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Abstract

Use of an unconventional sensor for mapping
the remaining wall thickness of a pipe is pre-
sented in this paper. This is achieved through
the development of a sensor model relating the
measurements from a Magnetic Flux Leakage
(MFL) sensor to the environment geometry.
Conventional sensors, such as laser-range find-
ers commonly used in the robotic community
are not able to infer thickness profiles of ferro-
magnetic structures such as water pipes when
the surface is covered with corrosion products.
Sensors based on electromagnetic principles or
ultrasound are the methods of choice in such
situations to estimate the extent of corrosion
and predict eventual failure. The general re-
lationship between readings from electromag-
netic sensors and the environment geometry is
governed by a set of partial differential equa-
tions (Maxwells equations). However, in the
case of an MFL sensor, it is demonstrated that
a linear combination of the thickness profiles
can be used to adequately model the sensor
signal. Parameters associated with the sensor
model are obtained using a two-dimensional fi-
nite element simulations. Extensive simulation
results are presented to validate the proposed
method by estimating a remaining wall thick-
ness map of a realistic pipe.

1 Introduction

Non Destructive Evaluation (NDE) has been a focus of
the researchers for a long time. The industrial need for
reliable asset inspection techniques has grown with the
complexity of the infrastructure and increased costs to
maintain them. Difficulty in accessing the assets and re-
lated occupational health and safety issues have created
an apparent demand for unmanned and remote condi-
tion assessment. With the advancement of robotic tech-
nologies, now it is evident to apply robotic solutions to
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Figure 1: Representation of an in-line MFL inspection
robot.

the ever increasing condition assessment demand. Mis-
sion critical industries such as petrochemical and water
supplies require reliable in-service inspection where the
service cannot be terminated for regular inspection pur-
poses. In-line robotic inspection tools have been used for
this purposes of collecting crucial data while travelling
inside the assets.

There is a wide range of NDE sensing techniques cur-
rently used in the industry for condition assessment of
metallic infrastructure. To name a few, Remote Field
Eddy Currents (RFEC), Pulsed Eddy Currents (PEC),
Ultrasonic Technology (UT) and MFL are such tech-
nologies. MFL is widely used as in-line pigging robots
due to its robustness and accuracy [Khodayari Rostam-
abad et al., 2009]. In MFL technology, the ferromagnetic
medium (i.e. the pipe wall) is magnetically saturated us-
ing a strong magnetic excitation. Both electro-magnets,
as well as strong permanent magnets, are being used
in practice for this purpose. Once the pipe walls are
saturated, the flux lines are tightly packed within the
structure while the magnetic field strength in the sur-
rounding environment remain near zero. When there is
a defect causing a reduction in the remaining wall thick-
ness, there is leakage flux that can be measured using a



Hall effect or a Giant Magnetoresistance (GMR) sensor
placed near the pipe surface. These sensor measurements
can be used to estimate the thickness of the pipe wall.
The MFL tool can be designed as an in-line tool or as an
external scanning tool, however, this paper is focussed
on its use as an in-line robotic inspection tool (Figure 1).

In the water industry, most of the ferromagnetic pipes
are factory cement lined. These cement lines isolate the
pipe walls from the water and contribute heavily to pro-
tect it from corrosion. Moreover, the internal cement
lining provides an added advantage for the in-line robots
to traverse smooth and to maintain constant sensor lift-
off except for some exceptional cases where the cement
lining is damaged or tuberculation present in the pipes.
In these cases, pipes need to be pre-cleaned to use the in-
line robots. The external walls are prone to heavy corro-
sion due to several factors including exposure to soil and
moisture conditions over a long period of time. There-
fore, it is reasonable to assume that the pipe wall losses
are mainly due to external corrosion. In this work, we
made an attempt to estimate the remaining wall thick-
ness map of a pipe given the MFL signals measured us-
ing an in-line robotic inspection tool traversing along the
pipe.

