers thick in order to model STM

images of self-assembled adenine monolayers on graphite.4  All of these calculations

seek to accurately model interaction between sample and tip, at the expense of
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reducing the semi-infinite surface to a small cluster. These calculations scale rapidly

with the number of atoms in the surface cluster.

An alternative approach is provided by the use of crystalline calculations.  The

substrate is modelled by a thin slab where translational symmetry is exploited to

generate a solution as a sum of Bloch wavefunctions.5  The use of periodicity in this

manner results in substantial gains in computational efficiency and may result in an

improved representation of the surface, although surface-tip interactions are usually

ignored.  A suitable comparison needs to be found in these calculations between slab

thickness, and hence computational size, and convergence of calculated quantities

Several studies shed light upon this issue although the optimum conditions are still

unclear. The pseudopotential calculations of Ke on the Si (111)-7X7 surface

reconstruction show that a converged surface topography is achieved for slabs of 5

atomic layers.6  Causá et al. found that although a 2-layered slab was sufficient to

model the surface energy and relaxation energy of LiH (001) using Hartree-Fock

techniques, 3 atomic layers were necessary to model the quadrupole moment.7

Similarly, Birkenheuer and co-workers found that the charge distribution and

cohesive energy of the MgO (001) surface studied using local density functional

techniques required 3 atomic layers to converge.8  However, Kiejna, Peisert, and

Scharoch, in density functional calculations of Al (110) have reported the persistence

of quantum size effects, causing oscillations in the work function and surface energy,

even in slabs up to 16 atomic layers thick.9  Furthermore, Boettger suggests that slow

oscillations in calculated values as a function of slab thickness may result in

unrealistic values of optimum thicknesses.10  Several authors report that other factors

are of greater importance in the accuracy of slab-adsorbate calculations, including

basis-set selection11 and prevention of through-slab adsorbate-adsorbate interactions.12
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The aim of the present work is to assess the applicability of using the

commercially available quantum chemical code CRYSTAL9813 with modest

computing resources to simulate STM images of absorbed molecules.  Our objective

is to use these simulations to guide interpretation of experimental STM images and

explore the use of STM as a method for differentiating functional groups on surfaces.

We study the adsorption of benzene on the Cu (110) surface.  Considerable interest in

this system has developed as a result of the Cu (110) catalysed coupling reaction of

acetylene.14  Benzene serves as a model adsorbate as it provides a backbone which is

easily modified to ascertain the effects of functional groups on STM images.  We

initially calculate absorption energetics which can be compared with experiment to

optimize our methods and then calculate local electron density over a small energy

window to simulate the STM image.

Benzene adsorption Cu(110) has been studied by variety of spectroscopic,12,15-

18 thermodynamic,14,19 and scanned probe techniques.20,21 Although several of these

studies have focussed on investigating the bonding mechanism and electronic

structure, few studies have targeted the determination of the actual adsorption site.

The TPD studies of Lomas et al.14 show benzene does not decompose on adsorption

and subsequent desorption from the Cu(110) surface. The authors find a desorption

temperature of approximately 290 K at a surface coverage of 1 Langmuir, decreasing

as coverages increases.  Benzene reactively formed on the surface was found to

desorb at higher temperatures.  Kash and co-workers19  report a desorption

temperature of 242 K at the same coverage. 

X-ray17,22 and infrared18 studies show that benzene adsorbs with its molecular

plane parallel to the Cu(110) surface at low coverages, with bonding to the surface

occurring through the delocalised π-orbitals of the carbon ring.  These results have
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been confirmed by Doering and co-workers20,21 using low-temperature STM.  The

latter authors also propose the preferred adsorption site. However, the Cu(110)

substrate and the adsorbed benzene molecule require quite different imaging

conditions and the adsorption site is extrapolated from the two images. Subsequent

analysis of the results of these studies do suggest that no significant reconstruction of

the (110) structure occurs. This observation is confirmed by the x-ray diffraction

studies of Schuster and co workers.23

Further investigation into the adsorption site has been undertaken through ab

initio cluster calculations performed by Pettersson and co workers.24,25  An all

electron density functional method was used to optimise the geometry of benzene

adsorbed at a four-fold hollow bridging site on a 13-atom cluster of Cu atoms in the

(110) structure.  Ab initio cluster calculations of various unsaturated hydrocarbons on

the Cu(110) surface performed by Lomas and co-workers26 support these findings by

suggesting that bridging sites are consistently favoured over atop sites.  Geometry

optimisation revealed two favourable structures of the adsorbed molecule: the gas-

phase triplet quinoid inverse boat conformation, and the singlet planar carbon ring

with elongation of the carbon-carbon bonds and a bending of the hydrogen atoms

away from the surface. This latter form is referred to as the “H-flip” conformation.

