

Characterization of nanometer-sized VO₂ nanoparticles prepared by an aqueous route

H. Bai^{a,b}, M. Berkahn^a and M.B. Cortie^a

^aInstitute for Nanoscale Technology, University of Technology Sydney, NSW 2007, Australia ^bon leave from Nanjing University of Science and Technology, Nanjing, 210094, China

We describe a convenient aqueous route to prepare VO_2 , based on the reductive precipitation of vanadium dioxide VO_2 from a vanadate solution. The effect of the reaction conditions is systematically studied, and a protocol to optimize the production of VO_2 while minimizing the appearance of other compounds is presented. The products were characterized using calorimetry, X-ray diffraction and high-resolution scanning electron microscopy.

1. Introduction

Vanadium oxides have attracted attention because of their potential or actual applications as catalysts, chemical sensors, electrodes for lithium batteries, and as the active components of various electrical and optical devices[1, 2]. Vanadium dioxide (VO₂) is particularly interesting as some forms of it undergo a reversible metal/insulator phase transition at ~67°C with a large attendant change in electrical and optical properties[3]. This has suggested its application as, for example, a 'smart' window coating, or in optical switches [2, 4]. VO₂ itself has at least six known polymorphs and some hydrated $VO_2.nH_2O$ compounds are also known[5, 6]; however it is the metastable monoclinic VO₂-B, tetragonal VO₂-R, and monoclinic VO₂-M₁ phases that are most relevant in the present context. VO₂-R is metallic and has the rutile structure, while VO₂-M₁ is a semi-conductor, with a band gap of about 0.6 eV[7]. The latter two polymorphs are related to one another by a reversible, displacive phase transformation at about 67°C, with VO₂-R being stable above that temperature and VO₂-M₁ below it. There are several methods by which VO₂-M₁ or VO₂-R can be produced, including physical vapour deposition, ion implantation, chemical vapour deposition, sol-gel processing and lyphilization of suitable precursor solutions. Commonly, however, VO₂-B is first prepared by whatever means and then it is converted to VO₂-R by heat treatment in an inert environment and at a temperature in excess of 330°C. We sought a method suitable for producing VO₂ in relatively large quantities. Our protocol invokes the reductive-precipitation of VO2.nH2O from a vanadate solution, and is based on a process apparently first disclosed by two groups in 1998[1, 8]. Calcination of the VO₂.nH₂O converts it into VO₂-R. We use ammonium metavanadate (NH₄VO₃) solution as our source of V, and KBH₄ as reductant.

2. Experimental

 NH_4VO_3 was purchased from Ajax Chemicals Ltd, Sydney, Australia. KBH₄ was purchased from Sigma Chemical Co., and HCl (37%) was obtained from Labscan Asia Co., Ltd.. All reagents were used without further purification. The KBH₄ solution was freshly produced, as needed, by dissolving the compound in ice-cold MilliQ water. The temperature must be kept low to prevent hydrolysis of borohydride ion. Concentrated HCl was first added dropwise into between 10 to 50 ml of the NH_4VO_3 solution to adjust its pH to a selected value between 4.0 and 6.5. The reducing power of KBH₄ increases with the decreasing of pH value of the medium suggesting that it might be more effective at the lower end of the pH range[1].

WW

The reduction reaction was then carried out at the desired pH by slowly adding the KBH₄ solution while continuing the dropwise additions of HCl and simultaneously stirring. At the end of the reduction reaction, the brown-black precipitate of $VO_2.nH_2O$ was collected by filtration, washed several times with a mixture of water and methanol, and dried at about 90 °C in an air oven. The dry solid is amorphous or at best nanocrystalline at this stage, in agreement with product produced in other wet chemical reductive schemes, e.g.[1]. This phase, in turn, can be converted to VO_2 -R by heating at temperatures greater than ~330°C in an inert environment[1, 9] In the present work we used an environment of pure argon or nitrogen. Finally, on reverting to room temperature the VO_2 -R transformed to VO_2 -M₁ by the metal-to-insulator transition.