The remaining wall thickness of the pipe surfaces are
related to the measured MFL signal. The critical dif-
ference when compared with traditional robotic sensors
such as laser range finders or sonars is that while the
sensor reading depends on the sensor location and en-
vironment geometry, the mapping from sensor space to
Euclidean space is indirect, typically governed by the un-
derlying physics expressed as a set of partial differential
equations (Maxwell equations). Therefore information
gathered from these sensors does not lend itself easily
to reconstructing the environment geometry or localis-
ing the sensor or performing SLAM using existing tech-
niques for robotic perception. Further, sensor lift-off,
material properties and excitation intensity also affect
the measurements. Hence inferring the remaining wall
thickness map of the pipe from the signal information is
a challenging task, unless the pipe geometry is relatively
simple. This significant gap in the current knowledge is
key to this paper.

Estimating the pipe wall profile from the MFL sig-
nal corresponds to solving the inverse problem. Many
researches attempted to solve the inverse problem us-
ing analytical models [Minkov et al., 2002; Mandache
and Clapham, 2003] as well as machine learning meth-
ods. Artificial neural networks [Carvalho et al., 2006]
and Gaussian Processes [Wijerathna et al., 2013] are re-
ported few examples. Most of these approaches use data-
driven techniques and do not recover the full thickness
profile with few exceptions where iterative solvers are
used [Wijerathna et al., 2015]. However, current findings

in water pipe condition assessment [Rathnayaka et al.,
2016) suggest that knowledge of patches or continuous
thickness profiles are very useful in estimating the re-
maining life of the pipes. In this work, to enable simple
hardware design, we assume a simple exciter arrange-
ment along with the hall sensors in the middle of the
exciters in a stationary scenario. The aim of this work is
to formulate the forward and inverse MFL sensor model
using a linear least-squares system and recover the en-
tire remaining wall thickness profile of the pipe. As the
data is associated with the odometry, the defects can be
localised.

The rest of the paper unfolds as follows. Section 2
describes the behaviour of the MFL signal along with
an analytical model from literature. The Finite Element
Analysis (FEA) model is introduced next followed by the
validations. The proposed linear least squares forward
model and inverse sensor models are described next. Sec-
tion 3 demonstrates the results evaluation of the forward
and inverse models followed by a discussion of the per-
formance and the limitations of the proposed method.

2 Sensor model for MFL

The forward problem of MFL phenomenon consists of
mapping the cross-sectional pipe wall thickness to the
Hall Effect sensor measurement through a sensor model.
On the other hand, the inverse problem consists of find-
ing the model that maps the sensor measurements to the
cross-sectional remaining pipe wall thickness. The main
goal is to solve the inverse problem, however solving the
forward model gives a good insight into the behaviour
of the sensory system. The forward model can be used
as the basis to formulate the inverse model. Before pre-
senting the proposed forward and inverse models, a basic
analytical model will be presented to describe the MFL
signal behaviour. A reasonably wide Region of Interest
(ROI) has been selected to understand how the defect ge-
ometry affects sensor measurements near the surround-
ing area. Quantitative sophisticated models and anal-
ysis about the MFL signal behaviour are broadly dis-
cussed in literature [Uetake and Saito, ; Forster, 1986;
Ireland and Torres, 2006], however, in this work axial
component of the leakage flux alone is analysed.

2.1 Analytical Model

Following derivation assumes that a Dipolar Magnetic
Charge (DMC) is developed on the defect faces inter-
secting the exciting magnetic field as a result of its
interaction with the excitation field and follows the
method as described in [Mandache and Clapham, 2003;
Edwards and Palmer, 1986]. Additionally, it is assumed
that the higher excitation intensity minimises the effects
of variations in magnetisation and permeability of the
material.



Figure 2: Dipolar magnetic charge model for a cylindri-
cal defect.