The authors find the quinoid structure to be marginally favourable.  However, this

would require a strong absorbate-substrate interaction in order to counter the energy

required to excite the triplet state.  Pettersson et al. suggest that although evidence

exists that this may occur, this evidence is statistically insignificant.  The H-flip

conformation is therefore proposed to represent the actual conformation of the

adsorbed molecule.25  An adsorption energy of 58 kJ mol-1 is calculated.  X-ray

adsorption spectroscopy experiments performed by Weinelt and co-workers17 confirm
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this bending of the hydrogen atoms away from the surface.  However, X-ray

photoelectron spectroscopy (XPS) experiments performed in the same study revealed

little evidence of carbon frame distortion. Benzene largely retains its gas-phase

structure due to weak interaction with the Cu(110) surface.17 

In a cluster calculation performed by Lomas and Pacchioni26 the gas-phase

structure of benzene was used to determine the binding energy with the adsorption

site fixed at a bridging position. An adsorption energy of approximately 13 kJ mol-1

and an adsorption height of 3.41Å was calculated using a cluster of 28 Cu atoms.

This adsorption energy is significantly less than that proposed by Pettersson and co-

workers, suggesting that the H-flip form is energetically favourable.  However, in

both this calculation and that of Pettersson and co-workers the use of 28 and 13 atom

clusters to represent the surface may be the limiting factor.  Relatively small clusters

may be insufficient to describe the delocalised nature of conduction band electrons in

the metal.26  It follows that such a cluster is not of sufficient size to accurately model

the electron donation and back-donation bonding scheme suggested by the DCD

model.16,25

In the present paper we describe ab initio calculations of benzene adsorbed on

a Cu(110) surface, resulting in the description of adsorption energetics, elucidation of

the adsorption site and development of theoretical STM images.

CALCULATION METHOD

Calculations were carried out using the CRYSTAL98 suite of programs.13  The

package approximates true wavefunctions through an expansion of crystalline orbitals

as a linear combination of atomic orbitals.  Both Hartree-Fock (HF) and density

functional (DFT) hamiltonians were employed.  Dirac-Slater exchange27 and Vosko-
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Wilk-Nusair28 correlation were employed in the DFT calculations.  The default

conversion tolerances for the program were used throughout.  Numerical integration

was performed using 25 symmetry irreducible k points.  For the denser k point net

used in evaluating the density matrix 81 symmetry irreducible k points were used.

This k-space sampling is sufficient to ensure convergence of the calculated properties.

The calculations were performed on the Linux Beowulf cluster maintained by the

South Australian Partnership for Advanced Computing.  All the calculations reported

here were performed using a serial compilation of the CRYSTAL98 code.13  Hence

these calculations are well within the realm of desktop computing.

An 86-4111(41D)G all-electron basis set developed by Doll and Harrison29

was used to describe the copper in the HF calculations.  For the DFT calculations, this

basis set was modified to incorporate a Hay and Wadt small core (HAYWSC)

pseudopotential in order to improve the computational time.  The use of small core

pseudopotentials is supported by previous studies in which similar pseudo-potentials

were found not to significantly affect the predicted surface geometry of rutile.30

In order to confirm these results, the lattice parameters for bulk crystalline

copper were optimised with respect to energy under DFT conditions using both

HAYWSC and all-electron basis sets.  The lattice parameter was also optimised under

HF conditions using the all-electron basis set.   The results are shown in Table 1 and

compared with the experimental value determined by Straumanis et al.31 The HF

results show poor agreement with experimental values, grossly overestimating the

lattice parameter.  The DFT results agree well with experimental values, although the

known trend of LDA to “overbind” the system and underestimate lattice parameters is

exhibited.32  More importantly,  no significant loss of accuracy is observed with the

use of Hay and Wadt small-core pseudopotentials.  These results agree with the
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observations of Doll and Harrison, who reported accurate simulation of the band

structure, structural and cohesive properties of copper using LDA, but poor accuracy

at the HF level of theory.29  It is well known that the d-bands are not well reproduced

in HF calculations of Cu, where the bands are predicted to lie well below the fermi

level. 