The as-synthesized samples were characterised by X-ray diffraction (XRD, Siemens D5000 Diffractometer) with Cu K α radiation (λ =0.15406 nm). Scanning electron microscopy (SEM) images were taken with a Zeiss Supra 55VP SEM. A differential scanning calorimeter (DSC 2920, TA Instruments Inc., U.S.A.) was employed to test the phase transformation. X-ray diffraction patterns were calculated from the published lattice data using the program Crystallographica (produced by Oxford Cryosystems Ltd, of the United Kingdom).

3. Results

After systematic investigation, we found that VO_2 - M_1 could be reliably produced if the pH of the reaction was held at about 4.2, the ratio of KBH₄ to NH₄VO₃ was 5, the temperature of the reaction at about 20 to 25°C, and calcination was carried out at 600°C.

Fig. 1 XRD patterns of VO₂-M₁ (blue) at room temperature and VO₂-R (red) at ~80°C, also showing standard peak positions (coloured lines) for each phase.

Fig. 1 shows the X-ray diffraction patterns for such 'optimum' material, which was converted to VO₂-R (JCPDS 73-2362) by heat treatment and cycled between VO₂-M₁ (JCPDS 44-0252) and VO₂-R on a hot stage. Under the optimum conditions the resulting material is almost pure, and has an XRD pattern nearly identical to the standards. The remaining small peaks in this case match the pattern of V₆O₁₃, an oxide of mixed valence. Fig. 2 shows that the diameter of the VO₂-M₁ particles is about 100 nm, which is about twice the diameter of the particles of precursor material, as dried in air oven at 85°C for 1 h. The result demonstrates that crystallization of the VO₂-R is accompanied by particle coarsening. In Fig. 3 we examine the metal-insulator transition in more detail. In this case the VO₂-M₁ was heated from room temperature to 120 °C at 3°C/min under a flowing air atmosphere, and then back to

room temperature. The insulator-to-metal transition occurred at 66°C, and the metal-to-insulator transition at 61°C.

Fig.2 SEM photos of VO₂ nano-particles produced as described in the text. (a) Dried in air oven at 85°C for 1h. (b) Dried in tube oven at 600°C under flow of argon for 20h.

Fig. 3 DSC curve showing the reversible VO_2 - $M_1 \leftrightarrow VO_2$ -R phase transformation in the present material. There is a hysteresis of 5°C in the reaction.

Conclusions

Nano-crystalline VO_2 -M₁ was successfully synthesized by a convenient process involving aqueous reductive-precipitation at room temperature followed by calcination. If the pH and ratio of KBH₄ to NH₄VO₃ during the precipitation reaction are both kept in the range 4~5, and if the subsequent annealing temperature is 600°C, then the synthesized nano-crystals of VO₂-M₁ are about 100 nm in size. The transition temperature of the material produced was in the range 61 to 66°C.

References

- [1] C. F. Tsang, J. Kim and A. Manthiram, J. Mater. Chem. 8, 425 (1998).
- [2] M. Soltani, M. Chaker, E. Haddad and R. Kruzelesky, *Measurement Science and Technology* **17**, 1052 (2006).
- [3] F.J. Morin, *Phys. Rev. Lett* **3**, 34 (1959).
- [4] T.D. Manning and I.P. Parkin, Journal of Materials Chemistry 14, 2554 (2004).
- [5] C. Leroux and G. Nihoul, *Physical Rev. B* 57, 5111 (1998).
- [6] Z. Gui, R. Fan, X.H. Chen and Y.C. Wu, J. Solid State Chemistry 157, 250 (2001).
- [7] S. Biermann, A. Poteryaev, A.I. Lichtenstein and A. Georges, *Phys. Rev. Lett* 94, 026404 (2005).
- [8] V. Manivannan and J.B. Goodenough, *Materials Research Bulletin* **33**, 1353–1357 (1998).
- [9] Z. Gui, R. Fan, W. Mo, X. Chen, L. Yang, S. Zhang, Y. Hu, Z. Wang and W. Fan, *Chem. Mater.* 14, 5053 (2002).