A cylindrical defect with its axis aligned to Z direc-
tion has been considered as schematically represented in
Figure 2. The magnetic flux flow around the defect cre-
ates a DMC on the side walls of the cylinder. The test
substance is aligned to the xy plane with the top surface
at z = 0. The depth of the flat bottom defect is rep-
resented by b;. The MFL signal is measured above the
test substance i.e z > 0.

x < 0 internal area of the cylindrical defect wall devel-
ops a positive magnetic charge density, +o, while z > 0
area develops a negative magnetic charge density,—o.
The angle 0, is measured from the positive y direction.
The differential element of charge at the defect, dp;, has
coordinates (R;sindy, Ricosfy, z1) and a charge propor-
tional to its area. The magnetic field (dH;) generated at
a distance ry by this element of charge dp; is given by

dp
dH, = ——r1. 1
YT g3t (1)
Now considering the positive polarity side H+ of the
defect and the axial component of the field at a distance
r14 are given by,
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where,

ry = \/(ac + Risinby)” + (Ricos01)” + (h— z1)°.  (3)

Similarly, the negative polarity side leakage field H~
of the defect is given by,
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The y component of the leakage field, dH;‘ , vanishes
due to the symmetry. The Equation 2 is integrated over

61 from 0 to 7 and over z from —bl (b>0) to 0 to
determine the total field at r14 due to the positively
polarised side of the defect, which leads to
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By using the same integration for the negatively po-
larised side H of the cylinder, the total normal leakage
field along the x axis profile is given by,

dH, = dH} +dH; +dHp(x,y, 2). (6)

In practical settings, there can be a non-zero MFL
value appearing due to the direct coupling of the flux
generated by the exciter coils to the sensor. Similar
to the Equation (1), this field is also a function of the
distance to the exciter poles. Therefore, a dHp(z,y, 2)
value is introduced to the equation to compensate for
this effect.

2.2 Finite Element Analysis Model

This section describes the FEA model developed us-
ing the commonly used COMSOL Multiphysics software.
Figure 3 shows the meshing of the FEA simulation model
created using the AC/DC module of COMSOL Multi-
physics software.

The FEA geometry is composed of four different com-
ponents: (1) the air box defining the limits of the FEA
scenario, (2) the exciter coil, which is modelled as an
equivalent rectangular permanent magnet, (3) the Hall-
effect sensor which is simplified to a point measurement
(e.g. it could simulate a hall effect sensor), and (4) the
pipe cross-sectional profile defined from pipe segments
extracted from the decommissioned pipeline.

The air and steel pipe material properties are defined
using built-in materials from the COMSOL library and
assumed to be homogeneous and isotropic. The material
properties used in the model are displayed in Table 1.
The conductivity of the air is set to a non-zero value to
avoid computational singularities.

Table 1: Properties of each material

material L & p[S/m]
Air 1 1 10
Steel B-Hcurve 1 1x107
Copper (coil) 1 1 5.99 x 107
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Figure 3: Free tetrahedral mesh in FEA simulation

In a practical setting, two coils are wound in a U-
shaped yoke. These coils are used to excite the test sub-
stance by injecting magnetic flux. The measurements
are taken as the tool moves along the pipe along the
axial direction. Following the general practice, the com-
putation time of the simulation set up was managed by
replacing the coils with equivalent permanent magnets.
Moreover, the 3D MFL tool was approximated with a
2D MFL model [Priewald et al., 2013].

By defining a fixed sensor position and linear depth
sampling, repeatability of the simulated measurements is
achieved. A free-tetrahedral mesh, consisting of 2.5 x 10*
elements is automatically generated by the simulation
software (Figure 3). The solution is extracted when the
“relative tolerance” of each consecutive iteration goes
below 0.1%.

Similar to the practical scenario described in Section 1,
the simulation model moves along the pipe collecting
MFL signal data. The simulation model is iteratively
used to generate the MFL signal as the tool travels along
the pipe.