To simulate the Cu(110) surface the appropriate slab was cut from bulk Cu.

Slabs of 2, 3 and 4 atomic layers were used in order to investigate thickness effects;

this is discussed in more detail below. 

Previous studies suggest that benzene adsorbs parallel to the Cu(110) surface.

In addition, we may assume that adsorption of benzene occurs at sites of maximum

symmetry. Four possible adsorption sites for benzene on the Cu(110) surface have

therefore been investigated.  At each of these sites, benzene may adsorb to the surface

in two different orientations, each at an angle of 90° to the other.  A total of eight

possible adsorption orientations are therefore used, as presented in Fig. 1.    

The benzene molecule was described using 6-21G* all-electron basis sets.  At

both the HF and DFT level this basis set predicts bond lengths to better than 2%.

Prior to all adsorption calculations, the bond lengths of gas-phase benzene were

optimised with respect to the total energy.  A supercell of the Cu(110) slab was

employed in order to allow sufficient separation of adsorbed benzene molecules such

that intermolecular effects are negligible. Separation between adjacent absorbed

molecules was maintained in the order of 5 Å in order to prevent  intermolecular

interactions.  Calculations were performed in which benzene was positioned above the

Cu(110) 3-layered slab in each of the proposed orientations, and the optimum

adsorption height was determined in terms of total system energy. Subsequent

calculations of the binding energy of adsorbed benzene in each of the orientations at
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the optimum adsorption heights revealed the preferred adsorption orientation of

benzene on the Cu(110) surface.  Calculations of the binding energy of adsorbed

benzene in the preferred orientations were then performed using 2- and 4-layer

Cu(110) slabs in order to investigate the effects of slab thickness on adsorption

energies.  Similar calculations were subsequently performed in which benzene in the

H-flip conformation proposed by Pettersson and co-workers24,25 was positioned above

the Cu(110) 4-layered slab in each of the proposed orientations, and the optimum

adsorption height was determined in terms of total system energy.

The binding energy calculations were performed using the counterpoise

method to account for basis set superposition errors.  This was found to have a

dramatic effect on calculated binding energies and is clearly required in order to

generate reliable values.  The imbalance between basis set size describing the

substrate compared with the benzene molecule could be responsible for this.  A large

basis set on the Cu slab is required in order to generate a reasonable electronic

structure.29  The relatively small basis set used to describe the benzene represents a

compromise between computational time and accuracy.  No account is taken of

surface relaxation of the Cu either before or after absorption.  We would expect such

effects to be relatively small, and experimental STM images support the view that

there is little surface reconstruction, although relaxation of the interlayer spacing near

the surface may still play a small role.

Absorption chemistry was investigated by generating electron density

difference plots for the optimised geometries by subtracting electron density maps of

isolated benzene and copper from an electron density plot of the combine surface-

adsorbate system.  Simulated STM images of preferred orientations were calculated
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using CRYSTAL9813 through the method described by Tersoff and Hamann,33 and

comparisons made with published experimental results.

RESULTS AND DISCUSSION

A. Cu(110) Surface

As a first test of the effects of slab thickness optimised lattice parameters for

Cu (110) slabs of various thicknesses are shown in table 2.  In these calculations the

slab is built from a single unit cell and hence one parameter, the lattice constant of the

FCC cell from which the slab is built, is optimised.  Although in some senses this is

unrealistic given that this is not a bulk crystal, one might nevertheless expect the

optimised lattice constant to approach the bulk value as the slab becomes thicker.

Examination of table 2 reveals that the DFT results generally give values below the

bulk lattice parameter, however the value appears to converge towards the bulk value

with increasing slab thickness.  This trend is not observed in the HF calculations, with

the lattice parameter being both under- and overestimated. The lack of a consistent

trend might suggest oscillations in the properties of the slabs calculated at the HF

level, while the observed trend in the DFT calculations suggest a degree of confidence

in this method.