First, the FEA model was used to simulate the simple
cylindrical defect scenario described in Section 2.1. Both
analytical and FEA models were in agreement with the
leakage flux distribution. This validates the FEA model
and will be used for generating data for the formulations
described in this work.

It is to be noted that the validated curve indicates a
positive flux leakage magnitude in the close proximity
to the defect. This implies that in a complex defect
scenario, not only the spot thickness value underneath
the sensor location but also the surrounding thickness
profile affects a given spot measurement.

2.3 Forward Sensor Model

First we formulate the forward sensor model as a func-
tion of the thickness values in the close proximity of the
travelling MFL tool. The following formulation follows
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Figure 4: Comparison of Analytical model and Simula-
tion

the framework proposed by [Falque et al., 2016]. The
ROI window of the ground truth profile moves as the
tool travels along the pipe. The process consists of find-
ing a function h such that h : ¢ — y, where y is the
sensor measurements and ¢ a set of thickness values that
describe the pipe’s cross-sectional geometry around the
MFL tool.

Lets first consider a point measurement. According to
the above observation, a point measurement is affected
by the surrounding cross-sectional profile.

k
yzyo—i—Zwiti—i—e. (7)
i=1

For a given sensor location with respect to the ex-
citer coils, the direct coupling field contributes equally
to all the measurements which are reflected by the o
constant term. ¢; is the i** thickness value of the piece-
wise constant thickness profile shown in Figure 1, and
w; is the unknown weight that relates to the location of
the thicknesses for a given measurement. Furthermore,
the noise € relates to the sensor noise and the overlooked
non-linearity. Given enough independent measurements,
the optimal values for the weights can be found using a
least square formulation.

Now consider a situation where m number of measure-
ments were taken where each measurement is associated
to k local discrete thickness that are regularly spaced
over the ROI. This can also be interpreted as moving
the tool inside the pipe simultaneously collecting MFL
data in a moving window. The moving window approxi-
mates the thickness profile as a piecewise-constant profile
as describe in Figure 1. We then formulate Equation (7)



in a matrix form to combine the m set of measurement
and thickness values together,

y=Tw+e, (8)

where the constant term yg, defined in Equation (7),
could be calculated as it depends on the excitation in-
tensity, number of turns in the coil, the electromagnetic
properties of the material and the sensor location with
respect to the exciter coils. It is, however, possible to es-
timate yg from the measurements themselves, therefore,
we include it into the vector of the model parameters w
which is defined as,

Yo
wy
w=| ! |. 9)
Wk—1
Wy

As discussed in Equation (7) , the piecewise thickness
values of the each ROI are contained in T

1 t11 ti2 t1g,
1 a1 too tok

T = : (10)
1 ton tma oo ok

and the sensor point measurements associated with each
ROI locations are contained in the y the vector

y=1.|- (11)

Ym

A wider ROI allows to select parameters 1 that mostly
reflects the magnetic field in a given ROI. As expected,
it is observed that w0 values near the sensor position
have an higher impact and reaches to 0 as the distance
from the Hall sensor increases. Therefore a reasonably
high ROI should be selected for better results. So the
optimisation can be summarised as

min [|| T -y [|*], (12)

with @ the weight parameters, which are calculated to
best fit y with least squares error. After calculating
the weight parameters w the forward solution can be
evaluated by back calculating the estimated ¢ as

§=Tb, (13)
h(T)

with the proposed model h(T).

2.4 Inverse Sensor Model

Given the parameters of the forward model (7), we now
consider the inverse problem. The goal is to find the
inverse function h~! such that h=' : y — ¢t. The
following derivation flows the formulation proposed by
[Falque et al., 2016]. As described in Section 2.2 a wide
window of thickness values in the ROI are contributing
to the measurement. Hence h cannot be simply inverted.
Instead, having the forward problem expressed as a lin-
ear model, allows formulating the inverse problem as a
pseudo-inverse closed-form solution.