As a further test of thickness effects we have calculated STM images of the Cu

(110) surface calculated with DFT and the HAYWSC basis set and compared these

with experimental images from Doering et al.20,21  Experiment and theory were

normalized by fixing the ratio of peak height to trough across the rows of surface

atoms for all images to same value.  We can then compare electron densities along the

rows of surface atoms, as shown in figure 2.  Results for only the 2 and 3 layer slabs

are shown in figure 2, 4 and 5 layer slabs give very similar results.  Agreement in the
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intensity variation between experiment and theory for the two slabs is reasonable, the

pitch of electron density variation does, however, vary between the different slab

thickness because of the different values for the optimised lattice parameter. These

observations again give us confidence that the DFT/HAYWSC calculation is

performing well and that 2 or 3 layer slabs represent a suitable compromise between

computational efficiency and accuracy.

From the experimental image20,21 the separation between surface layer copper

atoms within the (110) rows is approximately 2.5 angstroms, giving a lattice

parameter of approximately 3.5 angstroms. This value compares well with the bulk

lattice parameter of 3.615 angstroms and suggests that no significant relaxation of the

Cu(110) surface in the plane of the surface occurs.  This provides evidence that using

the bulk crystal structure in constructing our slabs is appropriate. 

B. Adsorption Energetics

Calculated adsorption energetics, including adsorption energy and geometry

will be effected by basis set superposition errors (BSSE),  slab thickness, through slab

interactions and relaxation of the surface / molecule upon adsorption.  We have

investigated the relative contribution each of these makes to our predicted values.

Without counterpoise corrections, both the HF and DFT calculations lead to bound

systems (for most adsorption geometries), with HF giving values of the order of 10 kJ

mol-1 and DFT around 250 kJ mol-1.  The HF values seem reasonable, but it is

difficult to explain why HF and DFT give such different binding energies and DFT

gives bond strength more typical of covalent systems.  Inclusion of BSSE leads

unbound systems at HF and bound systems (for some geometries) at DFT with values

up to 100 kJ mol-1.  BSSE corrections are probably the most important factor in
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obtaining reasonable adsorption energetics, particularly in cases such as ours in which

we are forced to use very imbalanced basis sets.  It is also clear that the inclusion of

electron correlation (in our case through DFT methods) is important to describe this

system reasonably well.

Adsorption energies and  heights for one of the proposed adsorption sites, site

1b in figure 1,  as a function of slab thickness at the DFT level are presented in table

3.  The adsorption site chosen is one of the more stable configurations.  Adsorption

heights are relatively insensitive while energies oscillate with slab thickness showing

no obvious convergence even up to 4 layers.  This may well be the limiting factor in

our predicted binding energies, and clearly we need to use a slab that is as thick as

possible,  that is 4 layers in the present case.  We have also performed calculations in

which molecules are adsorbed onto both sides or one side of the slab.  For three or

four layer slab there is little difference indicating through slab interactions are

relatively small.   We therefore perform our calculations with adsorption on both sides

as this leads to increased symmetry and consequently an improvement in computation

time. 

Finally we have investigated the effects of relaxation of the molecule upon

adsorption as suggested by Pettersson et al.24  Here the H atoms are pushed away

from the Cu surface and there is slight distortion of the C-C bond lengths; the so-

called H-flip geometry.   Using the optimised benzene geometry from Pettersson et

al.24 we obtain, for the 1b site and a 4 layer slab, an adsorption height of 2.053 Å and

energy of -100.7 kJ mol-1. Comparing this with the value in table 3 in which the

benzene has not been relaxed upon adsorption, we see that height decreases slightly,

while adsorption energy more than doubles.  This is expected, as the tilting of the
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hydrogen atoms away from the surface allows the carbon atoms to get closer to

surface copper atoms and form a stronger bond.

Table 4 presents predicted values for the adsorption height and binding energy

for each of our proposed adsorption sites.  These are all DFT calculations using a 4

layer slab and the H-flip benzene geometry with BSSE corrections. The results fall

into two groups: sites 2a, 2b, 3a and 3b are either unbound or only weakly bound, and

1a, 1b, 4a and 4b are relatively strongly bound.  The first four adsorption sites

position the benzene molecule directly on top of the row of surface Cu atoms,

whereas in the latter four it is positioned between the rows.  One would expect these

latter bridging sites to be more stable.  Even though we calculate an overall positive

binding energy for the 2b site there still appears an energy minimum around an

adsorption height of approximately 2 Å.  Either there is a small energy barrier to

desorption from this site or the positive overall binding energy is an artefact of the

calculation.  The latter might indicate that we cannot determine binding energies to a

reliability better than about 11 kJ mol-1.  Adsorption energies for the four favoured

sites are similar at approximately 100 kJ mol-1 and agree well with the value of 99 kJ

mol-1 derived from the TPD data of Lomas et al.14  The calculated value from

Petersson et al.24 is 58 kJ mol-1.  The largest adsorption energy was calculated for

orientation 4a, in which the benzene ring adopts a bridging position between surface

layer rows centred on the surface layer atoms.  Experimental STM studies by Doering

and co-workers21 have also proposed that this is the adsorption orientation, although

as we have discussed earlier imaging of benzene on Cu is not trivial.   In addition the

accuracy of our calculation may not be sufficient to distinguish this site from the other

three favoured sites, namely 1a, 1b and 4b.  Certainly these results indicate that



14

adsorption of  benzene between the rows of copper surface atoms is preferred over

adsorption on top of the surface rows.

C. Adsorption Chemistry

In order to investigate the bond formed between benzene and the Cu(110)

surface, electron density difference maps have been calculated for the preferred

adsorption geometry.  The maps were prepared using the 4 layer Cu(110) slab

calculated at the DFT level of theory.  Looking at figure 3(a) we see that electron

density increases between the benzene ring and copper surface around the 4 carbon

atoms in close proximity to the surface copper atoms.  The other two carbon atoms

which lie between the surface Cu rows show a small decrease in electron density. 

Charge redistribution due to bonding between the benzene ring and surface is

also evident in figure 3(b).  Here the density difference is plotted in a plane

perpendicular to the surface through the two carbon atoms closest to the surface Cu

rows.  Electron density about the positions of the 2 carbon atoms appears to have been

pulled into the region between these atoms and the copper surface, while smaller yet

similar variations may be observed at the positions of the surface layer copper atoms. 

For a perpendicular plane through the other two carbon atoms (figure 3(c)),

those sitting between the copper surface rows, the redistribution of density is smaller

and occurs between the carbon atoms themselves rather than toward the copper

substrate.  Change of electron density in the sub-surface layer of Cu atoms is also

evident in these plots. Two layers of atoms from the substrate participate in the

bonding process when benzene adsorbs.  This is perhaps not surprising given the

delocalised nature of the electrons in the metallic copper substrate, and demonstrates

why (at least) 4 layer slabs are necessary to describe the adsorption process.
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These density difference diagrams suggest that adsorption occurs primarily

through those carbon atoms which are in close proximity to surface layer copper

atoms.  Bonding in this system is conventionally described in terms of the DCD

model of adsorption proposed by Dewar,34 Chatt and Duncanson35 where electrons are

donated from the molecular π-orbitals into the metal and back-donated from the metal

to the antibonding orbitals of benzene.  The noticeable increase in density between the

benzene ring and copper surface observed in figures 3(a) and (b) can be interpreted in

terms of donation from the π-orbitals into the metal while the smaller redistribution

between the carbon atoms themselves in figure 3(c) results from back-donation into

the anti-bonding orbitals of benzene.  Electronic bands derived from the 3d as well as

4s orbitals on the copper atoms of the substrate can contribute to the adsorption

chemistry provided they lie reasonably close to the fermi energy and therefore overlap

with orbitals on the adsorbate.  This is one of the reasons why the DFT method gives

a better description of the adsorption energetics compared with HF: it is well known

that HF predicts 3d bands in copper which lie too far below the fermi level.29

The dominant bonding interaction takes place between carbon atoms of

benzene and surface layer copper atoms that are arranged in close proximity.

Examination of the orientations proposed in figure 1 reveals that all but the 2a and 2b

orientations optimise the distance between C atoms and surface Cu atoms. With this

rationale, however, it is difficult to explain why orientations 3a and 3b are

significantly less energetically favourable than the similar orientations 4a and 4b.  

D. Simulated STM Images

A theoretical STM image of benzene in the H-flip geometry adsorbed on the

Cu-110 surface in orientation 4a is presented in figure 4. This image simulates a 40
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mV bias between surface and tip and a tip height of 2.5 Å, representing conditions

consistent with the experimental images of Doering et al.20,21  Examination of this

image in conjunction with figure 1 reveals a slightly lower intensity, corresponding to

a lower electron density, at the positions of those carbon atoms which lie in close

proximity to surface layer copper atoms.  Distortion of the benzene ring upon

adsorption modelled in our calculation is also evident as a slight elongation of the ring

along one axis.