The goal of this section is to solve the inverse sensor
model to come up with a cross-sectional thickness map
for the full scan length. To solve the inverse problem,
there should be more equations than the number of un-
known parameters.

In a typical inspection setting, the MFL tool travels
along the pipe collecting data associated with odometry.
Let’s assume during the inspection, a set of m discrete
measurements were collected at regular intervals along
the pipe. The pipeline geometry is approximated as a
piecewise-constant profile with n steps of average thick-
ness t.

Equation (7) can then be re-formulated as a global op-
timisation problem, where all the sensor measurements
y are related to all the piecewise thicknesses ¢; as

y=Wt+yo, (14)

t represents the thickness estimation of the entire
piecewise-constant pipeline profile,

Thickness values and the sensor measurements are corre-
lated by the m x n matrix W, which is formulated with
the parameters of the forward model. For each mea-
surements, the corresponding line W is defined by the
weights w for the defined ROI and set to 0 for the rest of
the line. Since there are multiple measurements between
the it and (i + 1)** values, spatial weights @; and b; are
used to derive the effective piecewise thickness profile for
each measurement.



W = . (16)

with U defined as:
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and @; and b; defined as
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where a; is the distance from the point measurement to
the centre of the i step, and b; is the distance from the
point measurement to the centre of the (i + 1) step.
We then obtain the thickness estimates ¢ by solving the
linear least squares in closed form,

t=W'W)"'W'y —y). (20)

h=1(y)

Therefore,  are calculated as a pseudo inverse from
the forward model and can even be done as the robotic
tool travels through the pipe. Section 3 presents the eval-
uations carried out for both forward and inverse models.

3 Results

FEA simulations with a 2D cross-sectional geometry
have been used to validate the proposed methods in a
controlled environment. The performance of both the
forward and inverse model has been analysed by apply-
ing them to a realistic known pipe profile.

3.1 FEA environment

This section describes how the data for the formulation
was obtained. Realistic real life cross-sectional thickness
profiles were used in the FEA environment to collect
the data sets. Pipe sections exhumed from a test bed

(a) 3-D model

(b) 3-D laser scanner

Figure 5: 3-D model generated from the laser scanner

situated in Strathfield, Sydney were used for the forensic
analysis of the real thickness profile.

This particular pipeline was laid more than a cen-
tury ago with an original manufactured wall thickness of
30mm. However, after the years of service, some parts
of the pipe have been significantly corroded. Some pipe
sections were exhumed and grid-blasted to remove all
non-metallic substances formed on the pipe surface. The
corroded cross-sectional thickness profiles have been cap-
tured with the 3D laser scanner shown in Figure 5b. The
3D point cloud generated from the scanner was later ray
traced as described in [Skinner et al., 2014] to extract
the cross-sectional ground-truth.

Each dataset consists of an equivalent 192m long 1-D
profile based on the geometry of exhumed pipe segments.
Once incorporated into a FEA simulation environment,
this realistic profile has provided sufficient data for vali-
dation.

The inspection of a pipe has been simulated using a
parameter sweep for the position of the MFL tool within
the pipe for the 192m length. The axial component of
the magnetic flux leakage density has been recorded for
each position of the parameter sweep. The 10mm cement
lining present in actual pipes were simulated by keeping
the sensor lift-off as 10mm above the pipe surface.

3.2 Forward Sensor Model

Forward sensor model is generated using the data gen-
erated as described in Section 3.1. The goal is to learn
the parameters defined in Equation (9). Three data sets
of 192m each have been used in this work.

For each data set, a three-fold cross-validation pro-
cess was used to learn the parameters. The estimated ¢
and the actual sensor measurements y were calculated
for each dataset and compared as a percentage error as
shown in Figure 6.

As expected, yg converged to a positive value, which
indicates the direct coupling field from the exciter mag-
nets. wy 2 (centre of the RIO) indicated the highest
negative value as the leakage flux increases with lower
thicknesses. Further coefficients away from the centre
of the Hall effect sensor indicated a decreased negative
value finally approaching to zero. This indicates that the
thickness values directly below the sensor location have
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Figure 6: Forward model results data set (a)

Table 2: Forward and inverse model RMS errors

Data set RMSE
Forward Model (T) Inverse Model (mm)
(a) 8.615 x 10~4 1.1473
(b) 4.933 x 1074 0.6317
(c) 5.9606 x 10~* 0.3453

a higher impact on the measurement which agrees with
the MFL principle.

3.3 Inverse Sensor Model

After optimising the parameters for the forward model,
all the parameters required for the inverse model can be
calculated. With the three-fold cross-validation, 1/3 of
the 192m thickness profile is recovered each time using
the formulation established in Section 2.4.

As indicated in the equations in Section 2.4, the so-
lution relies on the parameters learned for the forward
problem. In this case, all the parameters about the MFL
sensor set-up and the pipe are known, which enables to
generate the data using the FEA simulation. Otherwise,
multiple calibration data have to be collected experimen-
tally in a known environment. Although practically its
an exhausting task, with a reasonable ROI, it is possible
to experimentally collect the required data.

A close-up of a section of the recovered pipe profile is
indicated in Figure 7. The estimated thickness profile is
shown in blue and the ground truth is shown in red.

The inferred thickness profile was directly compared
with the ground truth giving a good agreement. RMS
error was calculated for each dataset to numerically eval-
uate the method giving a worst of 1.14mm RMS error
for data set (a).

Inference

Grond truth

N
N

N
S

1215 122 1225 123 1235 124 1.245
Scan distance x10%

Figure 7: Inverse model results data set (a)

4 Discussion

In this paper, the forward and inverse problems for a
MPFL sensor have been formulated as linear least squares
optimisation problems. The FEA model has been devel-
oped using real-life pipe thickness profiles and geomet-
rical values. The forward model was generated based
on the FEA data and the closed-form inverse model was
formulated using the learnt parameters. As indicated in
Section 3, both forward and inverse models provided rea-
sonable estimations of the measurements and thicknesses
respectively. Although the results are based on simula-
tions, this approach can be easily extended to work with
data from a real tool.

There can be several error sources present in the sys-
tem. This includes sensor noise, which is assumed Gaus-
sian distributed. It was incorporated in the model by
adding noise to FEA simulations. In practice, GMR sen-
sors can minimize such noise effects.

More importantly, the deterministic noise defined by
the difference between the linear nature of the proposed
model and the real behaviour of the magnetic field is
significant. Hence, each MFL point measurement is ap-
proximated to a linear combination of the thickness val-
ues under the MFL set-up. This generates a simplistic
forward model, which allows solving the inverse model
with a closed form solution. It is obviously an approx-
imation of the reality for both the direct and inverse
models. However, as shown in Figure 6 and Figure 7 it
is shown to be an acceptable approximation.

It is to be noted that inhomogeneous magnetic prop-
erties of the medium and external sources of electro-
magnetic fields (i.g. electric power lines or large fer-
romagnetic objects located near the pipe) can lead to an
inevitable error of sensor interpretation. Furthermore,
these properties can be affected by the excitation inten-
sity of the exciter coils. The excitation needs to be able
to substantially saturate the pipe wall to avoid some of
these effects.

In practice, as the in line tool navigates in the pipe, it



is non-trivial to keep a constant lift-off. Since the lift-off
has a direct impact on the MFL sensor reading, it should
be incorporated into the model. In future, authors are
planning to extend this work by incorporating the lift-
off values into the model which can be experimentally
measured in a practical robotic tool using an inductive or
a capacitive type proximity sensors as it travels through
the pipe.

References

[Carvalho et al., 2006] A.a. Carvalho, J.M.a. Rebello,
L.V.S. Sagrilo, C.S. Camerini, and I1.V.J. Miranda.
MFL signals and artificial neural networks applied to
detection and classification of pipe weld defects. NDT
& E International, 39(8):661-667, December 2006.