A cross section of the theoretical STM image showing the variation in electron

density across the middle of benzene molecule is shown in figure 5(a).  The benzene

ring is clearly resolved in this cross-section with high intensity centred on the carbon

frame and a significant drop in the region inside the ring.  Under these imaging

conditions figure 5(a) indicates that the width of the STM image of the molecule will

be approximately 5 Å.

Although the experimental STM image of Doering et al.20,21  also shows

distortion of the benzene ring along one axis it is more pronounced than in our

simulated image.  We have also derived cross-sections through the benzene ring from

this experimental data to compare with our simulation in figure 5(a).  This cross

section was determined by bisecting the oval-shaped feature of the experimental

image along its longest axis and is shown in figure 5(b).  No decrease in electron

density is observed in the centre of the cross section corresponding to the centre of the

benzene adsorbate.  In addition, the width of the cross-section is approximately 11 Å.

This value is comparable to the dimensions of 2 complete benzene molecules.  This

result might suggest that the experimental image is the result of a benzene dimer.

The experimental image of benzene on the Cu(110) surface presented by

Doering et al.20,21 is extremely demanding to obtain, requiring careful control of the
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imaging conditions and is consequently not trivial to interpret.  It does suggest that

benzene adopts a bridging adsorption site between two surface layer copper rows.  It

does not, however, provide a clear indication of the lateral position of the benzene

ring along these rows.  Our simulated images are consistent with these findings.

CONCLUSION

We have reported ab initio calculations of the adsorption of benzene

molecules onto the Cu(110) surface using a periodic linear combination of atomic

orbitals approximation using HF and  DFT methods.  Benzene coverage is well below

single monolayer so that adsorbate-adsorbate interactions are negligible.  This

approach attempts to describe the substrate surface reliably by modelling it as an

essentially infinite slab in two dimensions, compared with cluster calculations where a

small section of the surface is modelled.  It has the attraction of requiring modest

computing facilities.  We  have attempted to identify the preferred adsorption site,

calculate the adsorption energy and ultimately simulate an STM image of this system

under imaging conditions consistent with experiment.  However, it must be noted that

our method does not take account of tip-surface interactions in simulation of the STM

images. 

Overall, our predicted energetics and preferred adsorption site compare well

with the available experimental evidence and give us confidence in our simulated

STM images.  We find that basis set superposition errors (BSSE) have a profound

effect upon the calculated adsorption energies.  Without the inclusion of BSSE

corrections the system is bound at both the HF and DFT levels with DFT binding
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energies more consistent with formation of a covalent bond.  Inclusion of BSSE leads

to generally positive HF binding energies at the HF level and DFT values consistent

with values derived from temperature programmed desorption (TPD) measurements.

Copper slabs of 2 to 4 atomic layers have been used and indicate that at least 4

layers are required for reasonable representation of the substrate.  Relaxation of the

benzene molecule upon adsorption has also been investigated and show that rotation

of the hydrogen atoms away from the surface are an important consideration and

increase the calculated binding energy by about a factor of two.  We have not

attempted to model relaxation of the copper surface and expect this to play a less

significant role.  This conclusion is supported by experimental evidence.

Taking all of these factors into account we predict a binding energy of  106 kJ

mol-1. Previous cluster calculations give a value of 58 kJ mol-1,24 while a value of 99

kJ mol-1 is reported from experimental TPD value.14   We find that the preferred

adsorption site is where the benzene adsorbs at a bridging position between the rows

of copper surface atoms rather than in the atop position on top of the copper rows.

Although it is difficult for us to unambiguously identify the exact adsorption

orientation, we find the largest binding energy for the a bridging position with the

benzene ring centred with respect to the surface layer atoms.  In their experimental

STM images Doering and co-workers21 reach the same conclusion.

Comparing our simulated STM images with the experiments of Doering et

al.21 we find that the calculations give images which are smaller in lateral spread by

about a factor of two.  This result may be explained by the experiment imaging more

than a single benzene molecule, possibly a benzene dimer.

Overall the results presented in this paper demonstrate the utility  of the

CRYSTAL98 software package and modest computing resources as providing an
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effective method for predicting STM images.  Attention, however, must be paid to a

number of aspects of the calculation, particularly the effects of BSSE  and the use of

Hamiltonians which attempt to describe electron correlation, i.e. density functional

methods as opposed to Hartree-Fock.   Consideration of molecular relaxation upon

adsorption and slab thickness are also required to generate reliable binding energies.