[Edwards and Palmer, 1986] C Edwards and S B
Palmer. The magnetic leakage field of surface-breaking
cracks.  Journal of Physics D: Applied Physics,
19(4):657, 1986.

[Falque et al., 2016] R. Falque, T. Vidal-Calleja, G. Dis-
sanayake, and J. Valls Miro. From the Skin-Depth
Equation to the Inverse RFEC Sensor Model. ArXiv
e-prints, September 2016.

[Forster, 1986] F. Forster. New findings in the field
of non-destructive magnetic leakage field inspection.
NDT International, 19(1):3-14, February 1986.

[Ireland and Torres, 2006] R.C. Ireland and C.R. Tor-
res. Finite element modelling of a circumferential mag-
netiser. Sensors and Actuators A: Physical, 129(1-
2):197-202, May 2006.

[Khodayari Rostamabad et al., 2009] a. Khodayari Ros-
tamabad, J.P. Reilly, N.K. Nikolova, J.R. Hare,
and S. Pasha. Machine Learning Techniques for
the Analysis of Magnetic Flux Leakage Images in
Pipeline Inspection. IEEE Transactions on Magnet-
ics, 45(8):3073-3084, August 2009.

[Mandache and Clapham, 2003] Catalin Mandache and
Lynann Clapham. A model for magnetic flux leak-
age signal. Journal of Physics D: Applied Physics,
36:2427-2431, 2003.

[Minkov et al., 2002] D. Minkov, Y. Takeda, T. Shoji,
and J. Lee. Estimating the sizes of surface cracks
based on Hall element measurements of the leakage
magnetic field and a dipole model of a crack. Applied
Physics A: Materials Science & Processing, 74(2):169-
176, February 2002.

[Priewald et al., 2013] R. H. Priewald, C. Magele, P. D.
Ledger, N. R. Pearson, and J. S. D. Mason. Fast mag-
netic flux leakage signal inversion for the reconstruc-
tion of arbitrary defect profiles in steel using finite el-
ements. IEEE Transactions on Magnetics, 49(1):506—
516, Jan 2013.

[Rathnayaka et al., 2016] Suranji Rathnayaka, Robert
Keller, Jayantha Kodikara, and Li Chik. Numerical
simulation of pressure transients in water supply net-
works as applicable to critical water pipe asset man-
agement. Journal of Water Resources Planning and
Management, 142(6):04016006, 2016.

[Skinner et al., 2014] Bradley Skinner, Jaime Vidal-
Calleja, Teresa amd Valls Miro, Freek De Bruijn,
and Raphael Falque. 3D point cloud upsampling
for accurate reconstruction of dense 2.5D thickness
maps. In Proceedings of the Australasian Confer-
ence on Robotics and Automation 2014 (ACRA 2014),
pages 1-7, Melbourne, Australia, 2014. Australian
Robotics and Automation Association Inc.

[Uetake and Saito, ] 1. Uetake and T Saito. Magnetic
flux leakage by adjacent parallel surface slots. NDT
& E International.

[Wijerathna et al., 2013] Buddhi Wijerathna, Teresa
Vidal-Calleja, Sarath Kodagoda, Qiang Zhang, and
Jaime Valls Miro. Multiple defect interpretation
based on gaussian processes for mfl technology. In
SPIE Smart Structures and Materials+ Nondestruc-
tive Fvaluation and Health Monitoring, pages 869417Z—
869417Z. International Society for Optics and Photon-
ics, 2013.

[Wijerathna et al., 2015] B. Wijerathna, S. Kodagoda,
J. V. Miro, and G. Dissanayake. Iterative coarse to
fine approach for interpretation of defect profiles using
mfl measurements. In Industrial Electronics and Ap-
plications (ICIEA), 2015 IEEE 10th Conference on,
pages 1099-1104, June 2015.