The latter point deserves further attention as our results still do not show that 4 layers

is sufficient to have reached convergence of calculated properties.  The theoretical

methods employed offer promise for the interpretation of complex experimental STM

images of molecules adsorbed on metallic surfaces.
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TABLE 1.  Comparison of All-Electron and HAYWSC optimised lattice parameters

for bulk crystalline copper with the experimental value.  Numbers in parentheses

indicate percent error with respect to the experimental bulk lattice parameter.

Lattice Parameter(Å)

HF All-Electron Basis Set 4.015 (11.07)

DFT All-Electron Basis Set 3.531 (2.33)

DFT HAYWSC Basis Set 3.514 (2.79)

Experimental Value 3.615
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TABLE 2.  Comparison of optimised lattice parameters for Cu (110) slabs.  Slab

thickness is given as the number of atomic layers.  Numbers in parentheses represent

the percent error with respect to the experimental bulk value.

Slab Thickness HF/All-Electron Basis Set(Å) DFT/HAYWSC Basis Set(Å)

2 3.720(2.90) 3.304(8.61)

3 3.804(5.24) 3.384(6.38)

4 3.906(8.05) 3.420(5.38)

5 3.893(7.70) 3.443(4.76)
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TABLE 3. Comparison of adsorption energies and adsorption heights of benzene on

the Cu(110) surface in orientation 1b calculated at the DFT level of theory using slabs

of varying thickness.  Adsorption height refers to the height of the benzene ring above

the surface layer Cu atoms.

Slab Thickness (Layers) Adsorption Energy (kJ mol-1) Adsorption Height (Å)

2 -49.1 2.146

3 -25.6 2.154

4 -40.7 2.150
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TABLE 4.  Comparison of adsorption energies and adsorption heights of benzene in

the H-flip conformation proposed by Pettersson et al.24 on the Cu(110) surface in each

of the eight proposed orientations calculated at the DFT level of theory.  A 4 layer

slab is implemented.  Adsorption height refers to the height of the benzene ring above

the surface layer Cu atoms.

Orientation Adsorption Energy (kJ mol-1) Adsorption Height (Å)

1a -106.5 2.016

1b -100.7 2.053

2a -7.6 2.015

2b 11.8 2.119

3a -28.0 2.085

3b -26.0 2.094

4a -109.1 2.003

4b -98.7 2.082
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Figure 1.  Positions of the eight proposed possible adsorption orientations of benzene

on the Cu (110) surface.  Grey disks represent upper layer Cu atoms, while open

circles represent second layer Cu atoms.

Figure 2.  Comparison of a cross section derived from an experimental STM image of

the Cu (110) surface from the work of Doering et al.20,21 and cross sections showing

the electron density along a row of surface atoms for the 2 and 3 layer Cu (110) slabs

calculated using DFT and an HAYWSC basis set.  The y-axes of all plots have been

internally standardised to enable direct comparison. 

Figure 3.   Density difference plots of benzene adsorbed in orientation 4a on a 4-layer

Cu(110) surface calculated using the DFT level of theory.  (a) in a plane midway

between the benzene ring and surface Cu atoms parallel to the surface, (b)

perpendicular to the surface through C atom positioned above a row of surface Cu

atoms, and (c) perpendicular to the surface through the two C atoms positioned

between the rows of surface Cu atoms.  Arrows on diagrams indicate the orientation

of the plane.

Figure 4.  Theoretical STM image of H-flip benzene adsorbed on the Cu-110 surface

in orientation 4a.  The image was obtained using conditions designed to simulate a

40mV negative bias on the sample, as in the work of Doering et al.20,21 A tip height of

2.5 Å and a scanning area of 7 Å by 7 Å was simulated.

Figure 5. (a) Cross section derived from the image presented in figure 4 showing the

electron density across the  benzene molecule.  Inset shows the position of the cross
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section. (b) Cross section derived from an experimental STM image of benzene

adsorbed on a Cu-110 surface from the work of Doering et al.20,21
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B. L. Rogers et al., Fig. 1.
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B. L. Rogers et al., Fig. 2.
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B. L. Rogers et al., Fig. 3.
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B. L. Rogers et al., Fig. 4.



35

B. L. Rogers et al., Fig. 5.
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